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Abstract

This article is a study of the solution set of a discrete isoperimetric problem.

1 Introduction and list of results

Denote by Bn the n-dimensional unit cube, i.e. the collection of all n-dimensional vectors
with each coordinate equal to 0 or 1, and by ρ(α, β) the Hamming distance between
vertices in Bn. Let A ⊆ Bn. Then α̃ ∈ A is called an inner point of A iff Sn

1 (α̃) ⊆ A, and
a boundary point otherwise (where Sn

r (α̃) is the ball around a point α̃ with the radius r
in the metric ρ). Denote by P (A) (Γ(A)) the collection of all inner (boundary) points of
A. A set A ⊆ Bn is said to be optimal if |Γ(A)| ≤ |Γ(B)| for any B ⊆ Bn, |B| = |A|.

This article is a study of the collection of optimal subsets of Bn. It is known (see
[1,3,6]) that one of the m-element optimal sets is the standard arrangement Ln

m, defined
as the initial segment of length m of the following numbering (denoted below by L) of the
vertices of Bn. The vector 0̃ = (0, ..., 0) is given the number 1. Suppose that all the vectors
in Bn with coordinate sum (norm) less than k have already been numbered, along with
some vectors of norm k, We give the next largest natural number to the lexicographically
greatest unnumbered vertex of Bn of norm k.

Let
S(A) = {α̃ ∈ A : Sn

1 (A) ∩ P (A) = ∅}

be the collection of free points of A. A set A is said to be critical if S(A) = ∅. The empty
set will be regarded as a critical set too. Denote by N n

m the collection of all m-element
optimal noncritical subsets of Bn. It is shown in Section 2 that the construction of the
sets in this class reduces to the construction of the optimal critical sets.

It is known (see [1,3,4]) that if Ln
m is the critical set then any m-element optimal

subset is also critical. Such numbers m are called critical cardinalities. Denote by Mn
m

the collection of all optimal subsets with the critical cardinality m. A description of all
the sets in the class Mn

m is given in [4]. In is easy to show (see Corollary 3.7.1) that the
number of critical cardinalities equals 2n−1.

Denote by Kn
m the collection of all m-element optimal critical subsets of Bn. Notice

that there exist some m, for which Kn
m = ∅. One of our main results is Theorem 3.1,
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in which it is shown that if A is an optimal set, then so is P (A). On the basis of this
Theorem we obtain in Section 4 a sufficient condition for Kn

m = ∅. Thus, all the solutions
of the isoperimetric problem are found for such cardinalities m. In the same Section we
also show that the number of these cardinalities asymptotically equals 2n−3. Moreover, a
necessary and sufficient condition for Kn

m = ∅ is found.
In Section 5 we show that for any subset of Bn there exists an optimal subset of a cube

of higher dimension that in a certain sense is analogous to it in structure. This result
reflects well the difficulties arising in the description of all solutions of the isoperimetric
problem and at the same time gives a method for constructing certain optimal critical
subsets.

2 A theorem on reducibility

Let m be an arbitrary integer with 1 < m < 2n. We show how to construct all optimal
m-element sets. Denote by m0 the critical cardinality closest to m from below, i.e.,
m0 = m − |S(Ln

m)|, and let m1, ...,ml (mo < m1 < · · · < ml ≤ m) be all the integers
for which there exist optimal critical sets of those cardinalities in Bn. We construct l+ 1
families Fi of m-element sets. For this we consider all mi-element optimal critical sets
(0 ≤ i ≤ l + 1) and for each such set A we construct

(
2n−mi

m−mi

)
sets by adding m − mi

arbitrary points in Bn \ A to A. Thus, we get a family Fi.

Theorem 2.1 The sets in
⋃l

i=0 Fi are pairwise distinct and optimal. If A is an m-element
optimal set, then A ∈ Fi for some i.

Proof.
Let A be an optimal set. If A ∈ Kn

m, then A ∈ Fl. Let A ∈ N n
m and α̃ ∈ S(A). We show

that A \ α̃ is an optimal set. Assume that A \ α̃ is nonoptimal set and let B ⊆ Bn be an
optimal (m− 1)-element set. Then for β̃ ∈ Bn \B one has

|P (B ∪ β̃)| ≥ |P (B)| > |P (A \ α̃)| = |P (A)|,

which contradicts the optimality of A. Since P (A\ α̃) = P (A), then S(A\ α̃) = S(A)\ α̃,
i.e. the removal of a free point α̃ from A leads neither to the appearance of a new free
point in A \ α̃ nor to the disapiarance of an old free point.

Thus, by removing free points from A sufficiently many times, we get that for any
A ⊆ N n

m there exists a critical optimal set B, uniquely determined by A of cardinality
|A| − |S(A)|. We now prove that |B| ≥ m0, i.e. |B| = mi for some i. For this it suffices
to show that |S(A)| ≤ |S(Ln

m)|. Assume that s1 = |S(A)| > |S(Ln
m)| = s2. We construct

an optimal subset C by removing s2 arbitrary free points from A. Since Ln
m−s2

is critical,

|P (A)| = |P (C)| = |P (C \ β̃)| > |P (Ln
m−s2−1)| for β̃ ∈ S(C). Contradiction. Thus,

|B| ≥ m0.
Note that if A is an optimal q-element set and m0 ≤ q ≤ m, then |P (A)| = |P (Ln

m0
)|.

Therefore, if B is an optimal mi-element set, then by adding m−mi arbitrary points to
B we get an optimal set. Since for any A ∈ N n

m there exists precisely one optimal critical
set B ⊆ A, |B| = m− |S(A)| ≥ m0, the sets from ∪l

i=0Fi are pairwise distinct.
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3 General properties of optimal subsets

Let 1 ≤ m ≤ 2n. Represent it in the form m =
∑k

i=0

(
n
i

)
+ δ, 0 ≤ δ <

(
n

k+1

)
. Notice

that k and δ are uniquely determined by m. It is known [1, Theorem 6.1], that if A is
an optimal m-element subset, then there exists a point α̃ ∈ A, such that Sn

k (α̃) ⊆ A.
Obviously |Sn

k+1(α̃)| ≥ |A|. Therefore, each optimal subset A contains a ball of maximal
radius.

Theorem 3.1 If A if an optimal set then so is P (A).

In order to prove Theorem 3.1 we need some auxiliary propositions.

Lemma 3.1 P (Lm
n ) is an optimal set.

Since P (Lm
n ) is a standard set, the proof follows.

