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Abstract

If P is an upper semilattice whose Hasse diagram is a tree and whose cartesian
powers are Macaulay, it is shown that Hasse diagram of P is actually a spider in
which all the legs have the same length.

1 Introduction

Let (P,⊆) be a finite poset. For x, y ∈ P we write x ⊂· y if x ⊂ y and there is no
z ∈ P yielding x ⊂ z ⊂ y. The poset (P,⊆) is called ranked if there exists a function
rP : P 7→ IN such that min

x∈P
rP (x) = 0 and for any x, y ∈ P the condition x ⊂· y implies

rP (x) + 1 = rP (y). We call the numbers rP (x) and rP = max
x∈P

rP (x) the rank of x and P

respectively. The set
Pi = {x ∈ P | rP (x) = i}

is called the ith level of P . For a subset A ⊆ Pi and i > 0 define the shadow of A as

∆(A) = {x ∈ Pi−1 | x ⊂· y for some y ∈ A}.

The the shadow minimization problem plays an important role in combinatorics and is
often in the background of various extremal problems: for a given poset (P,⊆) and given
natural numbers i > 0 and m, 1 ≤ m ≤ |Pi|, find a subset A ⊆ Pi such that |A| = m
and |∆(A)| ≤ |∆(B)| for any B ⊆ Pi with |B| = m. We are interested in the case when
the shadow minimization problem has a nested structure of solutions , which leads to the
notion of a Macaulay poset .

Let � be a total order on P . For z ∈ Pi denote

Fi(z) = {x ∈ Pi | x � z}.
∗Supported by the EC ESPRIT Long Term Research Project 200244 (ALCOM-IT)
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We call a subset A ⊆ Pi initial segment if A = Fi(z) for some z ∈ Pi. A poset (P,⊆)
is called Macaulay, if there exists a total order � (called Macaulay order), such that the
following properties hold:

N1 (nestedness) : For any z ∈ |Pi|, and any i > 0 the initial segment Fi(z) has minimal
shadow among all subsets of Pi of the same cardinality;

N2 (continuity) : For i > 0 it holds: ∆(Fi(z)) = Fi−1(z
′) for some z′ ∈ Pi−1.

We concentrate our attention on posets which are factorable by using the cartesian product
operation. The cartesian product of two posets (P,⊆P ) and (Q,⊆Q) is a poset with the
element set P ×Q and the partial order ⊆× defined as follows. We say (x′, y′) ⊆× (x′′, y′′)
iff x′ ⊆P x′′ and y′ ⊆Q y′′. Clearly, if P and Q are ranked posets, then P × Q is a
ranked poset as well, where rP×Q(x, y) = rP (x) + rQ(y). Since the cartesian product is
an associative operation, the product of more than two posets is well defined. We denote
by (P n,⊆×) the nth cartesian power of a poset (P,⊆).

The shadow minimization problem for cartesian powers of various posets was considered
in a number of papers. We refer to the book [4] for an excellent overview on the subject.
Presently, just for the posets shown in Fig. 1a-c it is known that any of their cartesian
powers is a Macaulay poset (cf. [5, 6], [3] and [1, 7, 8, 9] respectively).
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Figure 1: The basic posets

These cartesian powers of the posets shown in Fig. 1a-c are classical posets in combi-
natorics and are known as the Boolean poset , the lattice of multisets , and the star poset
respectively. Evidently, all these posets have something in common, namely, their Hasse
diagrams are trees. They are also upper-semilattices . In any poset (P,⊆), for a, b ∈ P ,
supP (a, b) denotes an element c ∈ P (if it exists) such that a ≺ c, b ≺ c and c ≺ d if a ≺ d
and b ≺ d. A poset (P,⊆) is an upper-semilattice if for any a, b ∈ P , supP (a, b) exists and
is unique.
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Denote by P the class of upper semilattices P whose Hasse diagrams are trees. In this
paper we will show that if P ∈ P and P n is Macaulay for some integer n ≥ rP + 3,
then the Hasse diagram of P is a regular spider with all legs having the same length (cf.
Fig. 1d). In [2] we will prove that if the Hasse diagram of P is a regular spider, then its
products P n, n = 1, 2, . . . are Macaulay.

