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Abstract

We present a specification of all maximum subsets of the n-cube B™ with re-
spect to a given diameter and show relations between this problem and the discrete
isoperimetric problem. As a corollary, for any number m, 1 < m < 2", we specify an
m-~element subset of B"™ with minimal possible diameter. We also present a simple
proof for a theorem of Katona on intersecting families [4].

1 Introduction

Denote by B" the n-dimensional unit cube with Hamming metric p(«, ), o, 8 € B™. For
a fixed integer d € [0,n] consider the problem of constructing a maximum size subset
A C B" such that p(«, 5) < d for any o, 8 € A. We call such a subset A d-maximal. The
number d is called the diameter of A and denoted by D(A). Note that in continuous case
the ball of radius d/2 has maximum area among all plane figures of diameter d. One of
the d-maximal subsets of B" is found in [1,2]. The main goal of this paper is to specify
all d-maximal subsets of B™. Throughout the paper we assume d < n. Denote by S’ («)
the ball of radius r centered in o € B".

Theorem 1

(i) If d =2t then S}'(«) is a d-mazimal set for any a € B";

(17) If d = 2t + 1 then S}(a)US}(B) is a d-mazimal set for any o, 3 € B"™ such that
pla,B) = 1.

For a = (aq,...,a,) € B" denote @ = (@y,...,@,), the complementary vector of «.
Partition B™ into 2"~! pairs (a,@) of complementary vectors and denote by M" the
collection of all 2"~!—element subsets of B", obtained by choosing exactly one vector
from each pair (o, @).

*This paper is a translation from Russian of the author’s article published in Problems of Information
Transmission, v. XXIII (1987), No 1, 106-109.



Theorem 2

(i) If d < n — 1 then there are no d-maximal subsets other then the ones described in
Theorem 1;

(i1) If d =n —1 then M™ is the collection of all d-mazimal subsets.

2 Proofs of the Theorems

Let A C B™. Denote

Gi(A) = {aeB"\A|p(a,A) <1},
A = {aeB"|a=05,0¢€ A}

Lemma 1 D(A) <d iff AN(AUG,_4-1(A)) = 0.

Proof.
Assume D(A) < d and a € A. Then S”_, (@) N A =0, because for § € S* , (@)NA
one has d +1 < p(a, B) < D(A). Note that

AUG,_q1(A)= | S

acA

which implies the necessity of the above condition.

To prove its sufficiency, assume A N (A) U G,_4-1(A4)) = 0. If D(A) > d + 1, then
there exist vectors a, 3 € A such that p(«, 3) > d + 1. Therefore, 8 € S , () and
AN (AUG,_q-1(A)) # 0. This contradiction completes the proof. O
Corollary 1 If A C B" is a d-mazximal subset, then 2|A| 4+ |G,_q_1(A)| < 2™, 0

Denote by I}*(m) the problem that consists in finding an m-element subset Ay C B™ such
that |G¢(Ap)| < |G+(A)| for any A C B", |A| = m. Denote g(m,n,t) = |G¢(Ap)|. We show
that the function f(m,n,t) = 2m-+g(m,n,t) in non-decreasing in m for fixed n, t. Indeed,
the inequality f(m,n,t) < f(m + 1,n,t) is equivalent to g(m,n,t) < 1+ g(m + 1,n,t).
On the other hand, if C' C B™ is a solution to I]'(m + 1) and a € C, then g(m,n,t) <
|G(C'\ )] < g(m+1,n,t)+ 1.

Proof of Theorem 1.

Assume d = 2t. It is known from [3] that S}'(«) is a solution to I7(mg) forany s = 1,...,n,

where .
~ sl =2 (7).
=0



One has
t n n—t—1 n
2mg + g(mg,n,n —d—1) = Z (z) + Z <z> = 2"
i=0 i=0
Let A be a d-maximal subset and |A| = m. By Corollary 1, 2m+|G,_4—1(A)| < 2", hence
2m+g(m,n,n—d—1) < 2". Using the monotonicity of g and the equality D(S}"(«)) = d
one gets m = my.
Now, assume d = 2t + 1. It is known from [3] that S}'(a) U S}*(5) with p(a, 5) = 1is a
solution to I"(mg) for any s = 1,...,n, where

m=Isteyusiel =3 (1) + ("7 )

Taking into account the equality 2mg + g(mg,n,n —d — 1) = 2" and using the arguments
above, one gets that if A is a d-maximal subset then |A| = mg, which completes the proof
of the Theorem. O

Corollary 2 If A is a d-mazimal subset, then A is a solution to I, (|A]). O
Lemma 2 Letd <n—1 and A is a d-mazximal subset. Then A is a solution to I7'(]A]).

Proof.
It follows from the proof of Theorem 1, that |A| +|AU G, _4_1(A)| = 2". Since AN (AU
Gpn_a-1(A)) = 0 then B B

A=B"\ (AU Gh_a1(A)).