We partition the cube Bn with respect to the coordinate xi and denote by A0(i) and
A1(i) the parts of a set A in the resulting (n−1)-dimensional subcubes xi = 0 and xi = 1
respectively. Let p(m,n) = |P (Lm

n )|. The coordinate xi is said to be admissible for a set
A if

p(|A0(i)|, n− 1) ≤ |A1(i)| and |A0(i)| ≥ |A1(i)|,

or if
p(|A1(i)|, n− 1) ≤ |A0(i)| and |A0(i)| ≤ |A1(i)|.

Denote by πi1,...,it(A) the projecting operator consisting of replacement of 0 by 1 and 1 by
0 in the coordinates with indices i1, ..., it in all vectors in A. The following two assertions
are proved in [1] (respectively, as see Lemma 4.1a and Lemma 4.2 slightly modified).

Lemma 3.2 Let A be an optimal set and let xi be it’s admissible coordinate. Then A0(i)
and A1(i) are optimal subsets in (n − 1) dimensions, P (A) = P (A0(i)) ∪ P (A1(i)) and
the following holds for |A0(i)| ≥ |A1(i)|:

a) If p(|A0(i)|, n− 1) < |A1(i)|, then πi(A
0(i)) ⊇ P (A1(i) and πi(A

1(i)) ⊇ P (A0(i)).
b) If p(|A0(i)|, n− 1) = |A1(i)|, then πi(A

1(i)) = P (A0(i)).

Lemma 3.3 For an optimal set A the following holds
a) If p(|A0(i)|, n− 1) = |A1(i)| or p(|A1(i)|, n− 1) = |A0(i)| for any i = 1, ..., n, then

either A = Bn, or A = Sn
r (α̃) for some α̃, and r ≤ n− 2.

b) If p(|A0(i)|, n− 1) > |A1(i)| or p(|A1(i)|, n− 1) = |A0(i)|, then A = Sn
n−1(α̃).

Denote Pi(A) = P (Pi−1(A)), P0(A) = A.

Lemma 3.4 Let A be an optimal subset and let xi be it’s admissible coordinate. Then
P2(A) = P2(A

0(i)) ∪ P2(A
1(i)).
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Proof.
Obviously, P2(A) ⊆ P2(A

0(i))∪P2(A
1(i)). We show that the inverse inclusion also holds.

Let α̃ ∈ P2(A
0(i)), i.e. Sn−1

2 (α̃) ⊆ A0(i). Then Sn−1
1 (α̃) ⊆ P (A0(i)) and πi(S

n−1
1 (α̃)) ⊆

A1(i). Consequently, Sn
2 (α̃) = Sn−1

2 (α̃) ∪ Sn−1
2 (πi(α̃)) ⊆ A, i.e. α̃ ∈ P2(A). The proof of

the Lemma in the case α̃ ∈ P2(A
1(i)) is quite similar.

Denote by ϕi(A) the following transformation of a set A ⊆ Bn, called compression.
We partition the cube Bn with respect to the coordinate xi, and replace the sets A0(i)
and A1(i) by the standard arrangements of the same cardinalities in the corresponding
subcubes. The proof of the two following assertions is given in [1] (see lemmas 3.1 and
2.2 respectively).

Lemma 3.5 If A is an optimal subset, so is ϕi(A).

We say that a set A is i-compressed if ϕi(A) = A.

Lemma 3.6 Let A ⊆ Bn be i-compressed for i = 1, ..., n and |A| = m. Then:
a) Either A = Ln

m or m = 2n−1 and A = Ln
m+1 \ α̃m, where α̃m is the m-th point in

order L.
b) If A is an optimal set then A = Ln

m for n > 2.

It follows from Lemmas 3.2 and 3.5 that if xi is an admissible coordinate for A, then
it is admissible also for ϕi(A).

Proof of Theorem 3.1. We use induction on n. For n = 2, 3 the Theorem is obviously true,
so let us proceed the inductive step. Let A ⊆ Bn is an optimal set and |A| = m. Below we
describe a serie of transformations carrying A into Ln

m and prove the equality |P2(A)| =
|P2(L

n
m)|, which yields the Theorem when Lemma 3.1 and the equality |P (A)| = |P (Ln

m)|
are taken in account.

Construct the set B = ϕi(A). Considering Lemmas 3.1, 3.4, 3.5 and the inductive
hypothesis, we have that

|P2(A
0(i))| = |P2(B

0(i))|, |P2(A
1(i))| = |P2(B

1(i))|

and
|P2(B)| = |P2(B

0(i))|+ |P2(B
1(i))| = |P2(A)|.

Let us repeat this procedure for an admissible coordinate of a set B, then for an
admissible coordinate of the newly obtained set, and so on. Denote by l(A) the sum of
numbers of α̃ ∈ A in order L. Note that if ϕi(A) 6= A then l(ϕi(A)) < l(A). Therefore,
after a finite number of such compressions we obtain a set D, which is i-compressed for
i ∈ {i1, ..., is}, where xi1 , ..., xis is the collection of all admissible coordinates of the set D.
It will be assumed that among all such sets the minimum of the functional l is attained
on D. We note that |D| = |A| and |P2(D)| = |P2(A)|.

If s = 0 or s = n then the Theorem follows from Lemmas 3.3b and 3.6b. So let
0 < s < n. Without loss of generality we assume that i1 = 1, ..., is = s. We show that
D = Ln

m.
Let us partitionBn with respect to the coordinates x1, ..., xs into subcubes of dimension

(n − s). If for at least one of the resulting parts of the partition of D tat is in an
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n − s-dimensional subcube there exists a coordinate (from among the coordinates of
the corresponding subcube) satisfying the condition of Lemma 3.2a, then it would be
admissible for the set D. Consequently, for each part of D the condition of Lemma 3.3
holds (in n− s dimensions). According to this lemma, each such part is a ball. It is not
hard to show, that the centers of these balls (we call them basic balls) are in the origins
of coordinates of the corresponding (n− s)-subcubes. Note that the radius of at least one
basic ball equals n− s− 1, since otherwise any of the coordinates xi, i ≥ s+ 1, would be
admissible for the set D.