2 Some properties of Macaulay posets

Let (P,⊆) be a Macaulay poset, A ⊆ Pi with |A| = m. For 2 ≤ l ≤ i− 1 denote

∆l(A) = ∆ (∆l−1(A)) , with ∆1(A) = ∆(A).

Thus, ∆l(A) ⊆ Pi−l. The following lemma can be easily proved by induction on l.

Lemma 1 (cf. [1, 4]) Let (P,⊆) be a Macaulay poset. Then for any z ∈ Pi it holds:
|∆l(Fi(z))| ≤ |∆l(A)| for any A ⊆ Pi with |A| = |Fi(z)|. Moreover, ∆l(Fi(z)) = Fi−l(z

′)
for some z′ ∈ Pi−l.

Now, assuming i < rP , we introduce the upper shadow of the set A ⊆ Pi defined by

∇(A) = {x ∈ Pi+1 | ∃y ∈ A with y ⊂· x}.

For a total order � and z ∈ Pi denote Li(z) = {x ∈ Pi | z � x} and call such a set final
segment .

Lemma 2 (cf. [1, 4]) Let (P,⊆) be a Macaulay poset. Then for any z ∈ Pi it holds:
|∇(Li(z))| ≤ |∇(A)| for any A ⊆ Pi with |A| = |Li(z)|. Moreover, ∇(Li(z)) = Li+1(z

′)
for some z′ ∈ Pi+1.

3 Macaulay posets and the class P

Throughout this section we denote the elements of P by Greek letters and represent the
elements of P n by n-dimensional vectors denoted by bold Latin letters.

Denote by Q(k, l) ∈ P the poset, whose Hasse diagram is obtained from k disjoint chains
of length l each by identifying their top vertices. The graph of the Hasse diagram of
Q(k, l) is a spider with k legs consisting of l vertices each. The example of Q(3, 3) is
shown in Fig. 1d.

The main result of the paper is the following theorem.

Theorem 1 Suppose for some poset (P,⊆) ∈ P that (P n,⊆×) is Macaulay for some
integer n ≥ rP + 3. Then (P,⊆) = Q(k, l) for some k ≥ 1 and l ≥ 1.

3



In order to prove this theorem we need some auxiliary propositions. For α, β ∈ P with
α ⊆ β introduce the intervals

I(α, β) = {γ ∈ P | α ⊆ γ ⊆ β},
I(β) = {γ ∈ P | γ ⊆ β},
Ii(β) = I(β) ∩ Pi.

Denote by UP the universal upper bound of a poset (P,⊆) ∈ P , i.e. the element of P ,
such that α ⊆ UP for any α ∈ P . We call a vertex of a tree leaf if it is incident with
exactly one edge of the tree.

Lemma 3 With the assumptions of Theorem 1, for any leaf α of the Hasse diagram of
the poset (P,⊆) it holds: rP (α) ∈ {0, rP}.

Proof.
Note that any tree has at least two leaves and that all elements of P0 are leaves. Therefore,
if the Hasse diagram of P has exactly two leaves and one of them is UP , then (P,⊆) =
Q(1, l) for some l ≥ 1 and the lemma is true. Furthermore, if all the leaves of the Hasse
diagram have the same rank, then the validity of the lemma follows from the definition
of the class P .

It remains to show that if β is a leaf and β 6= UP , then rP (β) = r > 0 is impossible. Let
α be a leaf of rank 0, let γ = supP (α, β) and let rP (γ) = t (cf. Fig. 2a).
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Figure 2: Fragments of P (a.) and P n (b.) used in the proof of Lemma 3

With n ≥ rP + 3, s = t(n − 1) − 1 and q = r(n − 1), we have s > q > 0. Now consider
the set

M = {(ξ1, . . . , ξn) ∈ P n
q | ξi ∈ {α, β}, i = 1, . . . , n},

and let a be the first vector in M (in the Macaulay order �). Thus, some (n− 1) entries
of a are β and the remaining entry is α. We may assume without loss of generality that

a = (α, β, β, . . . , β).

