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Abstract

We consider the oriented dichotomic tree and the oriented hypercube. The tree edges
are oriented from the root to the leaves, while the orientation of the cube edges is induced
by the direction from 0 to 1 in the coordinatewise form. The problem is to embed such a
tree with l levels into the oriented n-cube as an oriented subgraph, for minimal possible n.
A new approach to such problems is presented, which improves the known upper bound
n/l ≤ 3/2 from [1] to n/l ≤ 4/3 + o(1) as l →∞.

1 Introduction

Denote by Bn the graph of the n-dimensional unit cube. The vertex set of this graph is just the
collection of all binary strings of length n, and two vertices are adjacent iff the corresponding
sequences differ in one entry only. Let T be a tree. It is easily shown by induction that T is
a subgraph of Bn for n sufficiently large. The general question we study here is to find the
minimal such n, which we denote by dim(T ) and call the dimension of T .

Such problems arise in the area of computer science dealing with multiprocessor systems
[6]. The exact answer depends of course on the structure of the tree T rather than on its simple
numerical parameters, e.g., the number of vertices. If one consider trees of bounded vertex
degree, which is quite natural for practical applications, one is led to consider the polythomic
tree T k,l. This is the rooted tree with l levels, where the root has degree k and all the other
vertices that are not leaves have degree k + 1. The dimension of T k,l was studied in [3] (the
lower bound) and in [5] (the upper bound), where it is proved that

k · l
e

≤ dim(T k,l) ≤ k · l + k + 2l − 2

2
, e = 2.718... . (1)

The lower bound in (1) simply follows from the cardinalities of the sets of vertices at distance
at most l from the root, while the upper bound is constructive. Despite several attempts,
there have been no improvements of these bounds in the asymptotic sense for arbitrary k, l.
For the binary cube it is natural to imagine that the number 2 plays an important role. In
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accordance with this, let us replace one of the parameters k, l by 2. Then it is known (see [2],
[3] respectively) that

dim(T 2,l) = l + 2 and

dim(T k,2) =

⌈
3k + 1

2

⌉
.

It is interesting to notice that, although T 2,l has 2l+1 − 1 < 2l+1 vertices, the lower bound
dim(T 2,l) ≥ l + 1 which follows from the cardinalities is not attainable. Actually in [4] it is
proved that one can even find in Bl+2 two copies of T 2,l joined by an edge connecting their
roots.

Therefore, in the simplest cases when one of the parameters k, l equals 2, the problem is
completely solved. Let us now consider the oriented version of this problem. We orient the
edges of T k,l from the root to the leaves, and the edges of Bn as follows. Suppose (v, w) is an

edge of Bn such that the sequences v, w differ in the ith entry, where v has 0 and w has 1.
Then we orient this edge from v to w. Now we look for an oriented subgraph of Bn isomorphic

to T k,l. In other words, we consider embeddings of T k,l into Bn such that the ith level of T k,l

is embedded into the ith level of Bn, for i = 0, 1, ..., l. What is the minimal possible n now?
We denote this n by ~dim(T k,l).

It is easy to show that the same lower bound (1), following from the inequality(
n

l

)
≥ kl, (2)

holds. Indeed there is an even better lower bound [1] for ~dim(T k,l), implied by(
n

l

)
−
(
n− k

l

)
≥ kl, (3)

but it gives no improvement in the asymptotic sense. As it turns out, the upper bound (1)
holds for the oriented case as well, as the construction in [5] provides an oriented embedding.

Let us again consider the case when one of the numbers k, l equals 2. If l = 2 then there
is no difference between the oriented and non-oriented cases, as without loss of generality one
may always assume that the root of T k,2 is embedded into the origin of Bn, which forces
any embedding to be oriented. It is interesting to note that in this case the lower bound
~dim(T k,2) ≥ 3k/2 implied by (3) is asymptotically attained.