Denote by α̃ the greatest point of D in order L and by β̃ the least point of Bn \D in
order L. Considering the foregoing,

α̃ = (α1, ..., αs, 0, ..., 0, 1, ..., 1︸ ︷︷ ︸
p

)

for some p. If β̃ is greater α̃ in L, then D = Ln
m. So let α̃ is greater β̃ and let us show

β̃ ∈ D. If αi = βi for some i ≤ s, then β̃ ∈ D, since D is i-compressed. Therefore, it is
sufficient to consider the case

β̃ = (ᾱ1, ..., ᾱs, βs+1, ..., βn),

where ᾱi denotes the logical negation of the entry αi. Moreover, since β̃ belongs to one
of the basic balls, then β̃ ∈ D iff γ̃ ∈ D, where

γ̃ = (ᾱ1, ..., ᾱs, 0, ..., 0, 1, ..., 1︸ ︷︷ ︸
q

)

and q =
∑n

j=s+1 βj. So, without loss of generality we assume that β̃ = γ̃, and D contains
all the vectors that are greater than

(ᾱ1, ..., ᾱs, 1, ..., 1︸ ︷︷ ︸
p

, 0, ..., 0)

in order L. Moreover, it is sufficient to consider the case when there is no vector ε̃ ∈ Bn,
such that α̃ < ε̃ < β̃ and the vector pairs (α̃, ε̃) and (ε̃, β̃) have at least one common
coordinate from among the first s coordinates. This case is possible only if β̃ is the
immediate predecessor of the vector

α̃′ = (α1, ..., αs, 1, ..., 1︸ ︷︷ ︸
p

, 0, ..., 0)

in order L. We will show below that α̃ and β̃ must then have the form

α̃ = (0, 1, ..., 1︸ ︷︷ ︸
s

, 0, ..., 0, 1, ..., 1︸ ︷︷ ︸
p

), β̃ = (1, 0, ..., 0, 0, ..., 0, 1, ..., 1︸ ︷︷ ︸
p+s−2

),

or
α̃ = (1, ..., 1︸ ︷︷ ︸

s

, 0, ..., 0, 1, ..., 1︸ ︷︷ ︸
p

), β̃ = (0, ..., 0︸ ︷︷ ︸
s

, 0, ..., 0, 1, ..., 1︸ ︷︷ ︸
p+s−1

).
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Case 1. Let α1 + α2 + · · · + αs < s, i.e. there exists an index j, for which αj = 0. Let
j ≤ s be the maximal such index. If j > 1, then α = β1, and so α1 = β1. A contradiction.
Therefore, α1 = 0 and α2 = α3 = · · · = αs = 1. Further, if s = 1 then x1 is not admissible
coordinate for the set D when p = n − 1. If 0 < p < n − 1, then D0(1) (it is not a ball)
must have an admissible coordinate by Lemma 3.3, i.e. s ≥ 2.

If ‖α̃‖ = t > ‖β̃‖, then

(0, 0, 1, ..., 1︸ ︷︷ ︸
s

, 0, ..., 0, 1, ..., 1︸ ︷︷ ︸
p

) ∈ D,

and hence β̃ ∈ D, i.e. β̃ is not the immediate predecessor of α̃′ in order L. Therefore,
‖β̃‖ = t. Note that t ≤ n− s+ 1. If t ≤ n− s− 1, then there does not exist a basic ball
of radius n− s− 1. Consequently, either t = n− s+ 1 or t = n− s.

a) Let t = n− s+ 1. In this case vectors α̃, β̃ have the form

α̃ = (0, 1, ..., 1︸ ︷︷ ︸
s

, 0, ..., 0, 1, ..., 1︸ ︷︷ ︸
p

) β̃ = (1, 0, ..., 0︸ ︷︷ ︸
s

, 1, ..., 1).

Then |P (D \ α̃)| = |P (D)|−p and |P (D \ β̃)| = |P (D)|+n−s. Consequently, if p < n−s
(i.e. s ≥ 2), then |P ((D \ α̃) ∪ β̃)| > |P (D)|, i.e. D is nonoptimal subset. If s = 2, then
x1 is not admissible for D. So, β̃ ∈ D.

b) Let t = n− s. Denote

B1 = {γ̃ ∈ D : γ̃ has the form (1, 0, 0, ..., 0, γs+1, ..., γn)}
B2 = {γ̃ ∈ D : γ̃ has the form (0, 1, 0, ..., 0, γs+1, ..., γn)}.

Invert the first and the second entries in all vectors of B1 and B2. This gives a set E, for
which |P (E)| = |P (D)| but l(E) < l(D). Contradiction.

Case 2. Let α1 + α2 + ...+ αs = s, i.e.

α̃ = (1, ..., 1︸ ︷︷ ︸
s

, 0, ..., 0, 1, ..., 1︸ ︷︷ ︸
p

) β̃ = (0, ..., 0, 1, ..., 1︸ ︷︷ ︸
q

).

If ‖β̃‖ < ‖α̃‖ − 1 then β̃ is not the immediate predecessor of α̃′ in order L. Therefore,
‖β̃‖ = ‖α̃‖ − 1 = t. In a way similar to that in Case 1 we get that either t = n − s or
t = n− s− 1.

a) Let t = n− s. Then |P (D \ α̃)| = |P (D)| − p and |P (D ∪ β̃)| = |P (D)|+ n− s. If
p < n − s (i.e. s ≥ 1), then |P ((D \ α̃) ∪ β̃)| > |P (D)|, which contradicts the optimally
of D. But if s = 1 then x1 is not admissible coordinate for D. Hence, β̃ must be in D.

b). Let t = n− s−1. Since β̃ ∈ D, for s > 1 there does not exist a basic ball of radius
n− s− 1, i.e. D must have another admissible coordinate (for s < n). But if s = 1, then
the vectors α̃ and β̃ have the form α̃ = (1, 0, 1, ..., 1), β̃ = (0, 0, 1, ..., 1). Therefore, D is
a ball of radius n − 2 centered in (1, 0, ..., 0) and the minimum of the functional l is not
attained on D.

Therefore in all cases we get that β̃ ∈ D, i.e., D is a standard arrangement.

Corollary 3.1.1 If A is an optimal set, then so is Ps(A) for s = 1, ..., n.
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Corollary 3.1.2 Let A ⊆ Bn be an optimal set and |A| = m. Then |Ps(A)| = |Ps(L
n
m)|

for s = 1, ..., n.

Corollary 3.1.2, in particular, implies that if A is an optimalm-element set and the number
m is represented in the form m =

∑k
i=0

(
n
i

)
+ δ, 0 ≤ δ <

(
n

k+1

)
, then |Pk(A)| = |Pk(L

n
m)|.

Moreover it is obvious that Pk+1(A) = Pk+1(L
n
m) = ∅. Thus, Corollary 3.1.2. not only

implies the equality Pk(A) 6= ∅, which is equivalent to Sn
k (α̃) ∈ A for some α̃ (cf. [1],

Theorem 6.1), but also yields the possibility of determining the number of such points.
This number equals to |Pk(L

n
m)| and can be found from known formulas [7].