Let b = (δ1, . . . , δn) be the first vector of P n
s such that a ∈ ∆s−q(Fs(b)). There are at

least two entries δi, δj of b such that rP (δi) ≥ t and rP (δj) ≥ t, since we would otherwise
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have rP n(b) ≤ (n− 1)(t− 1) + rP = t(n− 1)− 2 < s. We may, therefore, assume without
loss of generality that rP (δ2) ≥ t. Since β ⊂ δ2 and rP (γ) ≤ rP (δ2), it follows that γ ⊆ δ2.

Similarly there exist at least two entries δi, δj of b such that rP (δi) < t and rP (δj) < t,
since we would otherwise have rP n(b) ≥ t(n − 1) > s. We assume, without loss of
generality, that rP (δ3) < t, so δ3 ⊇ β (since b ⊇ a) and δ3 6= γ. Denote by ε the element
in I(α, γ) with rP (ε) = rP (β) (cf. Fig. 2a). Such an element exists and is unique. Further
consider the elements c and d of P n

q defined by

c = (β, β, α, β, . . . , β), d = (α, ε, β, β, . . . , β).

Since α and β are leaves, ∆(a) = ∆(c) = ∅. It follows that ∆(Fq(c)) = ∅, for if f is the
first element in Fq(c) with ∆(f) 6= ∅, then f ≺ c and

|∆(Fq(f))| > |∆((Fq(f) \ f) ∪ c)| = 0,

contradicting N1. Thus ∆(Fq(c)) = ∅ is established.

Since ∆(d) 6= ∅, c ≺ d follows. Since a is the first vector in M , since a 6= c, and since c
is in M , a ≺ c follows (cf. Fig. 2b). Also ε ⊆ δ2 follows from ε ⊆ γ and γ ⊆ δ2. Thus,
since a ∈ ∆s−q(b), d ∈ ∆s−q(b). But c 6∈ ∆s−q(b) (since δ3 ∈ [β, γ], δ3 6⊇ α).

Since a and d are in the initial segment A = ∆s−q(Fs(b)) and a ≺ c ≺ d, it follows
(N2) that c ∈ A. Since c 6∈ ∆s−q(b), then c and, therefore, a are in the initial segment
∆s−q(Fs(b) \ b). But this contradicts the definition of b. 2

For 0 < k < rP denote

Wk = {(δ1, . . . , δn) ∈ P n
kn | δi ∈ Pk, i = 1, . . . , n}.

Furthermore, for a poset (P,⊆) and A ⊆ P denote by P [A] the poset with the element
set A and the induced partial order. Note that if (P,⊆) ∈ P then for any β ∈ P it holds:
P [I(β)] ∈ P . A proof of the next lemma easily follows from the definition of the cartesian
product and is omitted.

Lemma 4 Let P ∈ P and k < rP .

a. Let a1, a2 ∈ Wk be distinct elements. Then I(a1) ∩ I(a2) = ∅ in P n;

b. P n
i =

⋃
a∈Wk

Ii(a) for 0 ≤ i ≤ k, where the union is disjoint;

c. For a = (δ1, . . . , δn) ∈ Wk the poset P n[I(a)] is isomorphic to the poset
P [I(δ1)]× · · · × P [I(δn)].

Let (P,⊆) be a ranked poset and α1, α2 ∈ Pk, with k ≥ 1. A path from α1 to α2 in the
Hasse diagram of P , which consists just of the vertices of Pk and Pk−1 is called (α1, α2)-
path (if such a path exists). If α1 = α2 = α, we call α the (α, α)-path as well. We say
that the set Pk is connected if for any α1, α2 ∈ Pk there exists an (α1, α2)-path.
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Lemma 5 Let (P (1),⊆1), . . . , (P
(n),⊆n) be some posets from the class P with rP (i) = k,

i = 1, . . . , n. Then the kth level of the poset (Π,⊆×) is connected, where Π = P (1) × · · · ×
P (n).

Proof.
We apply the induction on n. For n = 1 the lemma is obviously true, so let n ≥ 2. Let
a1, a2 ∈ Πk and a1 = (α1

1, . . . , α
1
n), a2 = (α2

1, . . . , α
2
n). We show first that there exists a

(a1,b1)-path for some b1 = (β1
1 , . . . , β

1
n) ∈ Πk with rP (1)(β1

1) = 0.

