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Abstract

We present here constructions of ideals A of the poset of n-vectors (x1, ..., xn)
with integer entries, ordered coordinatewise, on which the maximal and minimal
values of Wϕ(A) =

∑
x∈A ϕ(

∑n
i=1 xi) are achieved for a given unimodal function

ϕ. As a consequence we get a new approach to prove the well-known Clements-
Lindström Theorem [6].

1 Introduction

Let d1, ..., dn be arbitrary integers and d1 ≤ d2 ≤ ... ≤ dn.

Definition 1 Denote by I the collection of all n-dimensional vectors (x1, ..., xn) with
integer coordinates from the range 0 ≤ xi ≤ di, for 1 ≤ i ≤ n. We call I by a grid and
the number n by dimension of I.

Definition 2 The coordinate sum of a vector x = (x1, ..., xn) ∈ I is called the weight of
x and denoted by ‖x‖. If ϕ(z) is a positive-valued real function defined for nonnegative
z then we call the number Wϕ(x) = ϕ(‖x‖) by the modified weight of x ∈ I with respect
to the function ϕ, and the number Wϕ(A)=

∑
x∈A Wϕ(x) by the modified weight of a set

A ⊆ I with respect to ϕ.

Definition 3 A subset A ⊆ I is called ideal, if for any x = (x1, ..., xn) ∈ A and y =
(y1, ...yn) with yi ≤ xi for 1 ≤ i ≤ n it follows y ∈ A.

For a lot of applications (see [1,2,3], for example) one has to find among all the m-element
subsets A ⊆ I a subset, on which an extremal value of some function f is achieved. Usually
it is sufficient to proceed the search of an extremal subset A in the class of ideals only.
Moreover, very often it is possible to choose a function ϕ such that the value of the
function f equals the modified weight of the ideal with respect to ϕ. A typical example of
such situation is the problem of finding an m-element subset of I with maximal possible
number of induced Hamming edges, i.e. the pairs (x, y), x, y ∈ A, with ρ(x, y) = 1, where
ρ is the Hamming metric [2,3,4,5]. After some simple arguments which allow to restrict
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the class of considered subsets by ideals, it is not difficult to show that the number of
Hamming edges for an ideal A equals Wϕ(A) with ϕ(t) = t.

A important aspect in the theory of extremal subsets is the analysis of proof techniques.
Such analysis, as a rule, allows not only to understand the structure one works with more
deeply, but also to simplify the known proofs, and so to design more powerful methods.
It is also always of interest to prove that some problem is a consequence of some other
problem. For example, it is known that the mentioned problem of finding an m-element
subset with maximal size of {(x, y)} with ρ(x, y) = 1 is equivalent to the problem of
finding an m-element ideal with maximal possible weight [4,6]. We will show below that
these two problems are equivalent to the well-known Theorem of Clements and Lindström
[6] (see also Corollary 1) and, in fact, present a new simple proof of it.

The main problem we are concerned in this paper with, is to find an ideal A ∈ I of a
fixed size on which an extremal value of Wϕ(A) is achieved. Such type of function is the
general type of a symmetric function, i.e. which depends only of the number of vectors of
weight i in A for all i.

Denote wi = ϕ(‖x‖) for ‖x‖ = i and d = d1 + ... + dn. If d1 = ... = dn = 1, i.e. when I is
the n-dimensional unit cube, then the extremal ideals were constructed in [1] in the case
when ϕ is of one of the following types:

w0 ≤ ... ≤ wi ≥ wi+1 ≥ ... ≥ wd and

w0 ≥ ... ≥ wi ≤ wi+1 ≤ ... ≤ wd.

In our paper we prove similar results for arbitrary numbers d1, ..., dn.

The paper is organized by the following. The next two sections are devoted to the solution
of our problem for some special class of subsets. The main result of these sections is
Theorem 1, which is formulated in Section 2. Section 3 consists of the proof of Theorem
1 and in Section 4 with the help of this Theorem we obtain the solutions of our problem
for the class of arbitrary ideals of I.

