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Abstract

Macaulay posets are posets for which there is an analogue of the classical Kruskal-
Katona theorem for finite sets. These posets are of great importance in many branches
of combinatorics and have numerous applications. We survey mostly new and also
some old results on Macaulay posets. Emphasis is also put on construction of extremal
ideals in Macaulay posets.

1 Introduction

Macaulay posets are, informally speaking, posets for which an analogue of the classical
Kruskal-Katona theorem for finite sets holds. They are related to many other combinatorial
problems like isoperimetric problems on graphs [9] (see also section 3) and problems arising
in polyhedral combinatorics. Several optimization problems can be solved within the class
of Macaulay posets, or at least for Macaulay posets with additional properties (cf. section
5). Therefore, Macaulay posets are very useful and interesting objects.

A few years ago, the classical Macaulay posets listed in section 2 were the only known
essential examples, and, consequently, the theory of Macaulay posets was more or less the
theory of these examples. In his book [30, chapter 8], Engel made a first attempt for
unification the theory of Macaulay posets. Although the book appeared quite recently, a
number of new examples, relations and applications have been found meantime. In this
paper, our objective is to give a survey on Macaulay posets that includes these new results
and updates [30].

We start with some basic facts and definitions in section 1 and the classical examples in
section 2. For all definitions not included here we refer to Engel’s book [30]. In section 3 we
proceed with constructions for Macaulay posets and relations to isoperimetric problems. New
examples of Macaulay posets are presented in section 4. Section 5 is devoted to optimization
problems on Macaulay posets.
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1.1 Some basic definitions

Let P be a partially ordered set (briefly, poset) with the associated partial order ≤. For
x, y ∈ P , we say that y covers x, denoted by x <· y, if x ≤ y and there is no z ∈ P such that
z 6= x, y and x ≤ z ≤ y. An antichain is defined as a subset X ⊆ P such that the conditions
x, y ∈ X and x ≤ y imply x = y.

A subset X ⊆ P is an ideal (or downset) if the conditions x ∈ X and y ≤ x imply
y ∈ X. If X is an antichain, then the set I(X) := {y ∈ P | y ≤ x for some x ∈ X} is
an ideal, which is called ideal generated by X. Conversely, if I is an ideal, then the set
max(I) := {x ∈ I | x 6≤ y for any y ∈ I, y 6= x} is an antichain, which is called the set of
maximal elements of I.

A rank function on P is a function r : P 7→ IN such that r(x) = 0 for some minimal element
x of P and r(y) = r(z)− 1 whenever y <· z. The poset P is called ranked , if a rank function
on P exists. The rank of P is defined by r(P ) := max{r(x) | x ∈ P}, where r(P ) = ∞
is allowed. A ranked poset P is called graded if all minimal elements have rank 0, and all
maximal elements have rank r(P ).

The dual P ∗ of P is the poset on the same set of elements with the partial order defined
by: x ≤∗ y iff y ≤ x. If P is ranked with r(P ) < ∞, then P ∗ is ranked. If P is ranked
with r(P ) = ∞, then P ∗ is not ranked in the usual sense. In this case r∗(x) := −r(x) will
considered to be the rank function for P ∗.

If P is ranked, then the set {x ∈ P | r(x) = i} is called the i-th level of P and is denoted by
Ni(P ) or Pi. The (lower) shadow of an element x ∈ Pi is the set ∆(x) := {y ∈ P | y <·x},
and its upper shadow is ∇(x) := {y ∈ P | x <· y}. The lower shadow ∆(X) (resp. upper
shadow ∇(X)) of a subset X ⊆ Pi is defined as the union of the lower (resp. upper) shadows
of its elements. For given integers i and m with 1 ≤ i ≤ r(P ) and 1 ≤ m ≤ |Pi|, the
shadow minimization problem (SMP) consists in finding an m-element subset X ⊆ Pi such
that |∆(X)| ≤ |∆(Y )| for all Y ⊆ Pi with |Y | = m. We say that a subset X ⊆ Pi is optimal
if it has minimum shadow among all subsets of Pi of the same size. Obviously, the SMP is
at least NP-hard, since it implies a solution to the Minimum Cover Problem.

The (cartesian) product P ×Q of two posets P and Q is the set of all pairs (x, y) with x ∈ P ,
y ∈ Q, where the partial order is given by: (x, y) ≤P×Q (x′, y′) iff x ≤P x′, y ≤Q y′. If P
and Q are ranked, then the poset P ×Q is ranked too, and the rank function for P ×Q is
given by: r(x, y) := rP (x) + rQ(y). The n-th (cartesian) power of a poset P is the poset
P n := P × P × · · · × P (n times).

1.2 Macaulay posets

Let P be a ranked poset and consider some total order � of its elements. Note that we do
not claim the order � to be a linear extension of P . For a subset X ⊆ P and a natural
number m ≤ |X| we will use the notation C(m, X) (resp. L(m, X)) for the set of the first
(resp. last) m elements of X w.r.t. �. In particular, for X ⊆ Pi we abbreviate C(|X|, Pi) and
L(|X|, Pi) by C(X) and L(X), respectively. The operation of replacing X ⊆ Pi with C(X)
is called compression, and we say that X is compressed if X = C(X). Compressed subsets
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will also be called initial segments (IS), whereas a final segment of Pi is a subset X ⊆ Pi

with X = L(X). A segment of Pi simply is a set of elements of Pi which are consecutive
w.r.t. � (restricted to Pi). For an element x ∈ Pi, the initial segment of Pi whose last
element w.r.t. � is x is denoted by Fi(x).