Indeed, if rP (1)(α1
1) = 0 then we are done. Otherwise, let γ ⊂· α1

1 in P (1). Since α1
i 6= UP (i)

for all i ≥ 2, there exists i and δ ∈ P (i) such that α1
i ⊂· δ in P (i). Thus, there exists a

(a1, c)-path, with c obtained from a1 by replacing α1
1 with γ and α1

i with δ. Continuing
this process until the rank of the first entry is zero, we obtain the vector b1. Similarly,
there exists a (a2,b2)-path for some b2 = (β2

1 , . . . , β
2
n) with rP (1)(β2

1) = 0. Therefore, it is
sufficient to show that there exists a (b1,b2)-path.

By the inductive hypothesis there exists a (b1,d)-path, with d = (β1
1 , β

2
2 , . . . , β

2
n). Con-

sider the chain
β1

1 ⊂· γ1 ⊂· γ2 ⊂· . . . ⊂· γk = UP (1) .

Since β1
1 ⊆1 UP (1) and rP (1) = k, such vertices γ1, . . . , γk do exist. Now consider in Πk

the sequence of elements d0 = d,d1, . . . ,dk with di for i ≥ 1 obtained from di−1 =
(δi−1

1 , . . . , δi−1
n ) by the following: replace δi−1

1 with γi, then find maximal index j for
which rP (j)(δi−1

j ) > 0 and replace δi−1
j with εj for some εj ⊂· δi−1

j in P (j). Such an

element εj exists since rP (j)(δi−1
j ) > 0 implies that δi−1

j is not a leaf (Lemma 3). Then
rP (1)(δk

1) = k and, therefore, rP (j)(δk
j ) = 0 for j = 2, . . . , n. Moreover, there exists a

(d,dk)-path (in which every other vertex is in the sequence d0,d1, . . . ,dk) and, thus, a
(b1,dk)-path. Similarly, there exists a (b2,dk)-path and, therefore, a (b1,b2)-path, so
the lemma follows. 2

This lemma has an immediate corollary, which we need for the proof of the next lemma:

Corollary 1 For any subset A ⊂ Πk−1 there exists an element a ∈ Πk−1 \ A, such that
∇(a) ∩∇(A) 6= ∅.

Now assuming that for some poset (P,⊆) ∈ P the poset (P n,⊆×) is Macaulay, we establish
a structure of the Macaulay order � for bottom levels of P n. For this fix some k with
0 < k < rP and consider the set Wk. Let Wk = {a1, . . . , as}, thus, s = (|Pk|)n. Assume
that

a1 ≺ a2 ≺ · · · ≺ as

(see Fig. 3). Lemma 4b implies that for any i ≤ k the level P n
i is the disjoint union⋃s

j=1 Ii(a
j). In the next lemma we show that the first elements of P n

i in the order � are
the elements of Ii(a

1). After all the elements of Ii(a
1) are ordered, the order proceeds

with the elements of Ii(a
2), then with the elements of Ii(a

3) and so on. An initial segment
Fi(x) of the order � for some x ∈ Ii(a

3) is shown in Fig. 3 by solid lines.
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Figure 3: The structure of k + 1 bottom levels of P n and of the Macaulay order �

Lemma 6 Suppose that (P,⊆) ∈ P and that (P n,⊆×) is Macaulay for a fixed integer
n ≥ 1. Then for any fixed i and k, 0 ≤ i ≤ k < rP , for any a′, a′′ ∈ Wk, and for any
c ∈ Ii(a

′) and d ∈ Ii(a
′′) the condition a′ ≺ a′′ implies c ≺ d.

Proof.
First let i = k. Taking into account Lemma 2, it is sufficient to show that for any element
x ∈ P n

k−1 the conditions x ∈ I(ai) for some ai ∈ Wk and I(ai) \ Lk−1(x) 6= ∅ imply
y ∈ I(ai), where y is the predecessor of x in order � (if such exists).

Assume the contrary, i.e. x ∈ Ik−1(a
i) and y = pred(x) ∈ Ik−1(a

j) for some j 6= i.
Furthermore, we assume that x is the greatest element in the order � with this property.