The goal of this paper is to study the case k = 2. So, we deal with the ordinary dichotomic
tree T 2,l, which we denote T l for brevity. For this concrete value of k one can get a better lower
bound from (2), namely

1.2938... ≤ lim
l→∞

~dim(T l)/l. (4)

It is easily seen that the trivial upper bound ~dim(T l)/l ≤ 2 equals that given by (1). The best
known published upper bound [1] is

lim
l→∞

~dim(T l)/l ≤ 3/2. (5)
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The method of [1] was to find ~dim(T l) for l = 1, ..., 6, and in particular to prove that T 6 is em-
beddable into B9 (here 9/6=3/2). Following this idea one could try to find a clever embedding

of T l0 into Bn0 for some l0, n0, which would imply the upper bound liml→∞ ~dim(T l)/l ≤ n0/l0.

Here we give a table of n = n(l) = ~dim(T l) for small values of l.

l : 1 2 3 4 5 6 7 8 9 10 11
n : 2 4 5 7 8 9 11 12 13 15 16

The entries of this table for l = 1, ..., 7 and l = 10 are known from [1], while the other three
follow from a more detailed analysis, and we mention them here without proof. The values for
l = 9 and l = 11 give us an improvement on (5) as 1.444... = 13/9 < 16/11 < 3/2. We suspect
that it is possible to embed T 12 into B17 (at present we are only able to embed T 12 into B18),
in which case we would be able to improve (5) further to n/l ≤ 1.416 for sufficiently large l.
But to find an admissible n as l increases is very difficult, and to get a good upper bound in
this way is almost hopeless.

Here we present a new approach for obtaining good bounds for the oriented embedding.
Our best result is

Theorem 1 liml→∞ ~dim(T l)/l ≤ 4/3 = 1.333....

If we consider this result in the light of the old techniques from [1], it becomes apparent that,
to prove Theorem 1 using the old approach, one would have to prove that T 3r can be embedded
into B4r for some r ≥ 13. To demonstrate this, we computed the function n(l) defined by (3)
for l = 1, ..., 39 and found that the ratio n(l)/l reaches 4/3 for the first time just when l = 39.

Let us mention again that, for l = 1, ..., 11, ~dim(T l) equals the lower bound given by

(3). Moreover, ~dim(T k,l) for k = 1 or l = 1 is also equal to the lower bound implied by the

cardinalities. So as yet there are no examples where ~dim(T l) is not determined by the bound
(3).

Conjecture 1 ~dim(T l) is determined asymptotically by the inequality (2) as l →∞.

Conjecture 2 ~dim(T k,l) ∼ k·l
e

as k, l →∞.

2 The new approach

Denote by T l
i (i = 0, ..., l) the ith level of the tree T l (i.e., the collection of all its vertices at

distance i from the root) and by Bn
i (i = 0, ..., n) the ith level of Bn (i.e., the collection of all

vertices corresponding to sequences with exactly i ones).

We have the trivial upper bound ~dim(T l)/l ≤ 2, and thus we may and shall assume through-
out that T l

l is embedded above the middle level of Bn. Starting from an embedding of T l into
Bn, let us try to embed T l+1

l+1 using as few additional dimensions as possible. It is clear that we
can always succeed using two additional dimensions. The problem is to try to use just one, as
we believe in the following conjecture.

Conjecture 3 ~dim(T l+1) > ~dim(T l) for all l ≥ 1.
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To use only one additional dimension for T l+1 is possible if there exists a matching between the
image of T l

l in Bn
l (which we also denote by T l

l ) and Bn
l+1. For example T 2 may be embedded into

B4 with the required matching, which implies ~dim(T 3) = 5. Now ~dim(T 4) ≥ 7 simply follows

from the cardinalities, and our knowledge about ~dim(T 3) proves ~dim(T 4) = 7 immediately.
When can one guarantee the existence of such a matching?

