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Abstract

We present a specification of all maximum subsets of the n-cube Bn with re-
spect to a given diameter and show relations between this problem and the discrete
isoperimetric problem. As a corollary, for any number m, 1 ≤ m ≤ 2n, we specify an
m-element subset of Bn with minimal possible diameter. We also present a simple
proof for a theorem of Katona on intersecting families [4].

1 Introduction

Denote by Bn the n-dimensional unit cube with Hamming metric ρ(α, β), α, β ∈ Bn. For
a fixed integer d ∈ [0, n] consider the problem of constructing a maximum size subset
A ⊆ Bn such that ρ(α, β) ≤ d for any α, β ∈ A. We call such a subset A d-maximal. The
number d is called the diameter of A and denoted by D(A). Note that in continuous case
the ball of radius d/2 has maximum area among all plane figures of diameter d. One of
the d-maximal subsets of Bn is found in [1,2]. The main goal of this paper is to specify
all d-maximal subsets of Bn. Throughout the paper we assume d < n. Denote by Sn

r (α)
the ball of radius r centered in α ∈ Bn.

Theorem 1

(i) If d = 2t then Sn
t (α) is a d-maximal set for any α ∈ Bn;

(ii) If d = 2t + 1 then Sn
t (α)

⋃
Sn

t (β) is a d-maximal set for any α, β ∈ Bn such that
ρ(α, β) = 1.

For α = (α1, . . . , αn) ∈ Bn denote α = (α1, . . . , αn), the complementary vector of α.
Partition Bn into 2n−1 pairs (α, α) of complementary vectors and denote by Mn the
collection of all 2n−1−element subsets of Bn, obtained by choosing exactly one vector
from each pair (α, α).

∗This paper is a translation from Russian of the author’s article published in Problems of Information
Transmission, v. XXIII (1987), No 1, 106–109.
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Theorem 2

(i) If d < n − 1 then there are no d-maximal subsets other then the ones described in
Theorem 1;

(ii) If d = n− 1 then Mn is the collection of all d-maximal subsets.

2 Proofs of the Theorems

Let A ⊆ Bn. Denote

Gt(A) = {α ∈ Bn \ A | ρ(α, A) ≤ t},
A = {α ∈ Bn | α = β, β ∈ A}.

Lemma 1 D(A) ≤ d iff A
⋂

(A ∪Gn−d−1(A)) = ∅.

Proof.
Assume D(A) ≤ d and α ∈ A. Then Sn

n−d−1(α) ∩ A = ∅, because for β ∈ Sn
n−d−1(α) ∩ A

one has d + 1 ≤ ρ(α, β) ≤ D(A). Note that

A ∪Gn−d−1(A) =
⋃

α∈A

Sn
n−d−1(α),

which implies the necessity of the above condition.

To prove its sufficiency, assume A ∩ (A) ∪ Gn−d−1(A)) = ∅. If D(A) ≥ d + 1, then
there exist vectors α, β ∈ A such that ρ(α, β) ≥ d + 1. Therefore, β ∈ Sn

n−d−1(α) and
A ∩ (A

⋃
Gn−d−1(A)) 6= ∅. This contradiction completes the proof. 2

Corollary 1 If A ⊆ Bn is a d-maximal subset, then 2|A|+ |Gn−d−1(A)| ≤ 2n. 2

Denote by In
t (m) the problem that consists in finding an m-element subset A0 ⊆ Bn such

that |Gt(A0)| ≤ |Gt(A)| for any A ⊆ Bn, |A| = m. Denote g(m, n, t) = |Gt(A0)|. We show
that the function f(m, n, t) = 2m+g(m, n, t) in non-decreasing in m for fixed n, t. Indeed,
the inequality f(m,n, t) < f(m + 1, n, t) is equivalent to g(m, n, t) ≤ 1 + g(m + 1, n, t).
On the other hand, if C ⊆ Bn is a solution to In

t (m + 1) and α ∈ C, then g(m,n, t) ≤
|Gt(C \ α)| ≤ g(m + 1, n, t) + 1.