Let y = (ξ1, . . . , ξn). Then rP (ξi) ≤ k−1 < k < rP , i = 1, . . . , n, imply ∇(y) ∈ Ik(a
j) and

|∇(y)| = n. Since Lk−1(x)∩Ik−1(a
j) = ∅ by the choice of x, then ∇(y)∩∇(Lk−1(x)) = ∅.

Using these assertions one has

|∇(Lk−1(y))| = |∇(Lk−1(x))|+ |∇(y)| = |∇(Lk−1(x))|+ n. (1)

On the other hand, it follows from Lemmas 5 and 4c that Ik(a) = (P n[I(a)])k is connected.
Hence, by Corollary 1, there exists an element z ∈ Ik−1(a

i) \ Lk−1(x) such that ∇(z) ∩
Lk−1(x) 6= ∅. It then follows from (1) that

|∇(Lk−1(x) ∪ z)| < |∇(Lk−1(x))|+ n = |∇(Lk−1(y))|.

This contradicts Lemma 2, since the set Lk−1(x) ∪ z is not a final segment in the order
�. Hence, for i = k the lemma is proved. For i < k the lemma follows from Lemma 1
and the property N2. 2

We will often refer to an immediate corollary of this lemma:

Corollary 2 Let i ≤ k and let a ∈ Wk. Then for the first element x ∈ I(a) in the
Macaulay order � it holds: ∆(Fi(x) \ x) ∩∆(x) = ∅.

Proof of Theorem 1.
It is sufficient to show that if |∆(α)| ≥ 2 for some α ∈ P , then α = UP .
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Assume the contrary, i.e that there exists an element α ∈ P with rP (α) < rP and
|∆(α)| ≥ 2. Let k = rP (α) be minimal among all such elements, i.e.

|∆(x)| ≤ 1, whenever 0 < rP (x) < k. (2)

Let Wk = {a1, a2, . . . , as}. We assume that a1 ≺ · · · ≺ as and that

as = (α1, . . . , αn).

Our analysis is based on the consideration of set I(as) by taking into account the structure
of P n presented in Lemma 6. Note that for any αi there exists an element βi ∈ Pk+1 with
αi ⊂ · βi and βi for i = 1, . . . , n is defined uniquely. Furthermore note that for any
(ξ1, . . . , ξn) ∈ I(as) it holds ξi ⊆ αi, i = 1, . . . , n.

Denote
V = {v ∈ P n

k+1 \ Ik+1(a
s) | ∆(v) ∩ Ik(a

s) 6= ∅}.
Since v 6∈ I(as) and v ∈ P n

k+1, then v has just one entry of positive rank. Hence, if
v′ ∈ ∆(v), then v′ ∈ Ik(a

i) for some i, 1 ≤ i ≤ s. Thus, for any v ∈ V

|∆(v) ∩ Ik(a
s)| = 1. (3)

Denote by a and b the first vectors of the sets V and Ik+1(a
s) in the order � respectively.

Without loss of generality we can assume that

a = (β1, ζ2, . . . , ζn), rP (ζ2) = · · · = rP (ζn) = 0.

Fact 1: a ≺ b.

Proof. Assume the contrary. Then for any b′ ∈ P n
k+1 preceding b one has b′ 6∈ V and,

thus, ∆(b′) ∩ Ik(a
s) = ∅. Since ∆(b) ⊆ Ik(a

s), then ∆(b′) ∪ ∆(b) = ∅, which implies
∆(b)∩∆(Fk+1(b) \b) = ∅. Since b ∈ P n

k+1 and the rank of each entry of b is at most k,
it follows that b has at least two entries of positive rank. Thus, |∆(b)| ≥ 2 follows from
Lemma 3. Using these assertions and (3) one has

|∆(Fk+1(b))| − |∆(Fk+1(b) \ b)| = |∆(b)| ≥ 2

|∆(Fk+1(b) \ b) ∪ a)| = |∆(Fk+1(b) \ b)|+ 1 < |∆(Fk+1(b))|

This contradicts the property N1, since (Fk+1(b) \ b) ∪ a is not an initial segment. 2

Denote by c the first vector of the set Ik(a
s) in the order �. Then c ∈ ∆(a) (cf. Fig 4a).