Corollary 3.1.3 Let A be an optimal critical set and |A| = m <
(

n
2

)
+ n+ 1. Then A is

a union of exactly |P (Ln
m)| balls of radius 1.

This corollary can be regarded as a description of the structure of optimal sets of small
cardinality.

For the solution of many applied problems (see [1,5] for example) it is required to
consider the set

Gt(A) = {α̃ ∈ Bn \ A : ρ(α̃, A) ≤ t}

and to find a subset A ⊆ Bn with |A| = m on which the minimum of the functional
|Gt(A)| is attained. Denote this problem by It.

Corollary 3.1.4 If A is a solution of problem It, then it is also a solution of problem Ir
for any r > t.

The Corollary is proved by applying Theorem 3.1 to the set Bn \ A with the equality
Gt(A) = (Bn \A) \ Pt(B

n \A). This equality in particular implies, that Ln
m is a solution

of problem It.
Denote by Jt the problem of constructing a set A of fixed cardinality with ‖α̃‖ = k

for any α̃ ∈ A on which the functional |Gt(A) ∩ {α̃ : ‖α̃‖ = k + t}| attains a minimum.

Corollary 3.1.5 If A is a solution of problem Jt, then it is also a solution of problem Jr

for any r > t.

This corollary follows from Corollary 3.1.4. and from the fact that Ln
m is a solution of

problem It.
Let R is an arbitrary numbering of vertices of Bn by the numbers 1, 2, ..., 2n. We say

that a set A is generated by the numbering R if A consists of the vertices of Bn with indices
1, 2, ...,m. It is of definite interests to find all numberings generating optimal subsets for
any m. Such numberings are called optimal numberings. There are many examples
of extremal problems on Bn with solutions generated by appropriate numberings. The
possibilities of representation of optimal sets by the optimal numberings are reflected in
the following theorem.

Theorem 3.2 Let A ⊆ Bn be an optimal m-element critical set generated by an optimal
numbering R. Then m is a critical cardinality.
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Proof.
Let α̃ ∈ A has the greatest number in R. Then A \ α̃ is an optimal set and |P (A)| >
|P (A \ α̃)|. Thus

|P (A)| = |P (Ln
m)|, |P (A \ α̃)| = |P (Ln

m−1)|, |P (Ln
m)| > |P (Ln

m+1)|.

and the proof follows.
For that follows we need a criterion enabling us to determine whether a number m is

a critical cardinality. Denote by α̃ = (α1, ..., αn) the greatest point of Ln
m in the order L.

Lemma 3.7 The number m is a critical cardinality iff αn = 1.

Proof.
Assume that m is a critical cardinality and m =

∑k
i=0

(
n
i

)
+ δ, 0 ≤ δ <

(
n

k+1

)
. We write

C = P (Ln
m) ∩ Bn

k and let β̃ = (β1, ..., βn) be the greatest point in C in order L. Since

P (Ln
m) = Ln

m′ , where m′ =
∑k−1

i=0

(
n
i

)
+ c, c = |C|, then β̃ ∈ Γ(Ln

m \ α̃). However, it is

possible only if βn = 0 and ρ(α̃, β̃) = 1, i.e. αn = 1. The proof of sufficiency is similar.

Corollary 3.7.1 The number of critical cardinalities of the cube Bn equals 2n−1.

4 On the existence of sets in the class Kn
m

It is not hard to show that for some m there may not exist an optimal critical m-element
set. For example, let m =

∑k
i=0

(
n
i

)
+ 1. By Corollary 3.1.2, any optimal set of such

cardinality must consist of a ball of radius k and another point α̃ outside the ball. The
point α̃ may be chosen arbitrarily; but obviously α̃ ∈ S(A) always. Thus, Kn

m = ∅ in this
case. In the next theorem we prove a sufficient condition under which Kn

m = ∅. As before,
let p(m,n) = |Ln

m|.

Theorem 4.1 If p(m,n) is a critical cardinality, then Kn
m = ∅.

In order to prove this theorem we need some auxiliary propositions. Let

G(A) = {α̃ ∈ Bn : ρ(α̃, A) ≤ 1},

a neighborhood of A. Note that A ⊆ G(A).

Lemma 4.1 If A is an optimal set of critical cardinality. Then G(A) is also an optimal
set of critical cardinality.

Proof.
We prove this by induction on n. For n = 2 it can be checked directly. Let us proceed
the inductive step for n ≥3.

We say that A ⊆ Bn is a set of standard arrangement type if it can be obtained from
Ln

m by some permutation of the coordinates of Bn and a “translation” of the resulting
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set by some vector γ̃ ∈ Bn. We call a coordinate xi of Bn minimal for a set A if
||A0(i)− |A1(i)|| ≤ ||A0(j)− |A1(j)|| for j = 1, ..., n.

Without loss of generality we may assume that A is not a set of standard arrangement
type, since in opposite case the Lemma is obviously true. For an optimal set A of a critical
cardinality m =

∑k
i=0

(
n
i

)
+ δ the following assertions hold (see [1] Lemma 6.1, Theorem

6.2 and Corollary 6.2 respectively):

1. If xi is a minimal coordinate for A then A0(i) and A1(i) are optimal critical subsets
of critical cardinalities (in n − 1 dimensions) and the cardinality of at least one of them

equals
∑k

i=0

(
n−1

i

)
.

2. There exists a point α̃ ∈ A such that Sn
k (α̃) ⊆ A ⊆ Sn

k+2(α̃).
3. If Sn

k (α̃) ⊆ A ⊆ Sn
k+1(α̃), then A is a set of standard arrangement type.

Without loss of generality we assume that Sn
k (0̃) ⊆ A ⊆ Sn

k+2(0̃), where 0̃ = (0, ..., 0).
Let xi be a minimal coordinate for A. Since A is not a ball, then it f follows from Lemmas
3.2 and 3.3 that

P (A0(i)) ⊆ πi(A
1(i)), P (A1(i)) ⊆ πi(A

0(i)),

which implies G(A) = G(A0(i) ∪G(A1(i), where the operator G in the right hand side is
applied in n− 1 dimensions. Denote B = G(A).

Case 1. Assume that δ ≤
(

n−1
k

)
.

a) Let |A0(i)| ≥ |A1(i)|. By Assertion 1,

|A0(i)| =
k∑

i=0

(
n− 1

i

)
, |A1(i)| =

k−1∑
i=0

(
n− 1

i

)
+ δ.

