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Extended abstract

We present here a description of all solutions of the isoperimetric problem in
Hamming space of some special cardinalities. The number of these cardinali-
ties equals 2n−1.

Let Bn denotes the vertex set of the n−dimensional unit cube with Hamming metric
and A ⊆ Bn. Denote by Sn

k (α) the sphere of radius k centered in α ∈ Bn. We call a
point α ∈ A the inner point of a set A if Sn

1 (α) ⊆ A and the boundary point of A in the
opposite case. Denote by P (A)Γ(A) the collection of all inner (boundary) points of A.

Consider an isoperimetric problem to find for a fixed m, 1 ≤ m ≤ 2n, an m-element
set A ⊆ Bn, such that |Γ(A)| ≤ |Γ(B)| for any B ⊆ Bn, |B| = m. We call such a set A
the optimal one. In [2] it is shown that the set L(n, m) is a solution of the isoperimetric
problem. L(n,m) is defined as the initial segment of length m of the following order
of vertices of Bn. We say that a vertex α ∈ Bn precedes β ∈ Bn iff ‖α‖ ≤ ‖β‖, or if
‖α‖ = ‖β‖ then α is greater β in the lexicographical order, where ‖α‖ is the coordinate
sum of α.

For A ⊆ Bn we call a point α ⊆ A the free point of A if P (A) = P (A\α) and denote
by S(A) the collection of them. If S(A) = ∅, then a set A is called critical.

Lemma 1 Let A is an optimal noncritical set and α is it’s free point. Then the set A\α
is optimal either and S(A\α) = S(A)\α.

Corollary 1 |S(A)| ≤ |S(L(n, |A|)|.

Corollary 2 L(n, m) is a critical set then any optimal m-element subset of Bn is critical
too.

We call a number m critical cardinality if L(n,m) is a critical set.
Let m and n be fixed and m∗ be the greatest critical cardinality less or equal to m.

It follows from Lemma 1 that if A is an optimal critical r-element subset, m∗ ≤ r ≤ m,
then adding to it arbitrary m − r points from Bn\A we get an optimal m-element set.
Therefore the description of all optimal subset of Bn is reduced to the description of all
critical optimal sets only.

A specification of all optimal subsets meets a lot of difficulties. For example it turned
out that in some cases the set P (A) may be unconnected. Indeed, if there exists an integer
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solution of equation Γ(n, x)+Γ(n, m−x) = Γ(n, m) (Γ(n, m) = |Γ(A)| for an optimal m-
element set A ⊆ Bn)), then the set A = B∪C for B = L(n, m−x), C = Bn\L(n, 2n−x)
is optimal. Moreover, since B ∩ C = ∅ then at least for m ≤ 2n−1 there is a wide
freedom for embedding of these parts into Bn. However, if we choose optimal sets with
another structure as B and C then it is not clear whether it is possible to embed them
together in Bn with empty intersection. Similar situation occurs when A may be divided
to t ≥ 2 nonintersecting pieces. A necessary condition of such division is the existence of
integer solutions of equation Γ(n, x1)+Γ(n, x2)+ · · ·+Γ(n, xt) = Γ(n, m) under condition
x1 + · · ·+ xt = m.

There are examples of m-element optimal sets which are either unconnected or con-
nected for the same m, and at the last case their structure is not similar to the structure
of L(n,m) in the sense that they cannot be obtained from L(n,m) by means of isometric
transformations of Bn.

This paper is devoted to the specification of the family of optimal subsets of critical
cardinalities.

Let us split the n-cube by the i-th coordinate xi into two (n − 1)-cubes and denote
by A0(i) and A1(i) the parts of a set A ⊆ Bn in these subcubes. We say that A is i-
normalized if |A0(i)| ≥ |A1(i)|. A set which is i-normalized for i = 1, ..., n is called simply
normalized. Denote by K(n, m) the collection of all m-element optimal subsets of critical
cardinality m and by K(n, m) the collection of all normalized subsets in K(n, m). It is
clear that each subset A ∈ K(n, m)\K(n, m) may be transformed to some B ∈ K(n, m)
by ”shifting” it coordinatewise modulo 2 on some binary vector γ. The i-th coordinate
of γ equals 0 iff A is i-normalized and 1 otherwise.