Proof of Theorem 1.

Assume d = 2t. It is known from [3] that Sn
t (α) is a solution to In

s (m0) for any s = 1, . . . , n,
where

m0 = |Sn
t (α)| =

t∑
i=0

(
n

i

)
.
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One has

2m0 + g(m0, n, n− d− 1) =
t∑

i=0

(
n

i

)
+

n−t−1∑
i=0

(
n

i

)
= 2n.

Let A be a d-maximal subset and |A| = m. By Corollary 1, 2m+ |Gn−d−1(A)| ≤ 2n, hence
2m+ g(m, n, n−d−1) ≤ 2n. Using the monotonicity of g and the equality D(Sn

t (α)) = d
one gets m = m0.

Now, assume d = 2t + 1. It is known from [3] that Sn
t (α) ∪ Sn

t (β) with ρ(α, β) = 1 is a
solution to In

s (m0) for any s = 1, . . . , n, where

m0 = |Sn
t (α) ∪ Sn

t (β)| =
t∑

i=0

(
n

i

)
+

(
n− 1

t

)
.

Taking into account the equality 2m0 + g(m0, n, n− d− 1) = 2n and using the arguments
above, one gets that if A is a d-maximal subset then |A| = m0, which completes the proof
of the Theorem. 2

Corollary 2 If A is a d-maximal subset, then A is a solution to In
n−d−1(|A|). 2

Lemma 2 Let d < n− 1 and A is a d-maximal subset. Then A is a solution to In
1 (|A|).

Proof.
It follows from the proof of Theorem 1, that |A|+ |A ∪Gn−d−1(A)| = 2n. Since A ∩ (A ∪
Gn−d−1(A)) = ∅ then

A = Bn \ (A ∪Gn−d−1(A)).

Therefore, |Gt(A)| = |Gn−d−1(A)| − |Gn−d−2(A)|.

Let d = 2t. One has

|A| =
t∑

i=0

(
n

i

)
,

Gn−d−1(A)| = 2n − 2|A| =
n−d−1∑

i=1

(
n

t + i

)
,

|Gn−d−2(A)| ≥
n−d−2∑

i=1

(
n

t + i

)
.

This implies |G1(A)| ≤
(

n
t+1

)
, i.e. A is a solution to In

1 (|A|).

The proof of Lemma in the case d = 2t + 1 < n− 1 is similar. 2

Proof of Theorem 2.

Let A ⊆ Bn be a d-maximal subset. Denote by In(m) the problem that consists in finding
an m-element subset A0 ⊆ Bn, such that |Γ(A0)| ≤ |Γ(A)| for any A ⊆ Bn, |A| = m,
where

Γ(A) = {α ∈ A | Sn
1 (α) 6∈ A}.
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Since G1(A) = Γ(Bn \A), the set of solutions to In(m) can be obtained from the one for
In
1 (2n −m) and vise versa. In particular, denoting C = Bn \A, we get by Lemma 2 that

C is a solution to In(2n − |A|).

Assume d = 2t < n− 1. Denote

m1 = |A| =
t∑

i=0

(
n

i

)
, m2 = |C| =

n−t−1∑
i=0

(
n

i

)
.

It is proved in [3] (Theorem 6.1), that Sn
n−t−1(α) is the only solution to In(m2) up to the

choice of α ∈ Bn. Hence, Sn
t (α) is the only solution to In

1 (m1). Therefore, A = Sn
t (α).

Assume d = 2t + 1 < n− 1. Denote

m3 = |A| =
t∑

i=0

(
n

i

)
+

(
n− 1

i

)
, m4 = |C| =

n−t−2∑
i=0

(
n

i

)
+

(
n− 1

t + 1

)
.