By Assertion 2, A0(i) = Sn−1
k (0̃) and Sn−1

k−1 (0̃) ⊆ A1(i) ⊆ Sn−1
k+1 (0̃). Therefore, taking into

account the inductive hypothesis,

B0(i) = Sn−1
k+1 (0̃), Sn−1

k (0̃) ⊆ B1(i) ⊆ Sn−1
k+2 (0̃),

and B1(i) is an optimal set of critical cardinality. Consider a set C ⊆ Bn obtained from
B by replacing B1(i) by the standard arrangement of the same cardinality in the subcube
xi = 1. We have that

P (B0(i)) ⊆ πi(B
1(i)) and P (B1(i)) ⊆ πi(B

0(i)),

hence
P (C0(i)) = P (B0(i)) ⊆ πi(C

1(i)) and P (C1(i)) ⊆ πi(C
0(i)).

Consequently,

P (B) = P (B0(i)) ∪ P (B1(i)) and P (C) = P (C0(i)) ∪ P (C1(i)).

Since B1(i) is an optimal set (in n− 1 dimensions), then |P (B)| = |P (C)|. Note, that C
is a set of standard arrangement type. Therefore, B is an optimal set. Since |B1(i)| is a
critical cardinality and B0(i) is a ball, then |B| is a critical cardinality either.
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b) Let |A0(i)| < |A1(i)|. In this case

|A1(i)| =
k∑

i=0

(
n− 1

i

)
,

and since Sn
k (0̃) ⊆ A, then

|A0(i)| ≥
k∑

i=0

(
n− 1

i

)
= |A1(i)|.

A contradiction.

Case 2. Assume δ >
(

n−1
k

)
.

a) Let |A0(i)| ≥ |A1(i)|. Then

Sn−1
k (0̃) ⊆ A0(i) ⊆ Sn−1

k+2 (0̃) and A1(i) = Sn−1
k (α̃)

for some α̃ = (α1, ..., αn), such that αn = 1. It is not hart to show that 1 ≤ ‖α̃‖ ≤ 2,
since otherwise the inclusion Sn

k (0̃) ⊆ A ⊆ Sn
k+2(0̃) is violated.

If ‖α̃‖ = 1, i.e. αi is the only nonzero entry of α̃, then since P (A0(i)) ⊆ πi(A
1(i)) and

A0(i) is an optimal set by Assertion 1 (in n− 1 dimensions), then

P (A0(i)) ∩ {(γ1, ..., γn) ∈ Bn : γi = 0&‖γ̃‖ = k + 1} = ∅.

Consequently,

A0(i) ∩ {(γ1, ..., γn) ∈ Bn : γi = 0&‖γ̃‖ = k + 2} = ∅,

i.e., Sn
k (0̃) ⊆ A ⊆ Sn

k+1(0̃). By Assertion 3, A is a set of standard arrangement type and
the Lemma holds.

If ‖α̃‖ = 2, then since P (A0(i)) ⊆ πi(A
1(i)) and P (A1(i)) ⊆ πi(A

0(i)), we get, that
the same holds for the set B and so B is an optimal set of critical cardinality by the
inductive hypothesis. The rest of the proof is completely analogous to Case 1a) and is
thus omitted.

b) Let |A0(i)| < |A1(i)|. Then

Sn−1
k (0̃) ⊆ A1(i) ⊆ Sn−1

k+2 (0̃) and A0(i) = Sn−1
k (0̃).

Note that

|A1(i)| =
k∑

i=0

(
n− 1

i

)
+

(
δ −

(
n− 1

k

))

and Ai(i) is an optimal set of critical cardinality. By Assertion 2, there exists a point
α̃ = (α1, ..., αn) with αi = 1, such that Sn−1

k (α̃) ⊆ A1(i) ⊆ Sn−1
k+2 (α̃). It is not hard

to show, that 1 ≤ ‖α̃‖ ≤ 2. Therefore, Sn
k (α̃) ⊆ A ⊆ Sn

k+2(α̃) and the proof of the
Lemma is reduced to the Case 2a) by applying the arguments presented there to the set
A ”translated” by the vector α̃.

Proof of Theorem 4.1. Assume the contrary, i.e. A ∈ Kn
m 6= ∅. Since A is a critical set,

then A = P (A)∩G(P (A)). Taking into account that P (A) is an optimal set by Theorem
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3.1 and applying Lemma 4.1 to the set P (A), we get that A is an optimal set of critical
cardinality, i.e., A 6∈ Kn

m.
A number m is called a singular cardinality, if for any m′, m0 < m′ ≤ m, there does

not exists an optimal m′-element critical subset of Bn. In this case all the optimal critical
m-element subsets belong to the family F0 (see Section 2), i.e. their structure is known
[4].

Corollary 4.1.1 If p(m,n) is a critical cardinality, then m is a singular cardinality.

The proof follows from the equalities p(m0, n) = p(m0 + 1, n) = · · · = p(m,n).

Denote by X(n) the number of singular cardinalities determined by Corollary 4.1.1.

Corollary 4.1.2 X(n) ' 2n−3 as n 7→ ∞.

Proof.
Let m =

∑k
i=0

(
n
i

)
+ δ be a number satisfying the condition of Theorem 4.1, and let m0 be

the critical cardinality closest to m from below. Consider the set Ln
m0

and denote by α̃ the
greatest vector of Ln

m0
in order L. By Lemma 3.7, αn = 1. Moreover, k ≤ ‖α̃‖ ≤ k + 1.

Suppose first that ‖α̃‖ = k + 1. We show that αn−1 = 1. Assume that αn−1 = 1 and
consider the vector β̃ = (α1, ..., αn−2, 0, 0). Obviously, β̃ ∈ P (Ln

m0
) and β̃ is the greatest

vector of P (Ln
m0

) in order L. But since βn = 0 and p(m,n) = p(m0, n) is a critical
cardinality, we have a contradiction.

On the other hand, if αn−1 = αn = 1, then the vectors δ̃ = (α1, ..., αn−2, 1, 0) and
γ̃ = (α1, ..., αn−2, 0, 1) are in P (Ln

m0
), and if δ̃ > γ̃, then δ̃ ∈ P (Ln

m0
), i.e., p(m0, n) is a

critical cardinality. Therefore, if ‖α̃‖ = k + 1, then the equality αn+1 = αn = 1 is the
necessary and sufficient condition for p(m0, n) to be a critical cardinality. Since m0 + 1
must be a noncritical cardinality, then αn−2 = αn−3 = 0, and so the vector α̃ must have
the form

α̃ = (α1, ..., αn−j−3, 1, 0, ..., 0︸ ︷︷ ︸
j

, 1, 1),

where 2 ≤ j ≤ n − 3. Then the numbers m0 + 1,m0 + 2, ...,m0 + j − 1 are singular
cardinalities. The number of such cardinalities equals

∑n−2
i=2 (j − 1) · 2n−j−3 ' 2n−3.