2 Some auxiliary propositions and the approach

Definition 4 We say that x = (x1, ..., xn) ∈ I is greater y = (y1, ..., yn) ∈ I in the
lexicographic order (denotation x � y), if either x1 > y1 or if xi = yi for i = 1, 2, ..., s
and some s < n, and xs+1 > ys+1.

Denote by Ln(m) the collection of the first m vectors of I in the lexicographic order.

Definition 5 We say that a set A ⊆ I is an initial segment if A = Ln(m) for some m.

Denote
I t(i) = {x ∈ I : xi = t}.
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Definition 6 A set A ⊆ I is called i-compressed if A∩ I t(i) is an initial segment of I t(i)
for all t = 0, ..., di.

Lemma 1 Let n ≥ 3, A ⊆ I and A is i-compressed for i = 1, ..., n. Then either

(i) A = Ln(|A|), or

(ii) there exist numbers a, p and q for which

A = Ln(m′)∪{(x1, ..., xn) ∈ I : x1 = a+1, x2 = ... = xn−1 = 0, 0 ≤ xn ≤ q < p ≤ dn},

where m′ = a ·∏n
i=2(di + 1) + (p + 1) ·∏n−1

i=2 (di + 1).

Proof.
The proof of the Lemma is based on the fact that for such A ⊆ I the condition x =
(x1, ..., xn) ∈ A implies y = (y1, ..., yn) ∈ A for any y ≺ x, maybe with some exceptions
defined in (ii).

Assume that there exists an index i for which xi = yi = t. Then x, y ∈ I t(i) and y ∈ A,
since A is i-compressed.

Let now xi 6= yi for i = 1, ..., n. Obviously x1 > y1. If xn > yn, then consider the vector

z = (x1, ..., xn−1, yn).

It is easy to verify that x � z � y and x1 = z1, yn = zn. Therefore, z ∈ A since A is
1-compressed, and hence y ∈ A since A is n-compressed.

If xn < yn and there exists an index i, 2 ≤ i ≤ n − 1, such that yi < di, we consider the
vector

z = (y1, ..., yi−1, yi + 1, 0, ..., 0, xn).

One has x � z � y, and similarly z ∈ A and y ∈ A.

If xn < yn, yi = di for 2 ≤ i ≤ n− 1 and x1 > y1 + 1, then considering the vector

z = (x1 − 1, d2, ..., dn−1, xn),

for which x � z � y, one also gets y ∈ A.

Let now x1 = y1 + 1, xn < yn, yi = di for 2 ≤ i ≤ n − 1 and there exists an index j,
2 ≤ j ≤ n− 1, for which xj 6= 0. Then, considering the vector

z = (x1, ..., xj−1, xj − 1, xj+1, ..., yn),

we get again x � z � y and so, y ∈ A.

We have to consider the last case:

x = (a + 1, 0, ..., 0, xn), y = (a, d2, ..., dn−1, yn)
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with xn < yn. In this case it is impossible to guarantee y ∈ A. However, if y ∈ A, then
(i) holds. If y 6∈ A then A is the union of the initial segment S with lexicographically
greatest vector of the form

(a, d2, ..., dn−1, p),

with p = yn−1, and q = xn+1 vectors of the form (a+1, 0, ..., 0, t) with 0 ≤ t ≤ q < p ≤ dn.
One has only notice that the size of S equals

a ·
n∏

i=2

(di + 1) + (p + 1) ·
n−1∏
i=2

(di + 1).

2

Remark 1 For n = 1, 2 the Lemma is not true in general.

Denote

Ik = {x ∈ I : ‖x‖ = k}
Ik,k−1 = Ik

⋃
Ik−1

Ak = A ∩ Ik.

Up to the end of this Section we assume A ⊆ Ik,k−1.

Definition 7 A set A is called monotone if A is an intersection of Ik,k−1 with some ideal
of I.