Indeed, if it is not the case, then c ≺ c′ for the first element c′ ∈ ∆(a) ∩ I(as). However,
this contradicts the fact that the set Fk+1(a) is an initial segment. Therefore, taking into
account the form of a, one has

c = (α1, ζ2, . . . , ζn).

Fact 2: |∆(c)| ≥ 2.
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Proof. First note that k ≥ 2 and Lemma 3 imply |∆(c)| > 0. To complete the proof we
show that assuming |∆(c)| = 1 leads to a contradiction. Consider the vector (α, . . . , α) ∈
P n

kn. Then (α, . . . , α) = ai for some i, 1 ≤ i ≤ s. Let t be the first vector of Ik(a
i) in the

order �. Then |∆(t)| ≥ 2. This is obvious if at least two entries of the vector t are of
positive rank. If t has just one such entry, then t ⊆× ai implies that this entry is α and,
thus, |∆(t)| = |∆(α)| ≥ 2 by our assumption concerning α.

Now if i = s, then t = c. Thus, α1 = α and the assertion follows. If i < s, then ai ≺ as

and, thus, t ≺ c by Lemma 6. Consider the set Fk(t). Applying Corollary 2 with i = k
and x = t (resp. x = c), one has

|∆(Fk(t))| = |∆(Fk(t) \ t)|+ |∆(t)| ≥ |∆(Fk(t) \ t)|+ 2,

|∆((Fk(t) \ t) ∪ c)| = |∆(Fk(t) \ t)|+ |∆(c)| = |∆(Fk(t) \ t)|+ 1.

Therefore, |∆(Fk(t))| > |∆((Fk(t)\t)∪c)|. However, the set (Fk(t)\t)∪c is not an initial
segment. This contradicts the property N1, and completes the proof of the assertion. 2

Case 1 . Assume k ≥ 2. Since Fact 2 in combination with Lemma 3 implies |∆k(c)| ≥ 2,
then, applying Corollary 2 with i = k and x = c, one has

|∆k(Fk(c))| = |∆k(Fk(c) \ c)|+ |∆k(c)| ≥ |∆k(Fk(c) \ c)|+ 2. (4)

Now consider the elements γ, ε ∈ P with γ ⊂· α1 and ζ2 ⊂· ε. Since rP (α1) = k ≥ 2 and
rP (ζ2) = 0, then rP (γ) ≥ 1 and rP (ε) = 1. Denote

d = (γ, ε, ζ3, . . . , ζn) ∈ Ik(a
s).

Then c ≺ d follows from the definition of c, and (2) implies |∆k(d)| = 1 (cf. Fig 4a).
Using (4) and Corollary 2, one has

|∆k((Fk(c) \ c) ∪ d)| = |∆k(Fk(c) \ c)|+ |∆(d)| = |∆k(Fk(c) \ c)|+ 1 < |∆k(Fk(c))|.

This contradicts Lemma 1, because the set (Fk(c)\c)∪d is not an initial segment. Thus,
if k > 1, the theorem is proved.

Case 2 . Assume k = 1. In this case (2) cannot be used and, thus, we cannot guarantee
|∆(d)| = 1. Now we need a deeper insight into the structure of the poset (P n,⊆×). Recall
that as = (α1, . . . , αn) and rP (α1) = · · · = rP (αn) = 1.

Fact 3: |∆(αi)| ≥ 2, i = 1, . . . , n.

Proof. Consider the set A = I1(a
s). Each element of this set has exactly one entry of

positive rank, and this entry is αi for some i, 1 ≤ i ≤ n. Let c = (α1, ξ2, . . . , ξn) be the
first vector of A in the order � and let c′ = (ζ1, . . . , αi, . . . , ζn) be some other element of
A. Since ∆(F1(c) \ c) ∩∆(c′) = ∅ by Corollary 2 (applied with i = 1 and x = c′), then
|∆(c)| ≤ |∆(c′)| follows from N1. This implies |∆(α1)| = minj |∆(αj)|. Thus,

|∆(c′)| = |∆(αi)| ≥ min
j
|∆(αj)| = |∆(α1)| = |∆(c)| ≥ 2
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Figure 4: Cases 1 (a.) and 2 (b.) of the proof of Theorem 1

as in Fact 2 and the assertion follows. 2

Denote by b the first element of the set I2(a
s) in the order �. Without loss of generality

we assume that b is of the form

b = (α1, α2, ζ3, . . . , ζn), rP (ζ3) = · · · = rP (ζn) = 0.