If now ‖α‖ = k, i.e., m0 =
∑k

i=0

(
n
i

)
, then the numbers m0 + j, j = 1, ..., n − k, are

candidates for singular cardinalities. The number of such candidates is no more than(
n−1

2

)
= o(2n−3).

The goal of the subsequent considerations is to obtain a necessary and sufficient con-
dition for Kn

m 6= ∅.
We say that a set B is conjugate to a set A ⊆ Bn if B = Bn \ P (A), and we write

B = A∗.

Lemma 4.2 The set A∗ is critical set for any A ⊆ Bn.

Proof.
Assume on the contrary that α̃ ∈ S(A∗) 6= ∅, i.e., Sn

1 (α̃) ∩ P (A∗) = ∅. Note, that
α̃ 6∈ P (A). Then α̃ ∈ Γ(A) \ S(A), since otherwise one has Sn

1 (α̃) ∩ P (A) = ∅, i.e.,
Sn

1 (α̃) ⊆ A∗ and α̃ ∈ P (A∗). Now, if for some vector β̃ ∈ Sn
1 (α̃) ∩ A 6= ∅ the inclusion

β̃ ∈ Γ(A∗) holds, then β̃ ∈ Γ(A), so α̃ ∈ P (A), i.e., α̃ 6∈ A∗. A contradiction.
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Corollary 4.2.1 Γ(A) \ S(A) = Γ(A∗).

Corollary 4.2.2 A set A is critical iff (A∗)∗ = A.

A set B ⊆ Bn is said to be P -optimal if it has the smallest possible number of
boundary points among all sets with the same number of inner points. Denote by g(m,n)
the number of boundary points of an P -optimal set B ⊆ Bn with P (B) = m.

Theorem 4.2 For the existence of an m-element optimal critical set A ⊆ Bn it is nec-
essary and sufficient that m− p(m,n) = g(2n −m,n).

Proof.
If A is an optimal critical set, then |Γ(A)| = m−p(m,n), Γ(A) = Γ(A∗), Bn \A = P (A∗),
|P (A∗)| = 2n −m and A∗ is a P -optimal set, which implies the necessity of the condition
in the Theorem.

If B is a P -optimal set and |P (B)| = 2n −m, then Γ(B) = Γ(B∗), Bn \ P (B) = B∗,
|B∗| = m and B∗ is an optimal critical set.

Therefore, the problem of finding optimal critical sets reduces to the problem of finding
P -optimal sets and conversely. In fact, the both problems are equally complex, as the
results in the next Section show. However, in some cases, especially for small n, Theorems
4.1 and 4.2 are very useful for finding all optimal critical sets.

5 Construction of sets in the class Kn
m

Let A ⊆ Bn be an arbitrary critical subset, optimal or nonoptimal. We use it to construct
a set B ⊆ Bn+1 as follows. Let us partition the cube Bn+1 into two n−cubes xn+1 = 0
and xn+1 = 1. We construct the set A in the subcube xn+1 = 0 by setting the (n + 1)-st
coordinate to 0 for each point α̃ ∈ A, and we construct the set P (A) similarly in the
subcube xn+1 = 1. Let ψ denotes this transformation of the set A into B, i.e., B = ψ(A)
and let ψs(A) = ψ(ψs−1(A)), ψ0(A) = A. Using the induction on s it is easy to show that
if A ⊆ Bn is a critical set, then ψs(A) is a critical subset of the cube of dimension n+ s.
The main result of this Section is the following theorem.

Theorem 5.1 For any critical set A ⊆ Bn there exists the number t(A) such that for
any t ≥ t(A) the set ψt(A) ⊆ Bn+t is a critical optimal set.

In order to proof the Theorem we need three auxiliary propositions.

Lemma 5.1 ψ(Ln
m) is a standard arrangement.

Proof.
We use induction on n. For n = 2 the Lemma may be simply verified. Let us proceed
the inductive step. Denote A = ψ(Ln

m). Then A0(n + 1) and A1(n + 1) are standard
arrangements in the respective subcubes xn+1 = 0 and xn+1 = 1. Moreover, |A0(n+1)| ≥
|A1(n+ 1)|. Note that |A00(n+ 1, j)| ≥ |A01(n+ 1, j)| for the parts of A0(n+ 1) obtained
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when the subcube xn+1 is partitioned with the respect to an arbitrary coordinate xj. We
show that A0(j) and A1(j) are standard arrangements.

If xj is a coordinate such that p(|A00(n+1, j)|, n−1) ≤ |A01(n+1, j)| then by Lemma
3.2

P (A0(n+ 1)) = P (A00(n+ 1, j)) ∪ P (A01(n+ 1, j)).

Consequently,
P (A00(n+ 1, j)) = πn+1(A

10(n+ 1, j)),

and
P (A01(n+ 1, j)) = πn+1(A

11(n+ 1, j)).

Then A0(j) and A1(j) are standard arrangements by the inductive hypothesis.
If xj is a coordinate such that p(|A00(n+ 1, j)|, n− 1) > |A01(n+ 1, j)|, then

P (A0(n+ 1)) = πj(A
01(n+ 1, j)) ∪ P (A01(n+ 1, j)),

which gives us that A01(n+1, j) = πn+1,j(A
10(n+1, j)), i.e., A0(j) is a standard arrange-

ment. Since πn+1(A
i(n+ 1)) = P (A0(n+ 1)), then P (A01(n+ 1, j)) = πn+1(A

11(n+ 1, j))
and hence A1(j) is a standard arrangement.

Therefore, A0(j) and A1(j) are standard arrangements for any j, 1 ≤ j ≤ n+ 1, from
which by Lemma 3.6a) and the equality πn+1(A

1(n + 1)) = P (A0(n + 1)) we get A is a
standard arrangement.

Lemma 5.2 Let A ⊆ Bn be an optimal set. Then B = ψt(A) is also an optimal set for
any t ≥ 1.

Proof.
It is sufficient to consider the case t = 1. Denote |A| = m. Then

|B| = m+ |P (A)|, |P (B)| = |P (A)|+ |P (P (A))|.

By Theorem 3.1,

|B| = m+ p(m,n), |P (B)| = p(m,n) + p(p(m,n), n).

So in order to complete the proof we have to show that

p(m+ p(m,n), n+ 1) = p(m,n) + p(p(m,n), n).

For this we consider the set Ln
m. Denote C = ψ(Ln

m). By Lemma 5.1, C = Ln+1
m+p(m,n).