Let
F (A) = wk−1 · |Ak−1|+ wk · |Ak|,

where wk, wk−1 are some nonnegative numbers and denote by Ln
k,k−1(m) the m-element

subset, which is the intersection of Ik,k−1 and some initial segment of I.

Theorem 1

(i) if wk > wk−1 then the maximal value of F (A) among all m-element monotone subsets
of Ik,k−1 is achieved on Ln

k,k−1(m);

(ii) if wk < wk−1 then the maximal value of F (A) among all m-element monotone subsets
of Ik,k−1 is achieved on arbitrary collection of m vectors of Ik−1 for m ≤ |Ik−1| and on the
union of Ik−1 with arbitrary collection of m− |Ik−1| vectors of Ik for m > |Ik−1|;

(iii) if wk = wk−1 then F (A) = const for any A ⊆ Ik,k−1, |A| = m.

Since the propositions (ii) and (iii) of Theorem 1 obviously hold, we will prove (i) only.

Let A ⊆ Ik,k−1 be a monotone set and |A| = m.
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Definition 8 The set A is called optimal if F (A) ≥ F (B) for any m-element monotone
subset B ⊆ Ik,k−1.

Denote

P (A) = {x = (x1, ..., xn) ∈ I : ‖x‖ > k and yi ≤ xi, 1 ≤ i ≤ n, for some y ∈ A},
T (A) = {x = (x1, ..., xn) ∈ I : |x| < k − 1 and xi ≤ yi, 1 ≤ i ≤ n, for some y ∈ A}.

Definition 9 The set [A] = A ∪ P (A) ∪ T (A) is called the closure of A.

We will prove in the next Lemma that among all optimal subsets there exists a subset
such that for any i, j

A ∩ I i
k,k−1(j) = Ln

k−i,k−i−1(mi,j),

where mi,j = |A ∩ In
k,k−1(j)|. Furthermore, in Lemma 3 we will show that the closure of

Ln
k,k−1(m) is an initial segment of I. These facts will allow later to propose that among all

monotone subsets A satisfying Lemma 2, there exists a subset A, such that [A] satisfies
Lemma 1. It will give us a possibility to determine the structure of A very precisely and
to prove Theorem 1 in Section 3. Notice that the proof of Theorem 1 could be simplified
by using the Clements-Lindström theorem [6]. However, we did not use this theorem
because, as it is shown in Section 4, it is an easy consequence of Theorem 1.

In order to formulate our next propositions it is convenient to introduce the operators of
compression C(A) and Cj(A). For a subset A ⊆ Ik,k−1 put

C(A) = Ln
k,k−1(|A|) and

Cj(A) =
dj⋃

i=0

C(Ai(j)),

where Ai(j) = A ∩ I i(j) and the operator C in the right hand side is applied in n − 1
dimensions.

Lemma 2 Let A ⊆ Ik,k−1 be a monotone set and Theorem 1 is true in n− 1 dimensions.
Then there exists a subset A′ ⊆ Ik,k−1 such that |A| = |A′|, F (A) ≥ F (A′) and Cj(A

′) = A′

for 1 ≤ j ≤ n.

Proof.
Let us fix the index j and replace each subset Ak ∩ I i(j) with the equal-sized initial
segment of I i

k(j). Proceed by the same way with Ak−1 ∩ I i(j) for all i. We obtain a
subset B ⊆ Ik,k−1 for which F (A) = F (B) holds. However B may be nonmonotone.
It may happen only if for some i, 0 ≤ i ≤ dj the set Bi(j) is nonmonotone in I i(j).
Replacing now this Bi(j) with Ln

k−i,k−i−1(|Bi(j)|) in the corresponding (n − 1)-subgrids,
we obtain a monotone set D. Since Theorem 1 is true for I i(j), then F (D) ≥ F (B). Now
if Cj(D) = D, then jump to the last paragraph of the proof. Otherwise there is an index
i for which

Di(j) 6= Ln−1
k−i,k−i−1(|Di(j)|).
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Denote by u the lexicographically greatest vector of Di
k−1(j), and by v the lexicographi-

cally least vector of I i
k(j) \Di

k(j). Then u � v.