Let A ⊆ Bn
k and x be a given integer. Define an x-partition of A to be a partition of A

into s parts Ai with |Ai| ≤ x (i = 1, ..., s) such that there is a set Mx(A) = {ai : i = 1, ..., s}
of distinct vertices of Bn

k+1 with ai adjacent to all vertices of Ai (i = 1, ..., s). Call such a
set Mx(A) a covering set for the x-partition. In particular if x = 1, then a covering set for a
1-partition defines a matching between A and Bn

k+1.
If there is an embedding of the tree T l into Bn in such a way that T l

l has an x-partition, we
write T l ;x Bn. The arguments above lead us to the following result.

Proposition 1 If T l ;1 Bn then T l+1 ;2 Bn+1.

Proof.
Embed T l into the subcube xn+1 = 0 in such a way that it has a 1-partition with covering
set A ≡ M1(T

l
l ). Set B = π(T l

l ) and C = π(A), where π is the projection onto the subcube
xn+1 = 1. Now embed T l+1

l+1 into A∪B in the obvious way. It is clear that T l+1
l+1 has a 2-partition

with covering set C.

Unfortunately there are examples showing that it is impossible to guarantee that T l
l has a

1-partition in general, even if |T l
l | < |Bn

k+1|. So, the matchings approach does not promise too
much, but is the first step towards more general constructions.

Proposition 2
a) If T l ;2 Bn1 and T k ;2 Bn2 then T l+k ;1 Bn1+n2.
b) If T l ;1 Bn1 and T k ;1 Bn2 then T l+k+1 ;2 Bn1+n2.

Proof.
a). First we build an embedding of T l into the subcube B1 of Bn1+n2 based on the first n1

coordinates, such that T l
l has a 2-partition. Now for each vertex vi ∈ T l

l we consider the
subcube Bi

2 based on the last n2 coordinates, and embed T k in each such subcube so that T k
k

has a 2-partition. Thus we get an embedding of T l+k into Bn1+n2 . Here we mean that the
various embeddings of T k are isomorphic.

To see that T l+k
l+k has a 1-partition, we refer to Fig. 1. In this picture we represent by a, b

and c, d vertices of T l+k in the subcubes Bi
2 and Bj

2 respectively, such that (1) these pairs are in
the same parts of the second 2-partition, and (2) the vertex of T l which is the root of the tree
containing a and b is in the same part of the first 2-partition as the vertex corresponding to c
and d. Thus from the embedding of T k into Bi

2 and Bj
2, we deduce that there are vertices e ∈ Bi

2

and f ∈ Bj
2 that cover the vertices a, b and c, d respectively. Similarly there exist vertices g and

h that cover a, c and b, d respectively. More exactly, the edges (a, g), (b, h), (c, g), (d, h) have
directions of edges of the subcube B1, while the edges (a, e), (b, e) are in Bi

2 and (c, f), (d, f)
are in Bj

2. The required matching between T l+k
l+k and Bn1+n2

l+k+1 is depicted by the bold lines.
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The proof of b) is quite similar.

Corollary 1 If T l0 ;2 Bn0 then ~dim(T l)/l ≤ n0

l0+1/3
+ o(1) as l →∞.

Proof.
One has T 2l0 ;1 B2n0 by Proposition 2a. Now we apply Proposition 2b with k = l = 2l0 and
get T 4l0+1 ;2 B4n0 . Therefore each time the cube dimension is multiplied by 4, the height of
the tree we can embed increases by a multiple of slightly more than 4. More precisely, if the
sequences li and ni are defined by li = 4li−1 + 1 and ni = 4ni−1 (i = 1, . . .), then we have
T li ;2 Bni for each i, and ni = n0(li + 1/3)/(l0 + 1/3), so ni/li = n0

l0+1/3
+ o(1) as i →∞. The

result follows.