The poset P is said to be a Macaulay poset if there exists a total order � of its elements
(called Macaulay order) such that

∆(C(X)) ⊆ C(∆(X)) for all X ⊆ Pi and for all i = 1, . . . , r(P ). (1)

If (1) is satisfied for a ranked poset P with a partial order ≤ and for a total order � of the
elements of P , then the triple (P,≤,�) is called Macaulay structure.

It is easy to verify (cf, [30] for details) that (1) holds iff the conditions N1 and N2 given
below are satisfied for all X ⊆ Pi and for all i = 1, . . . , r(P ):

N1: |∆(C(X))| ≤ |∆(X)|,

N2: C(∆(C(X))) = ∆(C(X)).

According to N1, compressed subsets are optimal for the Macaulay poset P . Therefore,
N1 is called the condition of nestedness (of the optimal subsets). By N2, the shadow of a
compressed set is a compressed set again. That is why N2 is said to be the condition of
continuity .

For a total order � of the elements of P denote by �∗ its inverse.

Proposition 1 (Bezrukov [8]). (P,≤,�) is a Macaulay structure iff so is (P ∗,≤∗,�∗).

For many applications it turns out to be natural and useful to choose a Macaulay order rank
greedily. We say that a total order � is rank greedy (on P ), if it is a linear extension of the
partial order ≤ (i.e. if x ≤ y implies x � y), and if, in addition, r(x) = r(y)+1 implies x � y
whenever the last element of ∆(x) w.r.t. � precedes y in the order �. It can be easily shown
(see e.g. [30]) that for every Macaulay poset there exists a rank greedy Macaulay order of
its elements. The proof for this and the next assertion can be found in [30].

Proposition 2 If a total order � is rank greedy for a Macaulay poset P , then �∗ is rank
greedy for P ∗.

If we associate a rank greedy total order with some Macaulay poset P , then we also say
that P is rank greedy. Note that all Macaulay orders presented in sections 2 and 4 are rank
greedy.

1.3 The shadow function

Let P be a Macaulay poset. The shadow function sfi assigns with each subset X ⊆ Pi the
number sfi(X) = |∆(C(X))|. We briefly discuss some properties of the shadow function.
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The lower and upper new shadows of an element x ∈ P are defined by:

∆new(x) := {y ∈ P | y <·x and there is no z ∈ P with z � x, z 6= x, y <· z},
∇new(x) := {y ∈ P | x <· y and there is no z ∈ P with x � z, z 6= x, z <· y},

respectively. Note that the upper new shadow of x in P is exactly the lower new shadow of
x in P ∗. The lower new shadow ∆new(X) (resp. upper new shadow ∇new(X)) of a subset
X ⊆ P is the union of the lower (resp. upper) new shadows of its elements. The shadow
function sfi is called additive if the inequality

|∆new(X)| ≥ |∆new(Y )| ≥ |∆new(Z)|

is satisfied for all segments X, Y, Z ⊆ Pi with X being initial, Z being final, and |X| = |Y | =
|Z|. We say that P is additive if sfi is additive for all i = 0, . . . , r(P ).

Proposition 3 (Engel [30]). Let P be a Macaulay poset. P is graded and additive iff its
dual P ∗ is graded and additive.

The Macaulay poset P is called shadow increasing if for all i = 0, . . . , r(P )− 1 and for any
initial segments X ⊆ Pi and Y ⊆ Pi+1 with |X| = |Y | the inequality |∆(X)| ≤ |∆(Y )|
holds. We say that P is final shadow increasing if we have |∆new(X)| ≤ |∆new(Y )| for all
i = 0, . . . , r(P )−1 and for any final segments X ⊆ Pi and Y ⊆ Pi+1 with |X| = |Y |. Finally,
P is said to be weakly shadow increasing if |∆new(X)| ≤ |∆new(Y )| holds for any segments
X ⊆ Pi and initial segments Y ⊆ Pj such that i ≤ j, |X| = |Y | and X ∪ Y is an antichain.

Proposition 4 (Engel, Leck [31]). Let P be a Macaulay poset.

a. If P is final shadow increasing, then P ∗ is shadow increasing.

b. Let P be graded, additive, and shadow increasing. If P ∗ is shadow increasing, then P
is final shadow increasing.

c. If P is a graded, additive and shadow increasing, then P is weakly shadow increasing.

2 Some known Macaulay posets

2.1 Boolean lattices

Boolean lattices are certainly the most popular examples of Macaulay posets. For a nat-
ural number n the Boolean lattice Bn is defined as the collection of all subsets of [n] :=
{1, 2, . . . , n} partially ordered by inclusion, i.e. X ≤ Y for X, Y ⊆ [n] iff X ⊆ Y . The
unique rank-function on Bn maps a set X ⊆ [n] to |X|. Representing the subsets of [n] by
their characteristic vectors, it is obvious that Bn is isomorphic to the n-th cartesian power
of the chain 0 <· 1 of length one.

The lexicographic order of the elements of Bn is defined by X �lex Y iff max(X \ Y ) ≤
max(Y \X), where max(∅) := 0. The following theorem, which meantime became a classical
one, was proved by Kruskal [39] and Katona [37].
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Theorem 1 (Kruskal-Katona theorem). (Bn,⊆,�lex) is a Macaulay structure.