Lemma 2 |K(n,m)| ≤ 2n · |K(n,m)|.

Let us assume that the number m is represented in the form m =
∑k

i=0

(
n
i

)
+ δ

with 0 ≤ δ <
(

n
k+1

)
. We call a coordinate xi minimal coordinate of a set A ⊆ Bn if

‖A0(i)| − |A1(i)‖ ≤ ‖A0(j)| − |A1(j)‖ for any j = 1, ..., n. The following lemma is proved
in [1].

Lemma 3 Let A ∈ K(n, m) and xi be it’s minimal coordinate. Then A0(i) and A1(i) are
optimal subsets (in n− 1 dimensions) of critical cardinalities and

|A0(i)| =
k∑

i=0

(
n− 1

i

)
+

(
δ 	

(
n− 1

k

))
, |A1(i)| =

k∑
i=0

(
n− 1

i

)
−
((

n− 1

k

)
	 δ

)
,

where a	 b equals a− b if a ≥ b and 0 otherwise.

Our approach for the specification of all subsets of K(n,m) is in the following. We
introduce the concept of a division process of a set A ∈ K(n,m). It consists of some steps
and defines by induction on the number of step. On the first step we divide the set A by
it’s arbitrary minimal coordinate xi1 . It follows from Lemma 3 that the set A0(i1) (when

δ <
(

n−1
k

)
), or the set A1(i1) (when δ ≥

(
n−1

k

)
) is a sphere. The structure of the other set

(A1(i1) (resp. A0(i1)) is unclear yet. We call this set unknown. Assume that after l − 1

2



(l ≥ 2) steps we have the only unknown set in some (n− l + 1)-subcube and all the other
parts of A in such subcubes are spheres. Then on the l-th step of our process we split
Bn into (n − l)-subcubes by arbitrary minimal coordinate xil of the unknown set. From
Lemma 3 it follows again, that we obtain no more than one unknown set in such a way
and the other parts of A in the corresponding (n− l)-subcubes are spheres. We call them
l-spheres. The process terminates on the t-th step if the unknown set is a sphere.

Lemma 4 Let A ∈ K(n,m). Then
(i) There exist numbers l1, m1, l2, m2, ..., lr, mr (0 < l1 ≤ m1 < l2 ≤ m2, ..., < lr ≤

mr), such that δ may be uniquely represented in the following canonical form

δ =

(
n− l1

k − l1 + 1

)
+

(
n− l1 − 1

k − l1 + 1

)
+ · · ·+

(
n−m1

k − l1 + 1

)
+

(
n− l2

k − l1 − l2 + m1 + 2

)
+ · · ·+

(
n−m1

k − l1 − l2 + m1 + 2

)
+

(
n− lr

k −∑r
i=1 li +

∑r−1
i=1 mi + r

)
+ · · ·+

(
n−mr

k −∑r
i=1 li +

∑r−1
i=1 mi + r

)
;

(ii) The number of steps in the splitting process equals mr.

We call a sequence I of coordinates xi1 , ..., xim admissible (here m = mr) for a set
A ∈ K(n,m) if there exists a splitting process, such that on the j-th step of it we split
Bn by the coordinate xj, for j = 1, ...,mr. Denote the collection of admissible sequences
for A by I(A) and for I ∈ I(A) let Ut(A, I) be the unknown set obtained after t steps
of the splitting process. Consider the class L(n, m) of subset A ∈ K(n, m), such that for
all t = 1, ...,mr the set Ut(A, I) is normalized (in (n− t) dimensions) for some I ∈ I(A).
Denote by ϕ(A) the set obtained from A by a permutation ϕ of coordinates of Bn.

Lemma 5
(i) If A ∈ L(n,m), then A = ϕ(L(n,m)) for some permutation ϕ;
(ii) |L(n, m)| = n!

(l1−1)!·(m1−l1+1)!···(lr−mr−1)!·(mr−lr+1)!·(n−mr)!
.