It is proved in [3] (Lemma 6.1) that there exists a coordinate xj, 1 ≤ j ≤ n, such that
C0(j) = Sn−1

n−t−2(α
′) and C1(j) = Sn−1

n−t−2(β
′), where C0(j) and C1(j) are the intersections

of the set C with the hyperplanes xj = 0 and xj = 1 respectively. Here α′ and β′ are
projections of resp. α and β to the correspondent hyperplanes. By Theorem 6.2 of [3],
we have ρ(α, β) ≤ 2. It is not difficult to show that if ρ(α, β) = 2, then D(A) > d. This
implies, ρ(α, β) = 1, i.e the vectors α, β differ in the j-th entry only. Furthermore,

C = Sn−1
n−t−2(α) ∪ Sn−1

n−t−2(β) = Sn
n−t−2(α) ∪ Sn

n−t−2(β).

Therefore A = Sn
t (α) ∪ Sn

t (β).

The proof in the case d = n− 1 follows from Lemma 1. 2

3 Applications of the Theorems

1. Consider the problem of constructing an m-element subset of Bn with minimal possible
diameter. Represent the integer m in the form

m =
k∑

i=0

(
n

i

)
+ δ, 0 < δ ≤

(
n

k + 1

)
.

Obviously, D(A) = n for any A ⊆ Bn, |A| ≥ 2n−1. If m ≤ 2n−1 and
(

n−1
k

)
< δ ≤

(
n

k+1

)
,

Theorem 1 implies D(A) ≥ 2k + 2 for any A ⊆ Bn, |A| = m. However, such a subset A

may be obtained by deleting arbitrary
∑k+1

i=0

(
n
t

)
−m vectors from a ball of radius k + 1.

The argument in the case m ≤ 2n−1 and 0 < δ <
(

n−1
k

)
is similar.

2. Consider arbitrary n-element set and let Fl be a family of it’s subsets such that
|Fi ∩ Fj| ≥ l > 1 for any Fi, Fj ∈ Fl, i 6= j. We call such a family, consisting of maximal
possible number of subsets, the maximal one. A complete specification of the maximal
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families with l > 1 can be found in [4]. A solution to this problem can also be deduced
Theorem 2.

For this note, that there is a natural correspondence between the vectors of the n-cube
Bn and the subsets of n-element set and the Hamming distance between two vertices of
the n-cube is equal to the size of the symmetric difference of the corresponding subsets.

If Fi, Fj ∈ Fl, then |Fi∆Fj| = |Fi ∪ Fj| − |Fi ∩ Fj| ≤ n− l. Therefore, if n− l = 2t then
D(Fl) ≤ 2t and, by Theorem 1,

|Fl| ≤
t∑

i=0

(
n

i

)
= m0.

On the other hand, the ball Sn
t (1), where 1 = (1, . . . , 1) ∈ Bn, corresponds to some family

Fl. Hence, the size of any maximal family equals m0. Similarly, if n− l = 2t + 1 is odd,
then one can easily show that the diameter of any maximal family Fl is equal to n − l.
Therefore, any maximal family corresponds to some (n− l)-maximal subset, i.e. for some
α, β, γ ∈ Bn Fl = Sn

t (α) for n− l even and Fl = Sn
t (β)∪ Sn

t (γ) with ρ(β, γ) = 1 for n− l
odd. Furthermore, it is easy to verify that if α 6= 1 and β 6= 1 (or γ 6= 1), then there
always exist some Fi, Fj ∈ Fl such that |Fi∩Fj| < l. Therefore if n− l is even, then there
exists the only maximal family and there are exactly n maximal families for n− l is odd.

Note that for l = 1 the above statements are not valid. It is not difficult to show [5] that
in this case for the number M of maximal families one has

log2 M ≥ 0.5

(
n

bn/2c

)
, as n →∞.

Following a conjecture in [5], log2 M ∼ 0.5
(

n
bn/2c

)
as n →∞.
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