The solution to the SMP provided by Kruskal-Katona theorem is not unique, in general.
However, for at least 2n−1 cardinalities m the IS of the lexicographic order of size m is
essentially a unique optimal subset, as it is shown in the next theorem. Denote ∆(m, k) =
|∆(C(m, Bn

k ))|.

Theorem 2 (Füredi, Griggs [32]). If ∆(m + 1, k) > ∆(m, k) for some k ≥ 1, then the set
C(m, Bn

k ) is a unique optimal subset of size m (up to isomorphism).

This result, however, is a corollary of more general results [7, 8] which concern the VIP.
Without going into details, for which readers are referred to a survey [8], we mention another
corollary of results on VIP.

Theorem 3 (Bezrukov [7]). If A ⊆ Bn
k is optimal for some k ≥ 0, then so is for ∆(A).

Presently it is not known if this property is valid for other Macaulay posets.

2.2 Chain products

Cartesian product of chains, called also lattice of multichains , is a well-studied generalization
of Boolean lattices. For positive integers n and k1 ≤ k2 ≤ · · · ≤ kn the chain product
S(k1, k2, . . . , kn) consists of all vectors x = (x1, x2, . . . , xn) such that xi ∈ {0, 1, . . . , ki} for
i = 1, 2, . . . , n. The partial order is a coordinatewise one: x ≤ y iff xi ≤ yi for i = 1, 2, . . . , n.
Again we have a uniquely determined rank-function, namely r(x) =

∑n
i=1 xi. Obviously,

S(k1, k2, . . . , kn) is the cartesian product of the chains 0 <· 1 <· · · · <· ki, i = 1, 2, . . . , n.

A natural extension of the lexicographic order to chain products is established by: x �lex y
iff x = y or xj < yj, where j is the smallest index with xj 6= yj.

Theorem 4 (Clements-Lindström theorem). (S(k1, . . . , kn),≤,�lex) is a Macaulay
structure.

A short proof of this theorem is based on shifting technique and is published in [41]. A
principally different approach used in [17] for the MWI problem (cf. Section 5.2) implies
a short proof too. The properties of chain products given in the following theorem are
important for many applications (see section 5.1 for instance).

Theorem 5 (Clements [18]). Chain products are additive and shadow increasing.
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2.3 The star posets

Another natural way to generalize Boolean lattices is to consider the chain 0 <· 1 as a star
with just two vertices. This leads to cartesian products of stars. For positive integers n and
k1 ≤ k2 ≤ · · · ≤ kn the star poset T (k1, k2, . . . , kn) consists of all vectors x = (x1, x2, . . . , xn)
such that xi ∈ {kn − ki, kn − ki + 1, . . . , kn} for i = 1, 2, . . . , n, where the partial order is
given by: x ≤ y iff xi = yi or yi = kn for i = 1, 2, . . . , n. The unique rank-function on
T (k1, k2, . . . , kn) is given by r(x) = |{i | xi = kn}|.

To introduce a Macaulay order � on T (k1, k2, . . . , k2), define x(j) := {i ∈ [n] | xi = j} for
x ∈ T (k1, k2, . . . , kn) and j = 0, 1, . . . , kn. Now � is defined as follows: x � y iff x = y or
y(h) ≺lex x(h), where h is the smallest number with x(h) 6= y(h).

Theorem 6 (T (k1, k2, . . . , kn),≤,�) is a Macaulay structure.

This theorem is found by Lindström [48] for the case k1 = · · · = kn = 2 (his proof, however,
contains a gap), and is proved by Leeb [47] and Bezrukov [6] in the case k1 = · · · = kn.
Actually, both mentioned proofs can be extended for the case k1 6= kn. Explicit proofs for
this general case are given in [30, 42].

Theorem 7 Star products are additive and shadow increasing.

The additivity part of this theorem is due to Clements [20] (see [30] for simplification), the
shadow increase property was shown by Leck [43] by using an idea of Kleitman.

2.4 Colored complexes

Obviously, for kn ≥ 2 the star product T (k1, k2, . . . , kn) is not isomorphic to its dual. Engel
[30] observed that the duals of star products are isomorphic to colored complexes which were
introduced by Frankl, Füredi and Kalai [34] in the case kn − k1 ≤ 1.

To define colored complexes in general, for positive integers n and k1 ≤ k2 ≤ · · · kn, and for
i = 1, 2, . . . , n, let the i-th color class be the set

Ai := {i, n + i, 2n + i, . . . , (ki − 1)n + i}.

Now the colored complex Col(k1, k2, . . . , kn) consists of all subsets X ⊆ A :=
⋃n

i=1 Ai such
that |X ∩ Ai| ≤ 1 for i = 1, 2, . . . , n, i.e. of all subsets of A which meet every color class at
most once. The corresponding partial order is the usual set inclusion.

Due to the isomorphism mentioned above, Proposition 1 and Theorem 6, and, respectively,
Proposition 3, yield the following corollaries.

Corollary 1 (Colored Kruskal-Katona theorem [34]). (Col(k1, k2, . . . , kn),⊆,�lex) is
a Macaulay structure.
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Corollary 2 The colored complexes are additive.

The following theorem is the result of yet another application of the Kleitman’s idea men-
tioned above.

Theorem 8 (Leck [43]). Colored complexes are shadow increasing.

3 Construction of Macaulay posets

3.1 Posets with a given shadow function

Here we show that for any shadow function sfi there exists a Macaulay poset with this
shadow function. Obviously, it suffices to construct Macaulay posets with two levels only.
Let P be a ranked poset with r(P ) = 1 and consider the SMP on its top level P1. Denote
by ∆(m) the minimal size of the shadow of a set consisting of m elements of P1. Obviously,
the sequence {∆(m)} is nondecreasing.