A more detailed analysis of the proof that ~dim(T 6) = 9 shows that T 6 ;2 B9, which gives

the upper bound liml→∞ ~dim(T l)/l ≤ 9/(6 + 1/3) ≈ 1.421, but some work is still required.
Now we present as the second elementary application of our approach a simple proof of the
bound (5).

Proposition 3 If T l ;2 Bn then T l+2 ;2 Bn+3.

Proof.
Embed first the tree T l into Bn for some n such that T l

l has a 2-partition with covering set
M2(T

l
l ). This is possible by Proposition 1. Now we use this embedding, and its associated

2-partition and covering set, to embed the two extra levels of the dichotomic tree using only
three extra dimensions. So, we build the 3-cube growing from each vertex of our n-cube, in
particular from each vertex of T l

l . For each set {ui, vi} in our 2-partition, let wi ∈ Bn
l+1 be the

corresponding vertex in the covering set M2(T
l
l ). This situation is depicted in Fig. 2a, where

the rectangles represent the 3-cubes growing from vertices ui, vi. The corresponding vertices
of these 3-cubes are connected as shown in Fig. 2. We now embed two copies of T 2 rooted in
ui, vi into this structure, which will provide an embedding of T l+2 into Bn+3.
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Our embedding scheme is shown on Fig. 2b, where we draw the edges of the trees only. In-
complete lines indicate a covering scheme demonstrating that the embedding has a 2-partition.

Now the upper bound (5) follows immediately. We start with an embedding of T 3 into B5

with a 2-partition, the existence of which was mentioned earlier, and apply Proposition 3. On

the ith step of this process we obtain an embedding of T 3+2i into B5+3i which implies the upper
bound liml→∞ ~dim(T l)/l ≤ limi→∞(3i + 5)/(2i + 3) = 3/2.

What is important in our approach is that, given an embedding of T l into Bn, we con-
struct an embedding of T l+ε into Bn+δ, even though ~dim(T ε) > δ, which gives the bound

liml→∞ ~dim(T l)/l ≤ δ/ε. We achieve this by using some additional information about the
initial embedding, in this case the existence of a 2-partition.

The second important thing is that, in the proof of Proposition 3, it makes no difference
which initial embedding we start with. The only thing one needs is a 2-partition, which is in
fact easy to guarantee. Indeed, embed T l into any admissible Bn. Now increase the dimension
of the hypercube by 1, adding the subcube xn+1 = 1. Then each vertex of T l

l has a neighbor in
this subcube, so T l

l has a 1-partition in Bn+1.
Let us finally mention that the proof of the upper bound (5) may be further simplified by

using the following result.

Proposition 4 If T l ;1 Bn, then T l+2 ;1 Bn+3.

For the proof one has in fact to show that T 2 may be embedded into B4 so that T 2
2 has a

1-partition, which fact we have already mentioned above.

3 Towards better upper bounds

Our general aim is to get a rational upper bound for liml→∞ ~dim(T l)/l, necessarily exceeding
1.29, using constructions involving low-dimensional cubes only. It seems to be impossible to
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obtain fully satisfactory results using just x-partitions, with the same x before and after the
addition of extra levels. So we need a deeper insight.

For A ⊆ Bn
l , t ≥ 2 and a sequence (x1, ..., xt) of positive integers, we say that A can be

(x1, ..., xt)-partitioned if there are sets M0, M1, ...,Mt such that M0 = A, Mi ⊆ Bn
l+i for each

i, and, for each i, there is an xi-partition of Mi−1 with covering set Mi. If there exists an
embedding of T l into Bn such that T l

l can be (x1, ..., xt)-partitioned, we write T l ;x1,...,xt Bn.

Proposition 5 If T l ;2,2 Bn then T l+3 ;2,3 Bn+4.

