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Abstract

We present embeddings of generalized ladders as subgraphs into the hypercube. By
embedding caterpillars into ladders, we obtain embeddings of caterpillars into the
hypercube. In this way we obtain almost all known results concerning the embed-
dings of caterpillars into the hypercube. In addition we construct embeddings for
some new types of caterpillars.
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1 Introduction

Embedding of graphs is an important and well-studied theory in parallel com-
puting. Much research has been devoted to finding “good” embeddings of
one processor network into another. See [18] for an overview on embeddings.
We study embeddings of ladders and caterpillars into the hypercube. Before
stating the known results on this topic we give the formal definition of an
embedding. All the graph-theoretical concepts which are not defined here can
be found in any introductory book on graph theory (e.g. [7]).
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gorithmen, Entwurfsmethoden, Anwendungen” and the EC ESPRIT Long Term
Research Project 20244 (ALCOM-IT).
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Definition 1 The embedding of a guest graph G = (V,E) into a host graph
H = (V ′, E ′) is defined by an injective function f : V 7→ V ′. If (u, v) ∈ E,
then we call the distance between f(u) and f(v) in H the dilation of the edge
(u, v). The maximal dilation over all edges of G is called the dilation of the
embedding f . The expansion of the embedding is the ratio |V ′|/|V |.

Embedding G into H with minimal dilation and expansion is important for
network design and for the simulation of one computer architecture by another.
The problem of verifying whether G is embeddable into H with dilation d is
NP-complete for general graphs [5]. It remains NP-complete when the guest
graph G is a tree and H is a hypercube [19].

Definition 2 Denote by Qn the n-dimensional hypercube. The vertex set of
this graph is the collection of all binary strings of length n. Two vertices of
Qn are adjacent iff the corresponding strings differ in exactly one entry.

Let G be a graph with m vertices. The hypercube of dimension dlog2(m)e is
called its optimal hypercube, and one of dimension dlog2(m)e+ 1 is called the
next-to-optimal.

In [2] trees of degree bounded with a constant and their embeddings into
the hypercube are considered. It is shown that there exist embeddings with
dilation also bounded with a constant. A conjecture of Havel [12] claims that
trees of maximal degree 3 with 2n vertices can be embedded into their optimal
hypercubes with dilation at most 2. In [17] two embeddings of trees of degree
3 are constructed, one with dilation 5 into the optimal hypercube and one
with dilation 3 and constant expansion.

Definition 3 A bipartite graph is called balanced, if there is a vertex two-
coloring, where the two color sets have the same number of vertices.

Since a hypercube itself is balanced, then each of its spanning subgraphs has
to be balanced. Another conjecture of Havel [11] states that any balanced tree
of degree 3 is a subgraph of its optimal hypercube.

The results above show that the embedding of trees into Qn is a difficult
problem which is far from being completely solved. One possible direction of
research is to consider some special classes of trees, e.g. caterpillars.

Definition 4 A caterpillar C is a tree of maximal degree 3 where there exists
a path B (called the backbone of C) so that, after deleting all edges of B, C
consists of a set of paths. These paths are called the legs of C.

Caterpillars and their embeddings were investigated in a number of papers,
the results of which show that embedding problems are nontrivial even in this
case. In [6,16] the authors studied the complexity aspects of the problem of
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Fig. 1. A ladder with 4 rungs consisting of 4, 2, 4 and 6 vertices

determining the minimal dilation of embedding a caterpillar into a path, and
proved its NP-completeness. In the case of the hypercube, the embedding of
caterpillars is relatively well-studied. Following the conjecture of Havel [11],
each balanced caterpillar is embeddable with dilation 1 (i.e. as a subgraph)
into its optimal hypercube. There is a number of papers devoted to the proof
of this conjecture for particular types of caterpillars (see [11–14]), but the
general case remains open.

In Section 2 we introduce (generalized) ladders and show that each such lad-
der is a subgraph of its optimal hypercube. This result is used in Section 3
for embedding caterpillars. It turned out that most types of caterpillars previ-
ously considered in relevant literature are subgraphs of the generalized ladders.
Thus, the approach to embedding based on ladders implies many known re-
sults on embeddings of caterpillars and also provides embeddings for many
new types of caterpillars. Section 4 concludes the paper. There we show that
two copies of any caterpillar C form a subgraph of the next-to-optimal (with
respect to C) hypercube and consider generalized caterpillars.