Proposition 5 For any nondecreasing sequence {∆(1), ..., ∆(p)} there exists corresponding
Macaulay poset P with r(P ) = 1.

To construct such a poset, denote P1 = {a1, . . . , ap} and P0 = {b1, . . . , b∆(p)}. We define a
partial order ≤ on P = P0∪P1 as follows. For any i = 1, . . . , p set ai > bj for j = 1, . . . , ∆(i).
Obviously, the constructed poset is Macaulay and the labelings of ai’s and bi’s provide
Macaulay orders on P1 and P0 respectively.

Similarly Macaulay posets with more levels can be constructed. This construction is, in a
sense, invertible. Given a Macaulay poset (P,≤,�), construct another poset Q = (P,v) as
follows. Take an element a ∈ Pi for some i > 1 and consider Fi(a). Then ∆(Fi(a)) = Fi−1(b)
for some b ∈ Pi−1. Let c ∈ Fi−1(b) and assume c 6≤ a. Now we extend the partial order ≤
by setting c ≤ a.

Proposition 6 (Bezrukov, Portas, Serra [16]). The poset Q is Macaulay.

3.2 Posets related to isoperimetric problems on graphs

Let G = (VG, EG) be a graph. For A ⊆ VG denote

E(A) = {(u, v) ∈ EG | u ∈ A, v 6∈ A},
E(m) = max

|A|=m
|E(A)|.

Consider an edge-isoperimetric problem (EIP): for any m ≤ |VG| find A ⊆ VG such that
|A| = m and |E(A)| = E(m). We say that the edge-isoperimetric problem has nested
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solutions if there exists a numbering of V such that each IS is an optimal set. For more
information on edge-isoperimetric problems on graphs readers are referred to the survey [12].

Assume that the EIP has nested solutions for the graph G. We construct a Macaulay poset
(P,≤) with |P | = |VG| by induction on |VG| (cf. [11]). If |VG| = 1, then the poset is trivial.
For |VG| > 1 let VG = {1, . . . , |VG|} and assume that for each m = 1, . . . , |VG| the subset
{v1, . . . , vm} ⊆ VG is optimal. Note that for m < |VG| this subset is also optimal for the
subgraph G′ which is induced by the vertex set {1, . . . , |VG|−1}. Construct the representing
poset (P ′,≤′) for G′ by induction. Now extend P ′ by adding a new element v at level
i = E(|VG|) − E(|VG| − 1) and extend the partial order ≤′ by setting v to be greater than
any element of P ′ at level i− 1. This procedure results in the poset (P,≤).

Proposition 7 (cf. [11]). A poset obtained according to the EIP-construction is Macaulay.

What is interesting that if a poset P represents a graph G, and if P n is Macaulay, then the
EIP on Gn has nested solutions [9, 10]. The inverse proposition is, however, not correct, in
general. However, the posets P n are good candidates for being Macaulay (cf. the discussion
in section 5.3).

Now we turn to a vertex-isoperimetric problem on G = (VG, EG). For A ⊆ VG denote

Γ(A) = {v ∈ VG \ A | (v, u) ∈ EG, u ∈ A},
Γ(m) = min

|A|=m
|Γ(A)|.

The vertex-isoperimetric problem (VIP) consists in finding for a given m ≤ |VG| a set A ⊆ VG

such that |A| = m and |Γ(A)| = Γ(m). Such problems often arise in combinatorics. For a
survey we refer to [8].

We additionally assume that for any IS A ⊆ VG the set A∪Γ(A) is an IS, too. This property
corresponds to the continuity in the definition of Macaulay poset and holds for many graph
families.

Let VG = {1, . . . , |VG|}, where any IS represents an optimal set. We construct a poset (P,≤)
with r(P ) = 1 and |P | = 2|VG| as follows. Let P0 = {b1, . . . , b|VG|} and P1 = {a1, . . . , a|VG|}.
We set bi < ai for i = 1, . . . , |VG|. Furthermore, if (i, j) ∈ EG, then set bi < aj and bj < ai.

Proposition 8 The poset obtained according to the VIP-construction from a graph G is
Macaulay iff G satisfies the nestedness and continuity properties with respect to the VIP.

3.3 Product theorems

Counterexamples show that if P and Q are Macaulay posets, then P ×Q is not necessarily
Macaulay. For example, if P is a poset whose Hasse diagram is isomorphic to Kp,p for p ≥ 2
(i.e. we have a special case of a so-called complete poset [28]) then P ×P is not Macaulay in
contradistinction to a conjecture in [28]. Indeed, if m ≤ p, then a set of m elements of P 2

1 has
minimal shadow iff these elements agree in some entry whose rank in P is 0. However, the
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shadow of any element of P 2
2 consists of 2p elements of P 2

1 , which do not contain p elements
of the form above.

Thus, a condition on P and Q is needed for a product theorem. The situation is, however,
simple if Q is a trivial poset with r(Q) = 0. In this case a necessary and sufficient condition
for P is found by Clements:

Theorem 9 (Clements [21]). If r(Q) = 0, then P ×Q is additive and Macaulay iff so is P .

Probably, the next case in this hierarchy are posets of the form P ×Cq with Cq being a chain
with q elements. Counterexamples show that a condition on P is required for P × Cq to be
Macaulay. However, this is not the case for r(P ) = 1, as our result shows.