Therefore, |Gi(A)] = |Gr_a—1(A)] — |Gr_a_2(A4)].

Let d = 2¢. One has
t (n

1=0

G s (A)] = 2“—2\Ar=”_fl( " )

2o \t+i
. n—d—2 n
_a2(A)| > .
Gl = % (1)

This implies |G1(A)| < (t—tl>’ i.e. Ais a solution to I7'(|A]).

The proof of Lemma in the case d = 2t +1 < n — 1 is similar. O

Proof of Theorem 2.

Let A C B™ be a d-maximal subset. Denote by I™(m) the problem that consists in finding
an m-element subset Ay C B", such that [['(4y)| < |['(A)| for any A C B", |A| = m,
where

[(A) ={a e A]57(e) ¢ A}

3



Since G1(A) =T'(B"\ A), the set of solutions to I"(m) can be obtained from the one for
I(2™ — m) and vise versa. In particular, denoting C' = B™ \ A, we get by Lemma 2 that
C' is a solution to I"™(2™ — | A|).

Assume d = 2t < n — 1. Denote

mi = |A| :i(") ms = |C] :nfl (")

i—0 \!

It is proved in [3] (Theorem 6.1), that S, ;(«) is the only solution to I"(mz) up to the
choice of a € B™. Hence, Sj*(@) is the only solution to I7*(mq). Therefore, A = S}'(@).

Assume d =2t +1 < n — 1. Denote

=3 () () mema= () ()

It is proved in [3] (Lemma 6.1) that there exists a coordinate z;, 1 < j < n, such that
C(j) = Si=} o (a') and CY(j) = SI=} ('), where C°(5) and C(j) are the intersections
of the set C' with the hyperplanes z; = 0 and z; = 1 respectively. Here o’ and ' are
projections of resp. « and [ to the correspondent hyperplanes. By Theorem 6.2 of [3],
we have p(a, 5) < 2. It is not difficult to show that if p(«, 5) = 2, then D(A) > d. This
implies, p(«, 3) = 1, i.e the vectors «, § differ in the j-th entry only. Furthermore,

C = SZ:tl—Q(O‘) U 52:1:1—2(@ = Sp_1—2(@) US)_, 5(B).

Therefore A = Sj*(a) U S;*(5).

The proof in the case d = n — 1 follows from Lemma 1. O

3 Applications of the Theorems

1. Consider the problem of constructing an m-element subset of B" with minimal possible
diameter. Represent the integer m in the form

k
mzz<?>+5, 0<5§<kil>'

1=0

Obviously, D(A) = n for any A C B", |A| > 2" It m < 2! and (";1) <0< (1@11)7

Theorem 1 implies D(A) > 2k + 2 for any A C B", |A| = m. However, such a subset A

may be obtained by deleting arbitrary 3%} (Z) — m vectors from a ball of radius k£ + 1.

The argument in the case m < 2" ! and 0 < § < (n;) is similar.
2. Consider arbitrary n-element set and let F; be a family of it’s subsets such that

|F; N F;| > 1> 1 for any F;, F; € Fi, i # j. We call such a family, consisting of maximal
possible number of subsets, the maximal one. A complete specification of the maximal

4



families with [ > 1 can be found in [4]. A solution to this problem can also be deduced
Theorem 2.

For this note, that there is a natural correspondence between the vectors of the n-cube
B™ and the subsets of n-element set and the Hamming distance between two vertices of
the n-cube is equal to the size of the symmetric difference of the corresponding subsets.

If F;, F; € F, then |F;AF;| = |F; U F;| — |F; N F;| < n — 1. Therefore, if n — [ = 2¢ then
D(F;) < 2t and, by Theorem 1,

t o (n
|Fi| < Z <Z> = My.
i=0

On the other hand, the ball S7'(1), where 1 = (1,...,1) € B™, corresponds to some family
Fi. Hence, the size of any maximal family equals mg. Similarly, if n — [ = 2t 4+ 1 is odd,
then one can easily show that the diameter of any maximal family F; is equal to n — [.
Therefore, any maximal family corresponds to some (n — [)-maximal subset, i.e. for some
a, B,y € B" F, = S} (a) for n — [ even and F; = S;*(5) U S (y) with p(5,v) =1 for n—1
odd. Furthermore, it is easy to verify that if &« # 1 and # # 1 (or v # 1), then there
always exist some F;, F; € F; such that |F; N F;| < l. Therefore if n — [ is even, then there
exists the only maximal family and there are exactly n maximal families for n — [ is odd.

Note that for [ = 1 the above statements are not valid. It is not difficult to show [5] that
in this case for the number M of maximal families one has

as n — oQ.

log, M > O'5<LnT/L2J>’

Following a conjecture in [5], logy M ~ 0.5(@7%) as n — oo.
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