Specification of all Maximal Subsets of the Hamming Space with Respect to Given Diameter *

Sergei L. Bezrukov

Abstract

We present a specification of all maximum subsets of the *n*-cube B^n with respect to a given diameter and show relations between this problem and the discrete isoperimetric problem. As a corollary, for any number $m, 1 \le m \le 2^n$, we specify an *m*-element subset of B^n with minimal possible diameter. We also present a simple proof for a theorem of Katona on intersecting families [4].

1 Introduction

Denote by B^n the *n*-dimensional unit cube with Hamming metric $\rho(\alpha, \beta)$, $\alpha, \beta \in B^n$. For a fixed integer $d \in [0, n]$ consider the problem of constructing a maximum size subset $A \subseteq B^n$ such that $\rho(\alpha, \beta) \leq d$ for any $\alpha, \beta \in A$. We call such a subset A d-maximal. The number d is called the diameter of A and denoted by D(A). Note that in continuous case the ball of radius d/2 has maximum area among all plane figures of diameter d. One of the d-maximal subsets of B^n is found in [1,2]. The main goal of this paper is to specify all d-maximal subsets of B^n . Throughout the paper we assume d < n. Denote by $S_r^n(\alpha)$ the ball of radius r centered in $\alpha \in B^n$.

Theorem 1

- (i) If d = 2t then $S_t^n(\alpha)$ is a d-maximal set for any $\alpha \in B^n$;
- (ii) If d = 2t + 1 then $S_t^n(\alpha) \bigcup S_t^n(\beta)$ is a d-maximal set for any $\alpha, \beta \in B^n$ such that $\rho(\alpha, \beta) = 1$.

For $\alpha = (\alpha_1, \ldots, \alpha_n) \in B^n$ denote $\overline{\alpha} = (\overline{\alpha}_1, \ldots, \overline{\alpha}_n)$, the complementary vector of α . Partition B^n into 2^{n-1} pairs $(\alpha, \overline{\alpha})$ of complementary vectors and denote by \mathcal{M}^n the collection of all 2^{n-1} -element subsets of B^n , obtained by choosing exactly one vector from each pair $(\alpha, \overline{\alpha})$.

^{*}This paper is a translation from Russian of the author's article published in Problems of Information Transmission, v. XXIII (1987), No 1, 106–109.

Theorem 2

- (i) If d < n 1 then there are no d-maximal subsets other then the ones described in Theorem 1;
- (ii) If d = n 1 then \mathcal{M}^n is the collection of all d-maximal subsets.

2 Proofs of the Theorems

Let $A \subseteq B^n$. Denote

$$G_t(A) = \{ \alpha \in B^n \setminus A \mid \rho(\alpha, A) \le t \}, \overline{A} = \{ \alpha \in B^n \mid \alpha = \overline{\beta}, \beta \in A \}.$$

Lemma 1 $D(A) \leq d$ iff $A \cap (\overline{A} \cup G_{n-d-1}(\overline{A})) = \emptyset$.

Proof.

Assume $D(A) \leq d$ and $\alpha \in A$. Then $S_{n-d-1}^n(\overline{\alpha}) \cap A = \emptyset$, because for $\beta \in S_{n-d-1}^n(\overline{\alpha}) \cap A$ one has $d+1 \leq \rho(\alpha,\beta) \leq D(A)$. Note that

$$\overline{A} \cup G_{n-d-1}(\overline{A}) = \bigcup_{\alpha \in \overline{A}} S_{n-d-1}^n(\alpha),$$

which implies the necessity of the above condition.

To prove its sufficiency, assume $A \cap (\overline{A}) \cup G_{n-d-1}(\overline{A}) = \emptyset$. If $D(A) \ge d+1$, then there exist vectors $\alpha, \beta \in A$ such that $\rho(\alpha, \beta) \ge d+1$. Therefore, $\beta \in S_{n-d-1}^n(\alpha)$ and $A \cap (\overline{A} \cup G_{n-d-1}(\overline{A})) \ne \emptyset$. This contradiction completes the proof. \Box

Corollary 1 If $A \subseteq B^n$ is a d-maximal subset, then $2|A| + |G_{n-d-1}(A)| \le 2^n$. \Box

Denote by $I_t^n(m)$ the problem that consists in finding an *m*-element subset $A_0 \subseteq B^n$ such that $|G_t(A_0)| \leq |G_t(A)|$ for any $A \subseteq B^n$, |A| = m. Denote $g(m, n, t) = |G_t(A_0)|$. We show that the function f(m, n, t) = 2m + g(m, n, t) in non-decreasing in *m* for fixed *n*, *t*. Indeed, the inequality f(m, n, t) < f(m + 1, n, t) is equivalent to $g(m, n, t) \leq 1 + g(m + 1, n, t)$. On the other hand, if $C \subseteq B^n$ is a solution to $I_t^n(m + 1)$ and $\alpha \in C$, then $g(m, n, t) \leq |G_t(C \setminus \alpha)| \leq g(m + 1, n, t) + 1$.