Now we are going to show that if Cj(D) 6= D then there exists a monotone subset E such
that F (E) ≥ F (D) and the sum of the lexicographical numbers of vectors of D is greater
then one for E. Indeed, if E ′ = (D \u)

⋃
v is monotone then let E = E ′ and we are done.

If E ′ is nonmonotone then consider three cases:

Case 1. Let i > 0, |Di
k(j)| = |Di−1

k−1(j)| and either i = dj or |Di
k−1(j)| > |Di+1

k (j)| for
i < dj. Denote by r the vector obtained from v by decreasing vi on 1 and denote

E = (D \ u) ∪ r.

Case 2. Let i < dj, |Di
k−1(j)| = |Di+1

k (j)| and either i = 0 or |Di−1
k−1(j)| > |Di

k(j)| for
i > 0. Denote by s the vector obtained from u by increasing ui on 1 and let

E = (D \ s) ∪ v.

Case 3. Let 0 < i < di and |Di−1
k−1(j)| = |Di

k(j)|, |Di
k−1(j)| = |Di+1

k (j)|. Denote

E = (D \ {u, s}) ∪ {r, v}.

In any case the set E is monotone and F (E) ≥ F (D). If now Cj(E) 6= E then we can
repeat the procedure above. Since the sum of the lexicographic numbers of vectors of
the new sets cannot decrease infinitely, then after a finite number of transformations we
obtain a monotone subset G such that Cj(G) = G.

To complete the proof of the whole Lemma we have to repeat our procedure for j = 1, 2, ...
until we obtain the desired set A′. 2

Lemma 3 If A ⊆ Ik,k−1 and C(A) = A then [A] is an initial segment in I.

Proof.
Denote by u the lexicographically greatest vector of [A] and by v the lexicographically
least vector of I \ [A]. If v � u then the Lemma is true. Assume v ≺ u.

Let ‖v‖ ≤ ‖u‖. There exists an index j such that ui = vi for 1 ≤ i ≤ j − 1 and vj < uj.
Consider an arbitrary vector r ∈ I such that ‖r‖ = ‖v‖, ri = ui for 1 ≤ i ≤ j − 1, rj > vj

and ri ≤ ui for j + 1 ≤ i ≤ n. Such vector r already exists since ‖u‖ ≥ ‖v‖. By the
definition of T (A), r ∈ [A]. Furthermore, v ≺ r ≺ u. Since [A] ∩ It is a collection of the
first vectors of It in the lexicographic order for any t (see [6], Lemma 3), then v ∈ A. A
contradiction. Therefore, ‖v‖ ≥ ‖u‖.

If ‖v‖ > k, then by the definition of P (A) there exists a vector s ∈ I such that s 6∈ [A],
‖s‖ = ‖v‖ − 1 and si ≤ vi for 1 ≤ i ≤ n, i.e. s ≺ v, which contradicts to the choice of v.
Therefore ‖v‖ = k and hence, ‖u‖ = k − 1. However, v ≺ u contradicts to C(A) = A. 2
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3 Proof of Theorem 1

We proceed by induction on n. Since we use Lemma 1, which is true for n > 3 only, we
have to prove Theorem 1 for n = 2.

Let I be a d1 × d2 (d1 ≤ d2) two-dimensional grid. Notice that for d1 ≤ 2 the Theorem is
true. Assume that it is true for all two-dimensional d× d2 grids with d ≤ d1 and consider
the case d = d1. Let A ⊆ Ik,k−1 be a monotone subset.