By the definition of ψ, C0(n+ 1) and C1(n+ 1) are standard arrangements, i.e., optimal
subsets in n dimensions. Since P (C0(n + 1)) = πn+1(C

1(n + 1)) by the definition of ψ,
then

|P (C)| = p(m+ p(m,n), n+ 1) = |C1(n+ 1)|+ |P (C1(n+ 1))| = p(m,n) + p(p(m,n), n),

and the Lemma follows.
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Lemma 5.3 Let A be a critical set, such that P (A) is an optimal set. Then there exists
a number t(A), such that B = ψt(A)(A) is an optimal set.

Proof.
Note, that not for any number q there exists an optimal set with exactly q inner points.
Indeed, for example,

p(

(
n

2

)
+ n, n) = n− 1 and p(

(
n

2

)
+ n+ 1, n) = n+ 1.

Since p(m,n) is nondecreasing on m for fixed n, there does not exist an optimal subset of
Bn with exactly n inner points. Let |A| = m. Corresponding to the remark just made,
we consider two cases.

Case 1. Suppose that there exists an optimal subset of Bn with exactly |P (A)| inner
points. Denote by m the greatest number a such that p(a, n) = |P (A)|, and by ψs(m) the
cardinality of the set ψs(A), s = 1, 2, .... Note that A is an optimal set iff m ≥ m. Taking
into consideration Lemma 5.2, we may assume that A is nonoptimal set, i.e., m−m > 0.

a) Assume m is noncritical cardinality. Consequently, m + 1 is a critical cardinality,
from where, taking into consideration

|ψ(Ln
m)| = m+ |P (A)|, ψ(Ln

m) = Ln+1
q

and
|Ln+1

q ∩ {(x1, ..., xn, 0) ∈ Bn+1}| = m,

where q = m+ |P (A)|, one gets

|P (Ln+1
q+1 )| = |P (Ln+1

q )| and |P (Ln+1
q+2 )| > |P (Ln+1

q+1 )|.

Therefore, ψ(m) = m+ |P (A)|+1. Since ψ(m) = m+ |P (A)|, then P (ψ(A)) is an optimal
set by Lemma 5.2. From |P (Ln+1

q )| = |P (ψ(A))| it follows that there exists an optimal

subset C ′ ⊆ Bn+1 with |P (C ′)| = |P (ψ(A))|. Finally, the equalities ψ(m) = q + 1 and
|P (Ln+1

q+1 )| = |P (Ln+1
q )| imply that ψ(m) is a noncritical cardinality (in n+1 dimensions).

Consequently, applying the arguments from above to the sets ψ(A), ψ2(A), ..., we get that

m−m− 1 = ψ(m)− ψ(m), ψs−1(m)− ψs−1(m)− 1 = ψs(m)− ψs(m),

i.e., m−m− s = ψs(m)− ψs(m). For s sufficiently large, the right hand side of the last
equality is negative, i.e., ψs(A) ⊆ Bn+s is an optimal set.

b) Assume now that m is a critical cardinality. Since p(m+1, n) > p(m,n) then m+1
is also a critical cardinality. Denote by α̃(Ln

m) the greatest vector of Ln
m in order L. From

Lemma 3.7 it follows that

α̃(Ln
m) = (α1, ..., αn−r−2, 1, 0, 1, ..., 1︸ ︷︷ ︸

r

),

where r ≥ 1. Now we show that ψ(m) = m+ |P (A)|+1. For this consider the set ψ(Ln
m).

We have that ψ(Ln
m) = Ln+1

q by Lemma 5.1 and

α̃(Ln+1
q ) = (α1, ..., αn−r−2, 1, 0, 0, 1, ..., 1︸ ︷︷ ︸

r

),
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for q = m+ |P (A)|. Since

α̃(Ln+1
q+1 ) = (α1, ..., αn−r−2, 0, 1, ..., 1︸ ︷︷ ︸

r+1

)

and
α̃(Ln+1) = (α1, ..., αn−r−2, 0, 1, , , .1︸ ︷︷ ︸

r

, 0, 1),

then q+1 is noncritical cardinality in Bn+1 and q+2 is a critical cardinality. Consequently,

p(q, n+ 1) = p(q + 1, n+ 1) < p(q + 2, n+ 1)

and hence ψ(m) = m + |P (A)| + 1. Now from P (ψ(A)) = ψ(P (A)) and Lemma 5.2
it follows that P (ψ(A)) is an optimal set. Since |P (ψ(A))| = |P (Ln+1

q+1 )| and ψ(m) is
noncritical cardinality, the proof of the lemma can be reduced to Case 1a) by applying
the arguments there to the set ψ(A).

Case 2. Assume now that there does not exist an optimal subset of Bn with exactly
|P (A)| inner points. Now we show that in Bn+1 there exists an optimal set with exactly
|P (ψ(A))| inner points. This will reduce the proof of the lemma in Case 2 to Case 1.

Denote |P (A)| = t and let us show that t + 1 is a critical cardinality in Bn. Indeed,
p(s, n) > t > p(s− 1, n) for some number s. Let q = p(s, n) and v = q − t ≥ 1. Then s is
a critical cardinality in Bn and p(s, n)− p(s− 1, n) ≥ 2. Consequently

α̃(Ln
s ) = (α1, ..., αn−r−2, 1, 0, 1, ..., 1︸ ︷︷ ︸

r

),

and so

α̃(Ln
t ) = (α1, ..., αn−r−2, 1, 0,

r︷ ︸︸ ︷
1, ..., 1︸ ︷︷ ︸

v

, 0, 1, ..., 1).

Therefore, t+ 1 is a critical cardinality and for the reduction it is sufficient to show that
|P (ψ(A))|+ 1 is noncritical cardinality in Bn+1.

Since P (ψ(A)) = ψ(P (A)) and ψ(P (A)) is an optimal set by Lemma 5.2, then ψ(Ln
t ) =

Ln+1
w for w = |ψ(P (A))|. But then

α̃(Ln+1
w ) = (α1, ..., αn−r−2, 1, 0,

r+1︷ ︸︸ ︷
1, ..., 1︸ ︷︷ ︸

v

, 0, 0, 1, ..., 1),

i.e. w + 1 is noncritical cardinality, which competes the proof.

Proof of Theorem 5.1. Denote by d(A) the greatest number d, such that Pd(A) 6= ∅. If
P (A) = ∅, then let d(A) = 0.