Theorem 10 Let P be a poset with r(P ) = 1 and let q ≥ 1. Then P × Cq is a Macaulay
poset iff P is Macaulay.

3.4 A local-global principle

Consider the SMP on a cartesian power P n of a Macaulay poset P . There exists a powerful
technique for establishing the Macaulayness of such posets, which, in particular, involves
induction on the number n of posets in the product. However, the general arguments within
this technique work for n ≥ 3 only. The case n = 2 is a special one and must be considered
separately.

A similar situation also occurs in the edge isoperimetric problem on graphs (see section
3.3). Ahlswede and Cai proved in [1] that if the lexicographic order (see section 2) provides
nestedness in EIP, then it is so for any n ≥ 3. It turns out that the last result, which is
called the local-global principle in [1], is valid for the edge-isoperimetric problem also with
respect to some other total orders [12].

In what concerns the SMP, the above approach can not be directly applied because of the
necessity to maintain the level structure of a poset. It turns out, however, that for the
validity of such a principle with respect to the lexicographic order it is important that the
poset satisfies some additional conditions, which have no analogies for graphs yet.

We call a Macaulay poset P strongly Macaulay if it is additive, shadow increasing and final
shadow increasing. Note that Theorems 9 and 10 are valid with respect to strongly Macaulay
posets too. Denote by M the class of ranked posets having only one maximum and only one
minimum element.

Proposition 9 A poset P ∈M is strongly Macaulay iff so is its dual P ∗.

Theorem 11 (Bezrukov, Portas, Serra [16]). Let (P,≤,�) ∈ M be strongly Macaulay and
rank-greedy. Let the lexicographic order �2 be Macaulay for P 2. Then for any n ≥ 2 the
lexicographic order �n is a Macaulay order for P n.
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The assumptions concerning the poset P in Theorem 11 are essential, as the following result
shows.

Theorem 12 (Bezrukov, Portas, Serra [16]). Let (P,≤,�) be a Macaulay poset. Fur-
thermore, let r(P ) ≥ 3 and assume the orders �2 and �3 are Macaulay for P 2 and P 3,
respectively. Then for any n ≥ 1 one has: P n ∈ M, P n is rank greedy, and P n is strongly
Macaulay.

As an application of the local-global principle consider the following poset (T (k),≤) ∈M of
rank k. For 1 ≤ i ≤ k−1 the ith level of T (k) consists of two elements ai and bi. Denote by b0

and ak the elements of T0 and Tk, respectively. The partial order is defined as follows: x < y
iff r(x) < r(y). We define the total order � on T (k) by setting bi−1 ≺ ai for i = 1, . . . , k and
ai ≺ bi for i = 1, . . . , k − 1. Obviously, the order � is Macaulay on (T (k),≤).

Theorem 13 (Bezrukov, Portas, Serra [16]). For any k ≥ 1 and any n ≥ 1 the poset
(T n(k),≤×,�n) is Macaulay.

Further posets for which the local-global principle is applicable can be constructed using
Proposition 6. Let P satisfy the assumptions of Theorem 11, and construct the poset Q =
(P,v) as in section 3.3. Then Theorem 11 is applicable to Q. Indeed, the poset Q is
Macaulay by Proposition 6. Now consider P 2. Since

∆P 2(Fi((x, y))) = {(x, ξ) | ξ ∈ ∆P (Fi−rP (x)(y))} ∪ {(ξ, y) | ξ ∈ ∆P (Fi−rP (y)(x))},

then ∆P 2(Fi((x, y)) = ∆Q2(Fi((x, y))). Therefore, if P satisfies the assumptions of Theorem
11, then so does Q. On the other hand, since the lexicographic order is Macaulay for P 2,
then so it is for P 4, for example. Extending P 2 as shown in section 3.1 results in a new
poset, for which Theorem 11 is applicable.

4 New Macaulay posets

In this section we present some further new families of Macaulay posets. We start with
posets which are factorable by using the cartesian product operation in subsections 1 - 3 and
proceed with two posets which do not appear to be cartesian products.

4.1 The products of trees and spider poset

Evidently, the classical Macaulay posets mentioned in Section 2 (we mean the Boolean
lattice, the chain products, and the star poset) have something in common. Namely, the
Hasse diagrams of the underlying posets in the product are trees. These posets are also
upper-semilattices . For a, b ∈ P denote by supP (a, b) an element c ∈ P (if it exists) such
that a ≺ c, b ≺ c and c ≺ d if a ≺ d and b ≺ d. The poset P is an upper-semilattice if for
any a, b ∈ P , supP (a, b) exists and is unique.
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Denote by P the class of upper semilattices P whose Hasse diagrams are trees. For which
posets P ∈ P any their cartesian posers P n are Macaulay ? Denote by Q(k, l) ∈ P the poset
with the element set {0, 1, . . . , (k + 1)l}, and the partial order ≤ being defined as follows:
α ≤ β iff (i) α = β (mod k + 1) and α ≤ β, or (ii) β = (k + 1)l. The Hasse diagram of
Q(k, l) is a regular spider with k legs consisting of l vertices each.

Theorem 14 (Bezrukov [10]). Suppose for some poset P ∈ P that P n is Macaulay for some
integer n ≥ r(P ) + 3. Then P is isomorphic to Q(k, l) for some k ≥ 1 and l ≥ 1.

It turns out that the inverse theorem is also valid.

Theorem 15 (Bezrukov, Elsässer [15]). The poset Qn(k, l) is Macaulay for all integers n,
k and l.