Without loss of generality we may assume A0(1) 6= ∅, i.e. 1 ≤ |A0(1)| ≤ 2. Consider
(d1 − 1) × d2 subgrid I ′, obtained from I by deleting the column I0(1) and denote A′ =
A \ A0(1). Then A′ is a monotone subset of Ik−1,k−2 and

F (A) = w1 · |Ak ∩ I0(1)|+ w2 · |Ak−1 ∩ I0(1)|+ F (A′),

where F (A′) is computed in the subgrid I ′. Replacing A′ with L2
k−1,k−2(|A′|) in the subgrid

I ′, we obtain a set B ⊆ I. Using the inductive hypothesis for B, one gets F (B) ≥ F (A).
Now if |B0(1)| = 2, then B = L2

k,k−1(|B|). If |B0(1)| = 1, then denote by r the vector
(0, k) ∈ I \ B and by u and v the lexicographically greatest and least vectors of Bk and
Bk−1 respectively. It is easy to verify that either (B \ u) ∪ r or (B \ v) ∪ r is equal to
D = L2

k,k−1(|B|) and F (D) ≥ F (B). Therefore the Theorem is true for n = 2.

Let n ≥ 3 and A ⊆ Ik,k−1 be a monotone set. By Lemma 2, there exists a monotone set
B ⊆ Ik,k−1, such that Cj(B) = B for 1 ≤ j ≤ n. Denote by mj the maximal value of
the j-th entry of vectors of B. If there exists a vector u ∈ Ik \ B such that uj < mj and
each vector obtained from u by decreasing of any nonzero entry (i.e. compatible with u)
belongs to Bk−1, then replace the lexicographically greatest vector v of Bk ∩ Imj(j) with
u, and the set D = Bmj(j) with the set Ln−1

k−mj ,k−mj−1(|D|) in the subgrid Imj(j). Since
the sum of the lexicographical numbers of vectors cannot increase infinitely, then after
a sufficiently large number of the transformations we obtain a monotone subset E such
that F (E) ≥ F (B) and Cj(E) = E for 1 ≤ j ≤ n. Furthermore, if there exists a vertex
u ∈ Ik \ E, such that any compatible with it vertex of Ik−1 belongs to E then uj = j for
1 ≤ j ≤ n. Now we will show that for [E] one can apply Lemma 1.

First notice that
(P (E))i(j) ⊆ P (Ei(j)).

Moreover, equality holds here. Indeed, assume that there exists a vector

u ∈ P (Ei(j)) \ P (Ei(j)).

Denote by v the vector obtained from u by replacing uj = i with i − 1. Then ‖v‖ ≥ k.
Without loss of generality we may let v 6∈ P (Ei−1(j)). Since E is monotone set then for
all t ≥ 1 and i ≥ 1 one has

|[E] ∩ I i
t−1(j)| ≤ |[E ′] ∩ I i−1

t (j)|,

which leads to a contradiction when ‖v‖ > k. If ‖v‖ = k then since E is monotone then
each vector of weight k − 1 compatible with v, belongs to E and since v 6∈ E then by
definition of E, vj = mj, i.e. i = mj + 1 and u ∈ Ei(j) = ∅, which is a contradiction too.
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Further, notice that
(T (E))i(j) ⊇ T (Ei(j)).

We show by reversed induction on j, that [E]i(j) is an initial segment in I i(j). By Lemma
3 it is so if i = mj. Consider the case i = mj − 1 and assume that (T (E))i(j) 6= T (Ei(j)).
Denote by G ⊆ I i

k−1,k−2(j) the set, for which Gk−1 = Ei
k−1(j) and Gk−2 is obtained from

Ei+1
k−1(j) by decreasing on 1 the j-th entry in all vectors u ∈ Ei+1

k−1(j). By the definition
of E, [E]i(j) = [G] and the set G is an initial segment of I i(j). Therefore by Lemma 3,
[E]i(j) is an initial segment of the subgrid I i(j). For i < mj − 1 the inductive step may
be covered similarly.