Using induction on s, it is easy to show Ps(ψ(A)) = ψ(Ps(A)), from which d(ψ(A)) =
d(A) follows. Note that ∅ is an optimal set and Pd(A)+1(A) = ∅. Denote by r ≥ 1 the
smallest integer for which Pr(A) is an optimal set. Then r ≤ d(A) + 1. Let C = Pr−1(A).
Applying to C sufficiently many (n1) times transformation ψ, we get that ψn1(C) =
Pr−1(ψ

n1(A)) is an optimal set. Analogously, applying to A sufficiently many (n2) times
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transformation ψ, we get that Pr−2(ψ
n1+n2(A)) is an optimal set and so on r times. Since

d(ψt(A)) = d(A) and r ≤ d(A) + 1, then t(A) = n1 + n2 + · · · + nr is a finite number
and ψt(A)(A) is an optimal critical set (in n+ t(A) dimensions). Finally, for t ≥ t(A) the
Theorem follows from Lemma 5.2.

Note that ψt(A)(A) is an optimal set of critical cardinality iff A is an optimal set of
critical cardinality. Indeed, if |A| = m is a critical cardinality and m + |P (A)| = t, then
ψ(Ln

m) = Ln+1
t by Lemma 5.1. But Ln

m is a critical set, so Ln+1
t is a critical set too, i.e. t

is a critical cardinality.
On the other hand, let ψt(A)(A) = B be an optimal set. If |B| is a critical cardinality,

then p(|B0(n+ 1)|, n) ≥ |B1(n+ 1)|, since B1(n+ 1) = πn+1(P (B0(n+ 1))). If p(|B0(n+
1)|, n) = |B1(n + 1)|, then B0(n + 1) is an optimal set by Lemma 3.2b). We replace the
sets B0(n + 1) and B1(n + 1) by standard arrangements (in n dimensions). It follows
from Lemma 5.1, that the resulting set is a standard arrangement in Bn+1. Since |B|
is a critical cardinality, then |B1(n + 1)| is also a critical cardinality. Therefore, since
B0(n+ 1) is a critical set, then |B0(n+ 1)| is a critical cardinality by Lemma 4.1.

But if p(|B0(n + 1)|, n) > |B1(n + 1)|, then B0(n + 1) is an optimal set of critical
cardinality (see [1], Remark 6.2 on page 117).

Therefore, if A is an optimal critical set and A 6∈ Kn
m (i.e. |A| is a critical cardinality),

then |ψt(A)| is a critical cardinality too for all t, t ≥ 1,i.e., ψt(A) 6∈ Kn+t
m′ (here m′ =

|ψ(A)|). But if A is nonoptimal set, or A ∈ Kn
m, then ψt(A)(A) ∈ Kn+t(A)

m′ .

Corollary 5.1.1 Let k(n) = |{m : 1 < m < 2n&Kn
m 6= ∅}|. Then k(n+ 1) ≥ k(n).

It follows from Theorem 5.1, that the collection of optimal critical sets of noncritical
cardinality distinguishes itself by its great diversity. In order to demonstrate this more
clearly we consider the following construction.

Let A ⊆ Bn be an arbitrary critical set, not necessary optimal. Note that such a set
may be represented (not uniquely) as a union of n-dimensional balls with radii at least
one, i.e.

A = Sn
r1

(α̃1) ∪ · · · ∪ Sn
rt
(α̃t), 1 ≤ ri ≤ n, 1 ≤ i ≤ t.

The simplest example of such representation is A =
⋃

α̃∈P (A S
n
1 (α̃). Moreover, any set that

is a union of such balls is critical.
We fix one of such representations of a critical set A ⊆ Bn and construct a set B ⊆

Bn+1 as follows. Let the cube Bn+1 be partitioned into two n-dimensional subcubes
xn+1 = 0 and xn+1 = 1. In the subcube xn+1 = 1 we construct points β̃i (1 ≤ i ≤ t) by
setting the (n+ 1)-st coordinate of β̃i equal to 0, and the remaining n coordinates equal
to the same as for point α̃i. Let

B = Sn+1
r1

(β̃1) ∪ · · · ∪ Sn+1
rt

(β̃t) ⊆ Bn+1.

The structures of sets A and B have much in common. In fact B is obtained by
“extending” A in a space of large dimensions. It is useful to compare the similarity
between A and B with the similarity between the balls Sn

r (α̃) ⊆ Bn and Sn+1
r (β̃) ⊆ Bn+1.

Denote by τ the transformation of A into B, and let τ s(A) = τ(τ s−1(A)) and τ 0(A) = A.
Note, that if A ⊆ Bn is a critical set, then for any t ≥ 1, the set τ t(A) ⊆ Bn+t is also a
critical set.
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Corollary 5.1.2 For any critical set A ⊆ Bn there exists a number q(A), such that for
any t ≥ q(A) the set τ t(A) is optimal and critical (in n+ t dimensions).

Proof.
It is sufficient to show that if A ⊆ Bn is a critical set, B = τ t(A) and t ≥ d(A), then
ψ(B) = τ(B), since then we may apply Theorem 5.1.

By the definition of τ , there exist balls Sn
ri
(α̃i) such that

A =
s⋃

i=1

Sn
ri
(α̃i), andB =

s⋃
i=1

Sn+t
ri

(τ(α̃i)).

It is not hard to show that ψ(A) = τ(A) iff

P (A) =
s⋃

i=1

P (Sn+t
ri

(τ(α̃i)) (1)

If this inequality holds for A, then we pass to the consideration of the set τ(A). If (1)
does not hold, then there exists a point γ̃ of ψ(A) such that

γ̃ = (γ1, ..., γn) ∈ P (A) \
s⋃

i=1

P (Sn
ri
(α̃i).

Then the (n+ 1)−th entry of τ(γ̃) equals 0 and πn+1(γ̃) 6∈ τ(A).
Further, if (1) holds for τ(A), then we pass to the consideration of the set τ 2(A). But

if (1) does not hold, then there exists a point γ̃1 ∈ τ(A) such that

γ̃1 ∈ P (τ(A)) \
s⋃

i=1

P (Sn+1
ri

(τ(α̃))).

Then the (n+ 1)-th entry of γ̃1 equals 1 and πn+1(γ̃1) ∈ P (A).
Analogously, if (1) does not hold for the set τ q(A), then the coordinates of

γ̃q ∈ P (τ q(A)) \
s⋃

i=1

P (Sn+q
ri

(β̃))

with indices n + 1, ..., n + q are equal to 1 and πn+1,...,n+q(γ̃q) ∈ Pq(A). To complete the
proof it remains to observe that Pq(A) = ∅ for q ≥ d(A).

Theorem 5.1 and Corollary 5.2 can be regarded as ways of constructing optimal sets
in the class Kn

m.
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