Let

Ṽ = {v ∈ P n
2 \ I2(a

s) | ∆(v) ∩∆(b) 6= ∅},
Ṽ ′ = {v ∈ Ṽ | v = (β1, ζ, ζ3, . . . , ζn), ζ ⊂· α2},
Ṽ ′′ = {v ∈ Ṽ | v = (ζ, β2, ζ3, . . . , ζn), ζ ⊂· α1}.

Clearly, Ṽ = Ṽ ′ ∪ Ṽ ′′. Denote by a the first element of the set Ṽ in the order �. Then
a ≺ b as in Fact 1. Without loss of generality we assume that a ∈ Ṽ ′. Taking into
account the form of b, for some ζ2 with ζ2 ⊂· α2 one has

a = (β1, ζ2, . . . , ζn).

We show that there exists v ∈ Ṽ ′′ such that v ≺ b (cf. Fig 4b). Indeed, assume the
contrary, i.e. that v � b for any v ∈ Ṽ ′′ and consider the set F2(b). Then

|∆(F2(b))| − |∆(F2(b) \ b)| ≥ 2 (5)

by Fact 3, since an element (ζ, α2, ζ3, . . . , ζn) ∈ ∆(b) with ζ ⊂· α1 cannot be covered by
some b′ ∈ Ṽ ′ and there are at least two such elements. Now, using (3) and (5) we get

|∆((F2(b) \ b) ∪ v)| = |∆(F2(b) \ b)|+ |∆(v) ∩ I1(a
s)|

≤ |∆(F2(b))| − 2 + |∆(v) ∩ I1(a
s)|

= |∆(F2(b))| − 1 < |∆(F2(b))|,

which contradicts the property N1. Therefore, there exists v ∈ Ṽ ′′ with

a ≺ v ≺ b. (6)
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Denote υ = UP and let

d = (υ, α2, ζ3, . . . , ζn), e = (α1, υ, ζ3, . . . , ζn).

Furthermore let q = rP + 1. It is important to note that any element of P n
q has at least

two entries of positive rank.

Fact 4: Let ∆q−2(w) ∩ I2(a
s) 6= ∅ for some w ∈ P n

q . Then ∆q−1(Fq(w)) ∩ I1(a
s) ⊇

∆(b), where the equality holds iff w ∈ {d, e}.

Proof. First consider an element z ∈ ∆q−2(d) different from a and b. If z has two entries
of positive rank, then the second entry is α2 and the first entry is not α1. Thus, z ∈ ai

for some i < s by the definition of as. If z has just one entry of positive rank, then
z = (γ, η2, ζ3, . . . , ζn) with η3 ⊂· α2 and γ ∈ P2. Now if γ = β1, then z ∈ Ṽ and,
∆(z) ∩ I1(a

s) ⊆ ∆(b) by (3). If γ 6= β1, then ∆(z) ∩ I1(a
s) = ∅. Therefore,

∆q−1(d) ∩ I1(a
s) =

⋃
z∈∆q−2(d)

(∆(z) ∩ I1(a
s)) ⊆ ∆(b).

On the other hand, b ∈ ∆q−2(d) implies the reverse inclusion. Thus, ∆q−1(d) ∩ I1(a
s) =

∆(b). Similarly ∆q−1(e) ∩ I1(a
s) = ∆(b) can be established.