Therefore we can apply Lemma 1 to E. If the case (i) of it holds then the Theorem 1
is obviously true. Let the case (ii) holds and E 6= Ln

k,k−1(m) (here m = |E|). Then by
Lemma 1 either E = N ∪ {u} or E = N ∪ {u, v}, where N = Ln

k,k−1(m
′) and u, v are of

the form
u = (a + 1, 0, ..., 0, p), v = (a + 1, 0, ..., 0, p + 1)

with ‖u‖ = k − 1, ‖v‖ = k.

On the other hand by Lemma 1 either N = J \ {s} or N = J \ {s, r}, where

J = I0
k,k−1(1) ∪ ... ∪ Ia

k−a,k−a−1(1)

and s, r (‖r‖ = k−1, ‖s‖ = k) are the two lexicographically greatest vectors of J . Now if
E = N ∪ u then N = J \ s, since E 6= Ln

k,k−1(m). Therefore G = (E \ u) ∪ s = Ln
k,k−1(m)

and F (G) > F (E). If E = N ∪{u, v}, then if N = J \ s, then denote G = (E \ v)∪ s and
if N = J \ {r, s}, then denote G = (E \ {u, v})∪ {r, s}. In the both cases G = Ln

k,k−1(m)
and F (G) ≥ F (E). 2

Using the similar techniques one can prove the proposition on the minimization of F ,
which is obtained from Theorem 1 by replacing the inequalities wk > wk−1 with wk < wk−1,
and the words ”maximum” with ”minimum”.

Let A ⊆ Ik. Denote

Ti(A) = T (A) ∩ Ik−i, Pi(A) = P (A) ∩ Ik+i.

Corollary 1 (The Clements-Lindström theorem [6]).

(i) |T1(L
n
k(m))| ≤ |T1(A)| for any A ⊆ Ik, |A| = m;

(ii) |P1(L
n
k(m))| ≥ |P1(A)| for any A ⊆ Ik, |A| = m.

Proof.
Consider an arbitrary set B = A ∪ T1(A) and let |B| = t. Denote D = Ln

k,k−1(t). By
Theorem 1(i), F (D) ≥ F (B). Since |D| = t and D is a monotone subset then

|Dk| ≥ |A|, |Dk−1| ≤ |T1(A)|, Ln
k(m) ⊆ Dk.

Hence, T1(L
n
k(m)) ⊆ Dk−1, i.e. |T1(L

n
k(m))| ≤ |T1(A)|. The proposition (ii) may be

proved similarly. 2

8



Let k > l. Denote
Ik,l = Ik ∪ Ik−1 ∪ ... ∪ Il,

and let Ln
k,l(m) denotes the m-element set which is an intersection of Ik,l and an initial

segment of I. For A ⊆ Ik,l consider the function

Fk,l = wk · |Ak|+ wk−1 · |Ak−1|+ ... + wl · |Al|,

where wi are some fixed nonnegative numbers.

Definition 10 The set A ⊆ Ik,l is called (k, l)-monotone if for any i, l + 1 ≤ i ≤ k, the
inclusion Ai−1 ⊇ T1(Ai) holds.

Definition 11 We call the set A quasisphere if

A = I0 ∪ I1 ∪ ... ∪ It−1 ∪ A′

for some t, where A′ is the collection of the first |A′| vectors of It in the lexicographic
order.

Corollary 2 Let A be a (k, l)-monotone set and |A| = m. Then

(i) if wl ≤ ... ≤ wk (wl ≥ ... ≥ wk), then the maximum (minimum) of Fk,l among all
m-element subsets of Ik,l is achieved on Ln

k,l(m);

(ii) if wl ≥ ... ≥ wk (wl ≤ ... ≤ wk), then the maximum (minimum) of Fk,l among all
m-element subsets of Ik,l is achieved on the intersection of a quasisphere with Ik,l.