2 Ladders and their embedding

Definition 5 Consider two paths [a1, ..., ak] and [b1, ..., bk] and join each pair
of vertices ai, bi, i = 1, ..., k, with a new path. The resulting graph is called a
ladder, and the paths between ai, bi are called its rungs (cf Fig. 1).

Throughout this paper we assume that each rung of the ladder consists of an
even number of vertices, so that each of its cycles has even length. This is, of
course, necessary for showing that a ladder is a subgraph of the hypercube.

Theorem 6 Any ladder is a subgraph of its optimal hypercube.

PROOF. Let L be a ladder with k rungs r1, ..., rk and n be the dimension of
its optimal hypercube. It is sufficient to consider the case |V (L)| = 2n. Indeed,
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Fig. 2. Cases 1 and 2 of the proof of Theorem 1

if |V (L)| < 2n, we add to L one more rung with 2n−|V (L)| vertices and get a
ladder L̃. Now the validity of Theorem 6 for L̃ would imply its validity for L.

Since Qn is a hamiltonian graph, we assume without loss of generality that
k > 1. Denote by ai, bi (i = 1, ..., k) the terminal vertices of the rung ri with
ai adjacent to ai+1 and bi adjacent to bi+1 for i = 1, ..., k − 1 (cf. Fig. 1).

We proceed by induction on n, assuming that for any ñ < n and any ladder
L̃ with k̃ ≥ 1 rungs and 2ñ vertices there exists an embedding φ̃ of L̃ into Qñ

with dilation 1 so that (φ̃(a1), φ̃(b1)), (φ̃(ak̃), φ̃(bk̃)) ∈ E(Qñ).

For n = 2 the validity of the inductive hypothesis is easily verified, so let
n ≥ 3. Denote by mi the number of vertices in the rung ri, i = 1, ..., k.

Case 1 Let
∑j

i=1mi = 2n−1 for some j, 1 < j < k.

We split L into two ladders L′ and L′′ with 2n−1 vertices each. The ladder L′

consists of the first j rungs of L and L′′ consists of the remaining k − j rungs
(cf. Fig. 2a).

Now partition Qn into two hypercubes Q′ and Q′′ of dimension n− 1. Embed
L′ as a subgraph into Q′ and embed L′′ as a subgraph into Q′′ by induction.
Let x′, y′ ∈ V (Q′) be the images of aj, bj and let x′′, y′′ ∈ V (Q′′) be the images
of aj+1, bj+1 in the corresponding embeddings respectively.

Denote by u, v the vertices of Q′′ such that (x′, u) and (y′, v) are edges of Qn.
Since (x′, y′), (u, v) ∈ E(Qn), there exists an automorphism ψ of Q′′ so that
ψ(x′′) = u and ψ(y′′) = v. In other words, there exists an embedding of L′′ as
a subgraph into Q′′ so that x′′ = u and y′′ = v. Adding the edges (x′, u) and
(y′, v), we get an embedding φ of the whole ladder L as a subgraph into Qn,
for which (φ(a1), φ(b1)), (φ(ak), φ(bk)) ∈ E(Qn) holds.

Case 2 Let mk > 2n−1.

There exist edges (a, b) and (ak, a
′) in rk so that the rung rk may be cut into

three paths: r′1 = [bk, b], r
′
2 = {ak} and r′′ = [a, a′] with mk − 2n−1 − 1, 1
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Fig. 3. Case 4 of the proof of Theorem 1

and 2n−1 vertices respectively (if mk = 2n−1 + 2 then b = bk). By adding the
edge (ak, b) the ladder L′, consisting of the rungs r1, ..., rk−1, r

′
1∪ r′2, is formed.

Denote by L′′ the ladder, consisting of the single rung r′′ (see Fig. 2b). As in
Case 1, the ladders L′ and L′′ are embedded into the hypercubes Q′ and Q′′

of dimension n− 1 by induction. Then, the embedding of L′′ is changed by an
automorphism of Q′′ so that the images of ak and a′ and those of b and a in
the resulting embedding are adjacent in Qn.

Case 3 Let m1 > 2n−1.

In this case we proceed in a similar fashion as in Case 2.

Case 4 Let
∑j

i=1mi+δ = 2n−1 for some j, 1 < j < k−1 and δ, 0 < δ < mj+1.