The Macaulay order for Qn(k, l) is quite complicated and involves, in particular, the star
poset order. We refer readers to [15] for exact definitions.

Looking back at Theorem 6 for star posets it is natural to ask if all cartesian products of the
form Q(k1, l)×Q(k2, l)× · · · ×Q(kn, l) are Macaulay. We conjecture an affirmative answer.
On the other hand, it is easily seen that products of the form Q(k, l1)×Q(k, l2)×· · ·×Q(k, ln)
are not Macaulay in general.

4.2 Generalized submatrix orders

Let n and k1 ≤ k2 ≤ . . . km be positive integers such that k0 := n−∑m
i=1 ki ≥ 0. Furthermore,

let A0, A1, . . . , Am be the sets defined by

A0 := {1, 2, . . . , k0},

Ai :=


i−1∑
j=0

kj + 1,
i−1∑
j=0

kj + 2, . . . ,
i∑

j=0

kj

 for i = 1, 2, . . . ,m.

Clearly, the sets Ai (i = 0, 1, . . . ,m) form a partition of [n] = {1, 2, . . . , n}.

The generalized submatrix order S := SM(n; k1, . . . , km) consists of all subsets X of [n]
such that Ai 6⊆ X for all i = 1, 2, . . . ,m. The corresponding partial order is given by:
X ≤ Y iff X ⊆ Y . According to this definition, S is isomorphic to the cartesian product
Bk0×B̃k1×· · ·×B̃km , where B̃s denotes the Boolean lattice Bs without its maximal element.

The name generalized submatrix order refers to the work of Sali [51, 53] who actually con-
sidered the dual of S in the case m = 2, k0 = 0. Sali proved for this poset several analogies
to classical theorems on finite sets (Sperner, Erdös-Ko-Rado). For this poset, he also solved
the problem of minimizing the number of atoms which are covered by an m-element subset
of the i-th level for given i, m and conjectured Theorem 16 below in an equivalent form.

Theorem 16 (Leck [45, 46]). (S,⊆) is a Macaulay poset.
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Before the above theorem was established, the closely related problem of finding ideals of
maximum rank (cf. section 5.3) was solved by Vasta [54] for S∗ with k0 = 0. Using Theorem
16, a more general statement is now implied by Theorem 27.

In the proof of Theorem 16, again the case m = 2 required some special treatment, a
modification of the well-known shifting operator for finite sets was used to settle this case.
The following theorem is commonly used in the proof for m > 2, which is done by induction.

Theorem 17 (Leck [46]). Generalized submatrix orders are additive.

Another interesting poset which is related to the generalized submatrix orders is the poset
Mn of square submatrices of a square matrix of order n ordered by inclusion. This poset
also was studied by Sali [50, 52] with respect to Sperner and intersecting properties. For
n ≤ 3 the poset Mn is Macaulay, but not for n ≥ 4 in contradistinction to a conjecture in
[28].

4.3 The torus poset

Denote by Tk the poset whose Hasse diagram can be obtained from two disjoint chains of
length k each by identifying their top and bottom vertices. Obviously, the Hasse diagram of
Tk is a cycle of length 2k.

Let T n
k1,...,kn

= Tk1×· · ·×Tkn . The solution to the SMP for this poset follows from a solution
to a more general problem: the VIP (cf. Section 3.2). In order to show the relation, let us
consider a bipartite graph G. Fix a vertex v0 ∈ VG and denote by Gi the set of all vertices
of G at distance i from v0. This leads to a ranked poset P with Pi = Gi whose Hasse
diagram is isomorphic to G. Assume that a solution to VIP on G satisfies the nestedness
and continuity properties. Moreover, we assume that the total order O which provides a
solution to the VIP orders the vertices of Gi in sequence. In other words, if A is an IS of
O and

∑r
i=0 |Gi| ≤ |A| ≤ ∑r+1

i=0 |Gi|, then A contains a ball of radius r centered in v0 and is
contained in the ball of radius r + 1 with the same center.

Obviously, a solution to the SMP with respect to the minimization of ∇(·) for the subsets of
Pr follows. Moreover, each IS of the order O restricted to Pr provides an optimal set. This
problem is equivalent to the SMP with respect to the minimization of ∆(·) for the dual of
P . Thus, both P ∗ and P are Macaulay.

The Macaulay order for T n
k1,...,kn

, thus, can be obtained from the VIP-order T for the torus.
This order is first established in [36], mentioned in the survey [8] and recently rediscovered
in [49] and the readers are referred to these papers for exact definitions.

Theorem 18 (Karachanjan [36], Riordan [49]). Any IS of the T -oder provides a solution
to the VIP. Moreover, the T -oder satisfies the continuity property.

12



4.4 Subword orders

Let us now turn to a first example of a Macaulay poset which is not representable as a
cartesian product of nontrivial factors.

Let n ≥ 2 be an integer, and let Ω denote the set {0, 1, . . . , n − 1}. In the sequel, we call
Ω the alphabet . The subword order SO(n) consists of all strings (called words) that contain
symbols (called letters) from Ω only. The partial order on SO(n) is the subword relation,
i.e. we have x1x2 . . . xk ≤ y1y2 . . . yl iff there is a set {i1, i2, . . . , ik} ⊆ {1, 2, . . . , l} of indices
such that i1 < i2 < · · · < ik and xj = yij for j = 1, 2, . . . , k. In other words, x ≤ y holds
iff the word x can be obtained from the word y by successively deleting letters. By this
definition, the rank of an element of SO(n) equals its length, that means r(x1x2 . . . xi) = i.
The only element of N0(SO(n)) is the empty word ε.