It turned out that that all the mr-spheres (maybe except of Umr(A, I)) of A ∈ K(n, m)
are centered at the origins of the corresponding (n−mr)-subcubes. The center α of the
sphere Umr(A, I)) is either at the origin of the corresponding subcube (point β) or at some
point γ of norm 1 (in this subcube). Notice, that if α = β then A ∈ L(n,m). Denote by
L(A) ∈ L(n, m) a set for which there exists a splitting process with the same sequence,
i.e. I(A) ∩ I(L(A)) 6= ∅. Then A may be obtained from L(A) by some transposition of
the mr-spheres and maybe by replacing the center α of the sphere Umr(A, I)) to a point
γ. Therefore, the specification of all the subsets from K(n, m)\L(n, m) may be reduced
to specification of such transformations.

Let γ ∈ Bn. Denote by C(γ, 1) the (n − ‖γ‖)-subcube of Bn including the points γ
and 1 = (1, ..., 1). We call two mr-spheres S1 and S2 i-neighboring if the origins of the
corresponding (n − mr)-subcubes differ in the i-th entry only. Therefore for fixed i the
set of mr-spheres is divided into pairs of i-neighboring spheres. Define the transformation

3



R(α, xi)A of a set A ∈ K(n, m), which is in the following (here I = {xi1 , ..., xim ∈ I(A)
and m = mr):

1). If ‖α‖ < mr and xi ∈ I, then consider all the pairs of i-neighboring spheres, which
are included into subcube C(α, 1). Let (S1, S2) be such a pair and these spheres are in
(n − mr)-subcubes D1 and D2 respectively. Then replace S1 to S2 in subcube D1 and
replace S2 to S1 in D2. Proceed analogously for all other pairs of i-neighboring spheres;

2). If ‖α‖ = mr and xi 6∈ I, then invert the i-th entry of all points of the set Umr(A, I);
3). Otherwise the transformation is undefined.

We say that points α1, ..., αq and coordinates x1, ..., xq of Bn satisfy the condition W if
1). 1 ≤ ‖α1‖ < ‖α2‖ < · · · < ‖αq‖ ≤ mr;
2). C(α1, 1) ⊇ C(α2, 1) ⊇ · · · ⊇ C(αq, 1);
3). {x1, ..., xq} ⊆ I if ‖αq‖ < mr and {x1, ..., xq−1} ⊆ I, xq 6∈ I if ‖αq‖ = mr.

Theorem 1 For any A ∈ K(n, m)\L(n, m) there exist points γ1, ..., γp and coordinates
y1, ..., yp, satisfying the condition W , such that

A = R(γp, yp)R(γp−1, yp−1)...R(γ1, y1)B

for some B ∈ L(n,m).

Now we are going to show a way how to determine the points γ1, ..., γp and coordinates
y1, ..., yp for a set A ∈ K(n, m)\L(n, m). Notice that if a set Umr(A, I) is not i-normalized
then such coordinate xi is unique and is the minimal coordinate for it. Denote by N(A, I)
the collection of all indices a1, ..., at, such that Uai

(A, I) is not normalized, and let N(A) =
∩i∈IN(A, I).

Theorem 2 For any set A ∈ K(n,m)\L(n,m) there exists a sequence IA = {xi1 , ..., xim}
(with m = mr), such that

(i) N(A, IA) = N(A) = {a1, ..., at};
(ii) the set Uaj

(A, IA), 1 ≤ j ≤ t, is not aj-normalized, and if aj < mr, then aj = xij+1

holds.

Consider now a sequence IA = {xi1 , ..., xim} (with m = mr), and the set N(A) =
{j1, ..., jr}. Assume j1 < j2 < · · · < jr. Consider vector κ = (κ1, ..., κn) ∈ Bn, such that
κl = 0 iff l 6∈ {i1, ..., im} (m = mr), or if l = is for some s, 1 ≤ s ≤ mr, and in the
canonical representation of δ there is a binomial coefficient of the form for some c. Then
the i-th entry of γq, q = 1, ..., t, equals κi if i < jq and 0 otherwise.
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