Note that δ is even and consider the rung rj+1 of L. By cutting an appropriate
edge (a, b) of rj+1, split it into two paths r′ = [b, bj+1] and r′′ = [aj+1, a] with
δ and mj+1 − δ vertices respectively (see Fig. 3). Denote by L′ the ladder
formed by the rungs r1, ..., rj, r

′ and the edge (aj, b) and denote by L′′ the
ladder formed by the rungs r′′, rj+2, ..., rk and the edge (a, bj+2). The ladders
L′, L′′ are shown by bold lines in Fig. 3 and have 2n−1 vertices each.

Now, once more partition Qn into two hypercubes Q′ and Q′′ of dimension
n− 1. Embed L′ as a subgraph into Q′ and embed L′′ as a subgraph into Q′′

by induction. Let x′, y′, z′ ∈ V (Q′) be the images of aj, b, bj+1 respectively in
the embedding of L′ and let x′′, y′′, z′′ ∈ V (Q′′) be the images of aj+1, a, bj+2

respectively in the embedding of L′′.

Denote by u, v, w the vertices of Q′′ with (x′, u), (y′, v), (z′, w) ∈ E(Qn). By
inductive hypothesis the vertices x′, y′, z′ and x′′, y′′, z′′ form paths of length 2
in Q′ and Q′′ respectively. Since the vertices u, v, w also form a path of length 2
in Q′′, there exists an automorphism ψ of Q′′ so that ψ(x′′) = u, ψ(y′′) = v and
ψ(z′′) = w. In other words, there exists an embedding of L′′ as a subgraph
into Q′′ so that x′′ = u, y′′ = v, and z′′ = w. By adding the edges (x′, u),
(y′, v) and (z′, w) we obtain an embedding φ of the whole ladder L into Qn as
a subgraph, completing the induction. 2
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Fig. 4. Embedding some caterpillars into ladders

3 Application of ladders for embedding caterpillars

We recall the conjecture of Havel [11] that each balanced tree with maximal
degree at most 3 and 2n vertices is a subgraph of Qn.

This conjecture still remains open, whereas for certain types of caterpillars it
is known to be true. In particular it is proved for caterpillars with all legs of
length 0 or 1 [14] and for caterpillars with lengths of all legs of the same parity
[13]. In [12], one more class of caterpillars is introduced and some partial results
are obtained. Here, we show that embedding of almost all types of caterpillars
listed above can easily be obtained by embedding them into ladders and then
using Theorem 1. Furthermore, we solve a problem stated in [12] and present
a wide class of caterpillars embeddable as subgraphs into Qn.

Corollary 7 Let C be a caterpillar, each leg of which has an even number of
vertices. Then C is a subgraph of its optimal hypercube.

PROOF. Join by edges the second ends of the legs, which are vertices of
degree 1 (cf. Fig. 4a). We get a ladder and apply Theorem 6. 2

In [12] the following family {Am} of caterpillars is considered (see Fig. 5). The
caterpillar Am has m legs with 1, 2, ...,m vertices. The paper [12] provides a
nice way for embedding such caterpillars into the optimal hypercube, which
works only when m is of the form m = 2p − 1 for some p. In general, however,
(e.g. for m = 5) the caterpillar Am is not a subgraph of its optimal hyper-
cube. The next theorem determines the minimal dimension of the hypercube
containing Am as a subgraph, which answers the corresponding question in
[12].

Proposition 8 Am is a subgraph of Qn with n =
⌈
log2

(
m(m+1)

2
+ dm

2
e
)⌉

, and
this n is the minimal possible.
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Fig. 5. The family Am of caterpillars

PROOF. Denote by n the minimal dimension of the hypercube, containing
Am as a subgraph. Let us add one extra vertex to each leg of Am with an
odd number of vertices and thus get a caterpillar C with an even number
of vertices in each leg, which one can embed into its optimal hypercube by
Corollary 7. The only problem is that we may have added too many vertices
and this made C a subgraph of Qn′

with n′ > n. In the following, we show
that n′ = n.

For this, we consider a 2-coloring of A2k, where the color classes are always of
size k2 and k2+k. The difference between these two numbers is k, which equals
the number of the odd legs of A2k. Thus, if we embed A2k into the hypercube
Qn of minimal dimension, at least k vertices of Qn are free, because the color
classes of Qn in any 2-coloring are of size 2n−1. Thus, the dimension of the
optimal hypercube for the extended caterpillar C is n.

Similarly for A2k+1 the color classes are of size k2+k and (k+1)2. The difference
between these numbers again equals the number of odd legs of A2k+1.