Consider the case n = 2. Clearly, the level Ni(SO(2)) consists of all 0-1-words of length
i and, therefore, in an obvious way its elements can be considered as the elements of the
Boolean lattice Bi. It was shown by Harper [35] that, among all subsets X ⊆ Bi of fixed
cardinality, the IS in the VIP-order minimizes |ΓB(X)| (the size of the vertex-boundary of
X in the Boolean lattice Bi). This order induces a total order of the elements for each level
of SO(2). For convenience, we define w(x1x2 . . . xi) := |{j | xj = 1, 1 ≤ j ≤ i}|. Now the
rank greedy extension of the VIP-order to the whole poset SO(2) is given by the following
conditions:

(1) x �vip y if w(x) < w(y),

(2) x �vip y if w(x) = w(y) and there is some j ≤ min{r(x), r(y)} such that xj > yj and
xh = yh for h = 1, 2, . . . , j − 1,

(3) x �vip y if w(x) = w(y), r(x) ≤ r(y) and xj = yj for j = 1, 2, . . . , r(x).

The next theorem reflects the importance of the VIP-order.

Theorem 19 (Ahlswede, Cai [2], Daykin, Danh [24, 25], Bezrukov [9]). (SO(2),≤,�vip) is
a Macaulay structure.

Let us remark that there are also several other Macaulay orders for SO(2) which are specified
by Daykin [29].

Based on the numerical approach of Ahlswede and Cai in [2], Engel and Leck [31] provided
a relatively simple proof of Theorem 19. One of the main observations relates the SMP
for SO(2) to the VIP for Boolean lattices: If X ⊆ Ni(SO(2)) is a final segment, then
|∇(X)| = |ΓB(X)| + 2|X| holds. Another interesting observation is that C(X) and L(X)
are isomorphic for any X ⊆ Ni(SO(2)). Clearly, this implies |∆(C(X))| = |∆(L(X))| for
all X ⊆ Ni(SO(2)) and all i. Macaulay posets satisfying this equality are called shadow
symmetric.

Theorem 20 (Engel, Leck [31]). Let P be a Macaulay poset. If P is shadow symmetric,
then P additive.
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According to the above theorem, SO(2) and its dual are additive.

Theorem 21 (Engel, Leck [31]). The subword order SO(2) is shadow increasing and weakly
shadow increasing.

Unfortunately, the dual of SO(2) is obviously not shadow increasing In fact, this poset is
even shadow decreasing (see [31] for a proof). However, for some applications (see section
5.1) the weak shadow increase property can serve as a substitute.

Let us now briefly discuss the case of larger alphabets. In [14] a Kruskal-Katona type theorem
for SO(n) with n ≥ 2 was presented but there is a mistake in the proof, as pointed out by
Danh and Daykin [26]. They also provided an example showing that the statement itself is
not true at all for n > 2.

Daykin [28] introduced the V -order , an extension of the VIP-order for SO(n) with n ≥ 2.
He conjectured that this order is a Macaulay order for SO(n). For n ≥ 3, a counterexample
to this conjecture is given in [44]. Even worse, this example and a tedious case study yield
the following result.

Theorem 22 (Leck [44]). If n > 2, then the subword order SO(n) is not a Macaulay poset.

4.5 The linear lattice

The linear lattice Ln is another example of a poset which is not representable as a cartesian
product of other posets. This poset is defined to be the collection of all proper nonempty
subspaces of PG(n, 2) ordered by inclusion.

Note that 2n+1 − 1 points of PG(n, 2) are just (n + 1)-dimensional non-zero binary vectors
(β1, . . . , βn+1). Using the lexicographic ordering of the points, let us represent each sub-
space a ∈ Ln by its characteristic vector, i.e. by the (2n+1 − 1)-dimensional binary vector
(α2n+1−1, . . . , α1), where αi corresponds to the ith point of PG(n, 2).

For two subspaces a, b ∈ Ln, we say that a is greater than b in the order O if the characteristic
vector of a is greater than the one of b in the lexicographic order. Now for t > 0 and A ⊆ Ln

t

denote
∆̂(A) = {x ∈ Ln

0 | x ≤ y, y ∈ A}

and consider the SMP for the levels Ln
t and Ln

0 .

Theorem 23 (Bezrukov, Blokhuis [13]). Let n ≥ 1 and t > 0. Then any IS of the order Ot

has minimal shadow ∆̂(·). The shadow ∆̂(·) of any IS is an IS itself.

However, as it is shown in [13], this poset is not Macaulay for n ≥ 3.
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5 Extremal ideals in Macaulay posets

In this section we will be concerned with some optimization problems for which solutions
are known for a rich class of Macaulay posets.

Let P be a poset, and let IR+ denote the set of nonnegative real numbers. Furthermore,
let there be a weight function w : P 7→ IR+ on P . If w(x) = w(y) whenever r(x) = r(y),
the function w(·) is called rank-symmetric. If w(·) is a rank-symmetric weight function and
w(x) ≤ w(y) whenever r(x) < r(y), then w(·) is called monotone. Now define the weight of
a subset X ⊆ P as w(X) =

∑
x∈X w(x).

5.1 Generated ideals of minimum weight

Consider the problem of constructing an antichain X ⊆ P of given cardinality m ≤ d(P )
such that the ideal generated by X has minimum weight for some monotone weight function.