Proof.
It is sufficient to prove (i) for wl ≤ ... ≤ wk. Replace Ai to Ln

i (|Ai|) with i = l, ..., k.
We obtain a set B which is (k, l)-monotone by Corollary 1. Furthermore, for each pair
Ii, Ii−1 we replace Bi,i−1 with Ln

i,i−1(|Bi,i−1|). It is easy to show that all the new sets are
(k, l)-monotone and by Theorem 1 every nontrivial transformation leads to increasing of
Fk,l. Hence, after a finite number of steps we obtain a set D, which is invariant under
such transformation. Denote by u the lexicographically greatest vector of D and by v
the lexicographically least vector of Ik,l \ D. If v � u then D = Ln

k,l(m). So let v ≺ u,
‖u‖ = p, ‖v‖ = q.

If q > p then any vector r such that ‖r‖ = q− 1 and ri ≤ vi, 1 ≤ i ≤ n, belongs to A and
the set (D ∩ Ip+1,p) \ u is monotone in Ip+1,p. Hence, E = (D \ u) ∪ v is (k, l)-monotone
and Fk,l(E) > Fk,l(D). Therefore either we can transform D into Ln

k,l(m), or q < p.

If q < p, then consider the following sequence of vectors r1, r2, ..., rp. The vectors r1, ..., run

are obtained from u by decreasing un to 1, 2,..., u respectively. The next un−1 vectors
are obtained from run by decreasing it’s (n− 1)-st entry to 1, 2, ..., un−1 and so forth with
the (n − 2)-nd entry, (n − 3)-rd,.... It is easy to verify that ‖ri‖ = ‖u‖ − i and that the
vector r of weight q from this sequence is the lexicographically greatest in Tp−q({u}) and
r ∈ D. Hence, if v ≺ r then v ∈ D by the definition of D. If v � r, then v � u and we
get a contradiction. 2
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4 The extremal ideals

Theorem 2

(i) if w0 ≤ w1 ≤ ... ≤ wi−1 ≥ wi ≥ ... ≥ wd for some i, then the maximum of Wϕ is
achieved on the intersection of some initial segment with a quasisphere .

(ii) if w0 ≥ w1 ≥ ... ≥ wi−1 ≤ wi ≤ ... ≤ wd for some i, then the maximum of Wϕ is
achieved on the union of some initial segment with a quasisphere.

Proof.
Notice that for any k, l and m.

Ln
k,l(m) ∪ P1(L

n
k,l(m)) = Ln

k+1,l(m
′) and

Ln
k,l(m) ∪ T1(L

n
k,l(m)) = Ln

k,l−1(m
′′),

where m′ and m′′ are the cardinalities of the unions. If A is an ideal then after replacing
Ak with Ln

k(|Ak|) for all k, the obtained set is an ideal either by the Clements-Lindström
Theorem and the value of Wϕ on it equals to Wϕ(A). So we may assume Ak = Ln

k(|Ak|).

(i) Replace Ai−1,0 with Ln
i−1,0(|Ai−1,0|). The obtained set B is an ideal by the Clements-

Lindström Theorem and Wϕ(A) ≤ Wϕ(B) by the Corollary 1. Replace Bi+1 with P1(Bi),
Bi+2 with P1(Bi+1) ,..., Bi+t with P1(Bi+t−1) for t such that Bi+t+1 ⊆ P1(Bi+t) and Bs 6= ∅
for s > i + t + 1. We obtain a set D and

Di+t,0 = Ln
i+t,0(|Di+t,0|).

Hence, D is the intersection of some initial segment in I with a quasisphere.

(ii) Replace Ad,i with Ln
d,i(|Ad,i|), where d = d1 + ... + dn. By the Corollary 2, for the

obtained ideal B we have Wϕ(A) ≤ Wϕ(B). Replace now Bi−1 with T1(Bi), Bi−2 with
T1(Bi−1),...,Bi−t+1 with T1(Bi−t+2), Bi+t ⊇ T1(Bi−t+1) with Is for s ≤ i − t − 1. Then
for the obtained set D we have Dd,i−t+1 = Ln

d,i−t+1(|Dd,i−t+1|) and Di−t,0 is a quasisphere.
Hence, D is the union of a quasisphere and an initial segment. 2
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