Therefore, if Am is a subgraph of Qn, then n ≥ dlog2(|V (C)|)e. On the other
hand, Am is a subgraph of C and C is a subgraph of its optimal hypercube. 2

Now, we present a new type of caterpillars which are subgraphs of their optimal
hypercubes. Note that the backbone of a caterpillar is not determined uniquely.
It is easily shown that if a caterpillar is balanced, one can always find a
backbone consisting of an even number of vertices. We denote this number
by 2b and denote the vertices of the backbone by v1, v2, ..., v2b, assuming that
they are labeled consecutively from one of the caterpillar’s ends to the other.
Let li be the number of vertices in the leg incident with the vertex vi (counted
together with the vertex in the backbone) and let wi be the other endpoint of
this leg, i = 1, ..., 2b.

Theorem 9 Let C be a balanced caterpillar so that li + l2b−i+1 is even for
i = 1, 2, ..., b. Then C is a subgraph of its optimal hypercube.

7



PROOF. Denote the endpoints of the backbone by a, b. Then there exist
adjacent vertices c, d in the backbone (assume c is between a and d) so that
the paths a, c and d, b are of the same length, i.e. (c, d) is the central edge of
the backbone (see Fig. 4b). Adding to C the edges of the form (wi, w2b−i+1),
we transform C into a ladder. Now the theorem follows from Theorem 6. 2

This theorem works for many caterpillars, in particular for the one considered
in [13]:

Corollary 10 Let C be a balanced caterpillar, each leg of which has an odd
number of vertices. Then C is a subgraph of its optimal hypercube.

PROOF. Clearly, the number of vertices in the backbone of C has to be even
and the assertion follows from Theorem 9. 2

4 Conclusion

Clearly, if a ladder is a subgraph of the hypercube then the number of vertices
in each its rung is of the same parity (otherwise the ladder contains a cycle
of an odd length). It is interesting to mention that the balanced ladder with
32 vertices, which has rungs consisting of 3, 3, 3, 3, 3, 3, 3, 3, 5, 3 vertices
(counted from one end of the ladder to the other) is not a subgraph of Q5 [3].

Concerning the caterpillars, if a caterpillar C is a subgraph of its optimal
hypercube Qn, then, obviously, two copies of C form a subgraph of Qn+1. The
next proposition may be considered as a support of Havel’s conjecture [11] on
caterpillars. We embed two copies of C into the next-to-optimal hypercube
without embedding C into its optimal hypercube.

Proposition 11 Let C be an arbitrary caterpillar. Then:

a. One can embed 2 copies of C into a hypercube which is the next-to-optimal
with respect to C with dilation 1;

b. C is a subgraph of its next-to-optimal hypercube.

PROOF. To prove the first assertion, form a ladder from the two copies of C,
placing them symmetrically and joining by edges the ends of the corresponding
legs (which are vertices of degree 1). The rungs of such a ladder always consist
of an even number of vertices. The second assertion follows from the first
one. 2
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Note that Proposition 11a holds for the balanced caterpillars as well as for
non-balanced ones. Moreover, if a caterpillar is not balanced, it cannot be
a subgraph of its optimal hypercube in general. Thus, the upper bound in
Proposition 11b cannot be improved.

Proposition 12 (see [4]). Any caterpillar is embeddable into its optimal hy-
percube with dilation 2.

This result can be also considered as a support to the conjecture of Havel [12]
concerning embedding of binary trees into their optimal hypercube.

Definition 13 A caterpillar of order k (k ≥ 1) is a tree of maximal degree
k+2, such that all the vertices of degree 3 and greater belong to a single path.

Only few results are known about caterpillars of higher orders k ≥ 2. These
include the results of [4,8,9] concerning embedding of a particular type of
caterpillars of orders 2 and 3. In [10,15] it is shown by various methods that
the number of caterpillars with p vertices (p ≥ 5) equals 2p−4 + 2b(p−4)/2c.

In [1] we present another approach to embedding of ladders and caterpillars
which works, in particular, for more types of caterpillars of order 1. It is
interesting that for caterpillars of order 2 similar propositions hold:

Theorem 14 (see [1]). Let C be a caterpillar of order 2. Then:

a. C is a subgraph of its next-to-optimal hypercube.
b. C is embeddable into its optimal hypercube with dilation 2.

However, the upper bound in Theorem 14a is attainable on non-balanced
caterpillars and on some balanced ones as well. The caterpillar shown in Fig. 6
is balanced, has 16 vertices, but is not a subgraph of Q4. The number of
vertices at distance 2 from the vertex x is 7, whereas it has to be at most 6
in a subgraph of Q4. Finally, Theorem 14b implies, in particular, Proposition
12.
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