Proof of Theorem 1.

Assume d = 2t. It is known from [3] that $S_t^n(\alpha)$ is a solution to $I_s^n(m_0)$ for any $s = 1, \ldots, n$, where

$$m_0 = |S_t^n(\alpha)| = \sum_{i=0}^t \binom{n}{i}.$$

One has

$$2m_0 + g(m_0, n, n - d - 1) = \sum_{i=0}^t \binom{n}{i} + \sum_{i=0}^{n-t-1} \binom{n}{i} = 2^n$$

Let A be a d-maximal subset and |A| = m. By Corollary 1, $2m + |G_{n-d-1}(A)| \le 2^n$, hence $2m + g(m, n, n-d-1) \le 2^n$. Using the monotonicity of g and the equality $D(S_t^n(\alpha)) = d$ one gets $m = m_0$.

Now, assume d = 2t + 1. It is known from [3] that $S_t^n(\alpha) \cup S_t^n(\beta)$ with $\rho(\alpha, \beta) = 1$ is a solution to $I_s^n(m_0)$ for any s = 1, ..., n, where

$$m_0 = |S_t^n(\alpha) \cup S_t^n(\beta)| = \sum_{i=0}^t \binom{n}{i} + \binom{n-1}{t}$$

Taking into account the equality $2m_0 + g(m_0, n, n - d - 1) = 2^n$ and using the arguments above, one gets that if A is a d-maximal subset then $|A| = m_0$, which completes the proof of the Theorem.

Corollary 2 If A is a d-maximal subset, then A is a solution to $I_{n-d-1}^{n}(|A|)$.

Lemma 2 Let d < n-1 and A is a d-maximal subset. Then A is a solution to $I_1^n(|A|)$.

Proof.

It follows from the proof of Theorem 1, that $|A| + |\overline{A} \cup G_{n-d-1}(\overline{A})| = 2^n$. Since $A \cap (\overline{A} \cup G_{n-d-1}(\overline{A})) = \emptyset$ then

$$A = B^n \setminus (\overline{A} \cup G_{n-d-1}(\overline{A})).$$

Therefore, $|G_t(A)| = |G_{n-d-1}(\overline{A})| - |G_{n-d-2}(\overline{A})|.$

Let d = 2t. One has

$$|A| = \sum_{i=0}^{t} \binom{n}{i},$$

$$G_{n-d-1}(\overline{A})| = 2^{n} - 2|A| = \sum_{i=1}^{n-d-1} \binom{n}{t+i},$$

$$|G_{n-d-2}(\overline{A})| \geq \sum_{i=1}^{n-d-2} \binom{n}{t+i}.$$

This implies $|G_1(A)| \leq \binom{n}{t+1}$, i.e. A is a solution to $I_1^n(|A|)$. The proof of Lemma in the case d = 2t + 1 < n - 1 is similar.

Proof of Theorem 2.

Let $A \subseteq B^n$ be a *d*-maximal subset. Denote by $I^n(m)$ the problem that consists in finding an *m*-element subset $A_0 \subseteq B^n$, such that $|\Gamma(A_0)| \leq |\Gamma(A)|$ for any $A \subseteq B^n$, |A| = m, where

$$\Gamma(A) = \{ \alpha \in A \mid S_1^n(\alpha) \notin A \}.$$

Since $G_1(A) = \Gamma(B^n \setminus A)$, the set of solutions to $I^n(m)$ can be obtained from the one for $I_1^n(2^n - m)$ and vise versa. In particular, denoting $C = B^n \setminus A$, we get by Lemma 2 that C is a solution to $I^n(2^n - |A|)$.

Assume d = 2t < n - 1. Denote

$$m_1 = |A| = \sum_{i=0}^{t} \binom{n}{i}, \quad m_2 = |C| = \sum_{i=0}^{n-t-1} \binom{n}{i}.$$

It is proved in [3] (Theorem 6.1), that $S_{n-t-1}^n(\alpha)$ is the only solution to $I^n(m_2)$ up to the choice of $\alpha \in B^n$. Hence, $S_t^n(\overline{\alpha})$ is the only solution to $I_1^n(m_1)$. Therefore, $A = S_t^n(\overline{\alpha})$.

Assume d = 2t + 1 < n - 1. Denote

$$m_3 = |A| = \sum_{i=0}^{t} \binom{n}{i} + \binom{n-1}{i}, \quad m_4 = |C| = \sum_{i=0}^{n-t-2} \binom{n}{i} + \binom{n-1}{t+1}$$

It is proved in [3] (Lemma 6.1) that there exists a coordinate x_j , $1 \leq j \leq n$, such that $C^0(j) = S_{n-t-2}^{n-1}(\alpha')$ and $C^1(j) = S_{n-t-2}^{n-1}(\beta')$, where $C^0(j)$ and $C^1(j)$ are the intersections of the set C with the hyperplanes $x_j = 0$ and $x_j = 1$ respectively. Here α' and β' are projections of resp. α and β to the correspondent hyperplanes. By Theorem 6.2 of [3], we have $\rho(\alpha, \beta) \leq 2$. It is not difficult to show that if $\rho(\alpha, \beta) = 2$, then D(A) > d. This implies, $\rho(\alpha, \beta) = 1$, i.e the vectors α, β differ in the *j*-th entry only. Furthermore,

$$C = S_{n-t-2}^{n-1}(\alpha) \cup S_{n-t-2}^{n-1}(\beta) = S_{n-t-2}^{n}(\alpha) \cup S_{n-t-2}^{n}(\beta).$$

Therefore $A = S_t^n(\overline{\alpha}) \cup S_t^n(\overline{\beta}).$

The proof in the case d = n - 1 follows from Lemma 1.