This problem was considered by Frankl [33] for the Boolean lattice. For chain products,
the problem was solved by Clements [19] who generalized preliminary results of Kleitman
[38] and Daykin [27]. A further generalization is due to Engel [30] who provided a solution
for the class of Macaulay posets P such that P and P ∗ are graded, additive, and shadow
increasing. Unfortunately, the subword order SO(2) is not included in this class since its
dual is not shadow increasing (see section 4.4). Therefore, Engel and Leck [31] gave the
following strengthening which applies to the classical Macaulay posets as well as to SO(2).

Theorem 24 (Engel, Leck [31]). Let P be a Macaulay poset such that P and P ∗ are weakly
shadow increasing. Furthermore, let m ≤ d(P ) be a positive integer, and put i := min{j |
m ≤ |Pj|} and a := min{b | b + |Pi−1| − |∆(C(b, Pi))| = m}. Then the set

X := C(a, Pi) ∪ (Pi−1 \∆(C(a, Pi)))

is an antichain of size m. Moreover, w(I(X)) ≤ w(I(Y )) holds for all antichains Y ⊆ P
with |Y | = m with respect to any monotone weight function.

This theorem provides a sufficient condition for a poset to be Sperner (cf. [31] for details).

Corollary 3 Let P be a Macaulay poset such that P is not an antichain. If P and P ∗ are
weakly shadow increasing, then P is graded and has the Sperner property, i.e. the size of
maximum antichain of P is equal to maxi |Pi|.

5.2 Ideals with maximum number of maximal elements

Now consider a dual to the last problem. Namely, we are looking now for an ideal of a given
size, which has maximum number of maximal elements. In order to present a solution to
this problem, we first introduce quasispheres. A quasisphere of size m in a ranked poset P
is a set of the form

P0 ∪ P1 ∪ · · · ∪ Pi ∪ C(a, Pi+1),
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where the numbers a and i are (uniquely) defined by m =
∑i

j=0 |Pj| + a, 0 ≤ a < |Pi+1|.
Obviously, any quasisphere is an ideal.

Theorem 25 (Engel, Leck [31]). Let P be a Macaulay poset such that P and P ∗ are weakly
shadow increasing. Then a quasisphere of size m has the maximum number of maximal
elements in the class of all ideals of size m in P .

Clearly, the set of maximal elements of some ideal is an antichain. For Boolean lattices,
a related problem was considered by Labahn [40]. He determined the maximum size of an
antichains X such that the ideal generated by X contains exactly m elements of Pi.

5.3 Maximum weight ideals

Now consider a problem of finding an ideal I∗ ⊆ P such that w(I) ≥ w(I) for any other ideal
I ⊆ P with |I| = |I∗|. We call this problem the Maximum Weight Ideal problem (MWI for
brevity). Denote wi = w(x) for any x ∈ Pi.

The MWI problem is closely related to the edge-isoperimetric problems (cf. Section 3.2 and
[8, 11] for more details) and was first considered by Bernstein and Steiglitz in [5] for the
Boolean lattice and applied to a problem in coding theory.

Theorem 26 (Bernstein, Steiglitz [5]). If � is a lexicographic order, then for any m =
0, . . . , 2n the set C(m, Bn) is a solution to the MWI problem for Bn with respect to any
monotone weight function.

Clements and Lindström in [23] extended Theorem 26 to the chain products in the case
wi = i for all i, where a similar solution with respect to the lexicographic order was obtained
by using Theorem 4. It turns out that the MWI problem is a direct consequence of the
shadow minimization problem, as presented in the following theorem (see [6, 30]).

Theorem 27 Let (P,≤,�) be a rank-greedy Macaulay structure with a monotone weight
function. Then the set C(m, P ) is a solution to the MWI problem for P .

What if the weight function is not monotone? It is easily seen that if w0 ≥ w1 ≥ · · · ≥ wn

then a solution to the MWI problem is attained on a quasisphere for any ranked poset P .
For some less trivial nonmonotone weight functions a solution to the MWI is known for the
Boolean lattice.

Theorem 28 (Ahlswede, Katona [4]). Consider the Boolean lattice and let � be the lexico-
graphic order.

a. If w0 ≤ w1 ≤ · · · ≤ wi−1 ≥ wi ≥ · · · ≥ wn, then a solution to the MWI problem is
attained on an intersection of C(m′, Bn) with a quasisphere for some m′ ≤ m.
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b. If w0 ≥ w1 ≥ · · · ≥ wi−1 ≤ wi ≤ · · · ≤ wn, then a solution to the MWI problem is
attained on an union of C(m′, Bn) with a quasisphere for some m′ ≤ m.

Bezrukov and Voronin in [17] proposed a new approach to this problem which significantly
explores the Macaulayness property. They showed that similar result holds for the chain
products. Note that the methods of neither [4] nor [17] provide exact values of m′. The
corresponding results describe the situation just qualitatively and only ensure that such m′

does exist. We guess that the approach of [17] can be extended to qualitatively describe
maximum weight ideals for any rank-symmetric weight function, at least for the Boolean
lattice and the products of chains.

Let us return back to Theorem 27. Evidently, the MWI and the SMP are closely related.
The principal question is what should we claim on the solutions to the MWI problem in
order to deduce the Macaulayness of the corresponding poset? Counterexamples show that
the nestedness in the MRI problem on a poset P does not imply the Macaulayness of P in
general. Thus, the SM problem is, in a sense, a more difficult problem than MWI.
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