Now assume w 6∈ {d, e} and consider the set A = ∆q−2(Fq(w)). We claim that A contains
at least one element b′ 6= b (and, thus, b′ � b). Indeed, it is obvious if b 6∈ ∆q−2(w).
On the other hand, if b ∈ ∆q−2(w) then w has at least three entries of positive rank and
the claim follows. Since b′ has two entries of positive rank, then ∆(b′) \∆(b) 6= ∅. Since
A is an initial segment, then b ∈ A and we have the assertion. 2

Now let f ∈ P n
q be the first element, such that ∆q−2(f) ∩ I2(a

s) 6= ∅. Then b ∈ ∆q−2(f),
since otherwise the set ∆q−2(Fq(f)) contains some b′ with b′ � b and, thus, is not an
initial segment, which contradicts to N2. We show that either f = d or f = e (depending
on whether d ≺ e or e ≺ d respectively). Assume the contrary, i.e. f 6∈ {d, e}. Since
b ∈ ∆k−2(d) ∩∆k−2(c), then f ≺ d and f ≺ e. From Lemma 6 and the definition of as

it follows that I1(a
i) ⊆ ∆q−1(Fq(f)) for all i < s. Moreover, ∆(b) ⊂ ∆q−1(Fq(f)) by Fact

4. But then
∆q−1((Fq(f) \ f) ∪ d) ⊂ ∆q−1(Fq(f))
∆q−1((Fq(f) \ f) ∪ e) ⊂ ∆q−1(Fq(f)),

(7)

which contradicts to Lemma 1. Thus, b ∈ {d, e} is established. Note that (7) implies
that d and e are consecutive elements in the order �.

Let c be the first element of the set I1(a
s) in the order �.

Fact 5: c ∈ ∆(b).

Proof. Assume the contrary and let w be the first element of P n
q in the order � such

that ∆q−1(w) ∩ I1(a
s) 6= ∅. Then c ∈ ∆q−1(w), since otherwise the set ∆q−1(Fq(w)) is

not an initial segment. Remember that w has at least two entries of positive rank by the
choice of q. Thus, ∆q−2(w) ∩ I2(a

s) 6= ∅. Therefore, f � w follows from the definition of
f . On the other hand, since ∆q−1(f) ∩ I1(a

s) 6= ∅, then w � f . Hence, w = f . Now since
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∆q−2(Fq(f)) ∩ I2(a
s) = {b} (cf. the proof of Fact 4), then the set ∆q−1(Fq(f)) is not an

initial segment, which contradicts Lemma 1. 2

It follows from the proof of Fact 5 that the element f is the first element of P n
q such that

∆q−1(t) ∩ I1(a
s) 6= ∅.

Finally, we introduce an element g ∈ P n
q defined as the first element, such that v ∈

∆q−2(g). Since ∆(v) ∩ I1(a
s) 6= ∅, then ∆q−1(g) ∩ I1(a

s) 6= ∅. Taking into account the
remark above, we get f � g. Furthermore, since f ∈ {d, e}, since v 6∈ ∆q−2(d) and
v ∈ ∆q−2(e), and since d, e are consecutive elements in the order �, then g = e.

Now we are ready to obtain a contradiction with the existence of the element α, specified
in the beginning of the proof. For that we use (6), which was established assuming the
existence of α. First assume that d ≺ e, i.e. f = d ≺ e = g (cf. Fig. 4b). In this case the
set D = ∆q−2(Fq(d)) is not an initial segment, because b ∈ D, v ≺ b by (6) and v 6∈ D
by the definition of g. This contradicts Lemma 1.

If e ≺ d and, hence, f = g = e, then we have a similar contradiction, as we show that
the set E = ∆q−2(Fq(e)) is not an initial segment. Since v ∈ E and a ≺ v by (6),
it is sufficient to show that a 6∈ E. Indeed, if we assume a ∈ E, then the condition
a 6∈ ∆q−2(e) implies a ∈ ∆q−2(h) for some h ≺ e. However, ∆(a) ∩ I1(a

s) 6= ∅ implies
∆q−2(h) ∩ I1(a

s) 6= ∅, and, thus, f � h ≺ e by the definition of f . This contradicts,
however, the equality f = e and completes the proof of the whole theorem. 2

In our forthcoming paper [2] we show that the reverse statement of Theorem 1 is also
valid, i.e. that the cartesian product of n posets Q(k, l) is a Macaulay poset for any n ≥ 1
and any k ≥ 1, l ≥ 1.
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