3 Applications of the Theorems

1. Consider the problem of constructing an *m*-element subset of B^n with minimal possible diameter. Represent the integer *m* in the form

$$m = \sum_{i=0}^{k} {n \choose i} + \delta, \quad 0 < \delta \le {n \choose k+1}.$$

Obviously, D(A) = n for any $A \subseteq B^n$, $|A| \ge 2^{n-1}$. If $m \le 2^{n-1}$ and $\binom{n-1}{k} < \delta \le \binom{n}{k+1}$, Theorem 1 implies $D(A) \ge 2k + 2$ for any $A \subseteq B^n$, |A| = m. However, such a subset A may be obtained by deleting arbitrary $\sum_{i=0}^{k+1} \binom{n}{i} - m$ vectors from a ball of radius k + 1. The argument in the case $m \le 2^{n-1}$ and $0 < \delta < \binom{n-1}{k}$ is similar.

2. Consider arbitrary *n*-element set and let \mathcal{F}_l be a family of it's subsets such that $|F_i \cap F_j| \ge l > 1$ for any $F_i, F_j \in \mathcal{F}_l, i \ne j$. We call such a family, consisting of maximal possible number of subsets, the maximal one. A complete specification of the maximal

families with l > 1 can be found in [4]. A solution to this problem can also be deduced Theorem 2.

For this note, that there is a natural correspondence between the vectors of the *n*-cube B^n and the subsets of *n*-element set and the Hamming distance between two vertices of the *n*-cube is equal to the size of the symmetric difference of the corresponding subsets.

If $F_i, F_j \in \mathcal{F}_l$, then $|F_i \Delta F_j| = |F_i \cup F_j| - |F_i \cap F_j| \le n - l$. Therefore, if n - l = 2t then $D(\mathcal{F}_l) \le 2t$ and, by Theorem 1,

$$|\mathcal{F}_l| \le \sum_{i=0}^t \binom{n}{i} = m_0.$$

On the other hand, the ball $S_t^n(\mathbf{1})$, where $\mathbf{1} = (1, \ldots, 1) \in B^n$, corresponds to some family \mathcal{F}_l . Hence, the size of any maximal family equals m_0 . Similarly, if n - l = 2t + 1 is odd, then one can easily show that the diameter of any maximal family \mathcal{F}_l is equal to n - l. Therefore, any maximal family corresponds to some (n - l)-maximal subset, i.e. for some $\alpha, \beta, \gamma \in B^n \mathcal{F}_l = S_t^n(\alpha)$ for n - l even and $\mathcal{F}_l = S_t^n(\beta) \cup S_t^n(\gamma)$ with $\rho(\beta, \gamma) = 1$ for n - l odd. Furthermore, it is easy to verify that if $\alpha \neq \mathbf{1}$ and $\beta \neq \mathbf{1}$ (or $\gamma \neq \mathbf{1}$), then there always exist some $F_i, F_j \in \mathcal{F}_l$ such that $|F_i \cap F_j| < l$. Therefore if n - l is even, then there exists the only maximal family and there are exactly n maximal families for n - l is odd.

Note that for l = 1 the above statements are not valid. It is not difficult to show [5] that in this case for the number M of maximal families one has

$$\log_2 M \ge 0.5 \binom{n}{\lfloor n/2 \rfloor}$$
, as $n \to \infty$.

Following a conjecture in [5], $\log_2 M \sim 0.5 \binom{n}{\lfloor n/2 \rfloor}$ as $n \to \infty$.

References

- Kleitman D.J. On a Combinatorial Conjecture of Erdős. J. Combin. Theory, v.1 (1966), No 2, 209–214.
- [2] Ahlswede R., Katona G.O.H. Contributions to the Geometry of Hamming Spaces. Discrete Math., v.17 (1977), No 1, 1–22.
- [3] Aslanyan L.A. The Isoperimetric Problem and Similar Problems for Discrete Spaces. (in Russian) - Problems of Cybernetics, Moscow 1979, v.36, 85–127.
- [4] Katona G.O.H. Intersection Theorems for Systems of Finite Sets. Acta Math. Acad. Sci. Hungar., v.15 (1964), 329–337.
- [5] Erdős P., Kleitman D.J. Extremal Problems Among Subsets of a Set. Discrete Math., v.8 (1974), No 2, 281–294.