Proof.
Now we have to embed four copies of T 3, rooted in vertices v1, ..., v4, into the structure depicted
in Fig. 3a, where each box represents the 4-cube. The graph of the 4-cube is as shown in Fig. 3b;
for convenience we shall normally use the restricted image of it in Fig. 3c. In this image we
show just the vertices of B4, in the same order from left to right as they are shown in Fig. 3b.
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Fig. 3

The embedding we use here is shown in Fig. 4, where, for simplicity, only the subcubes
B1, B2, B3 and B4 are shown, without the edges connecting them. The two copies of T 3 have
their roots in vertices v1, v2.

Now the top vertices of B1 and B2, the vertices of the 3-d level of B3 and the vertices of the
second level of B4 shown by larger solid circles in Fig. 4 form a covering set M1 for a 2-partition
of this piece of T l+3

l+3 , and the vertices labeled by asterisks form a covering set for a 3-partition
of M1. This covering scheme is also presented in Fig. 4.
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More about the subcube B4. In Fig. 4 only two vertices a, b of T l+3 ∩ B4 are depicted. They
correspond to the vertices (0010) and (0100) of B4 respectively (the commas in vectors are
omitted). The vertices of B4 which cover them correspond to (0110) and (1100) respectively.
But we also have to embed four vertices coming from the subcube B5. In order for all these
eight vertices to be distinct, we first embed the two other copies of T 3 into B5, B6, B7 and after
that use the isometric transformation of these subcubes defined by the permutation

(
1 2 3 4
3 4 1 2

)
of coordinates. This permutation transforms the four mentioned vertices into (1000), (0001),
(0011), and (1001) respectively, which guarantees the correct embedding.

For future reference, note that there are two vertices in the second level of B4, namely (0101)
and (1010), which are not in M1. They are shown as empty circles in Fig. 4. The Hamming
distance between these two vertices is 4.

Using similar techniques one could prove the following properties.

Proposition 6
a) If T l ;2,3 Bn then T l+2 ;2,2 Bn+3;
b) If T l ;2,2,3 Bn then T l+3 ;2,2,4 Bn+4;
c) If T l ;2,2,4 Bn then T l+3 ;2,3,3 Bn+4;
d) If T l ;2,3,3 Bn then T l+2 ;2,2,3 Bn+3.

We do not use these properties for the proof of Theorem 1, but think that they are useful for
further research. One could combine them with some others in order to get new upper bounds.
In particular, Propositions 5, 6a and 6b – 6d respectively imply the following results.

Corollary 2
a) liml→∞ ~dim(T l)/l ≤ 7/5 = 1.4;

b) liml→∞ ~dim(T l)/l ≤ 11/8 = 1.375.

Our main result, Theorem 1, is an immediate consequence of the following result.
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Proposition 7 If T l ;2,2,3,4 Bn then T l+3 ;2,2,3,4 Bn+4.

Proof.
Now we deal with the structure depicted in Fig. 5, where C1, ..., C5 are 4-cubes and S1, ..., S12

are the structures consisting of seven 4-cubes depicted in Fig. 3a. Each 4-cube C2, C3, C4 is
connected with three structures Si (i = 4, ..., 12), as shown in Fig. 5 for the cube C1. We use
the image of B4 shown in Fig. 3b, and again reduce it to that shown in Fig. 3c.

S1 S2 S3 S4 S12

C1 C2 C3 C4

C5

. . .
��
�

HH
H

�� @@ �� @@ �� @@

   
   

  
aa

aa
```

```
`̀

Fig. 5

We start with an embedding of T l into Bn such that T l
l can be (2, 2, 3, 4)-partitioned, and now

embed the three extra levels of our tree by embedding T 3 into each structure Si as described
in the proof of Proposition 5. The role of the remaining 4-cubes in Fig. 5 is to guarantee
that T l+3

l+3 can be (2, 2, 3, 4)-partitioned. It was mentioned above that two vertices at distance
4 are free in the subcube B4 in each structure Si. Using isometric transformations of the
structures Si we can establish these free vertices to be just (0011) and (1100) in the structure
Si with i = 0 (mod 3), and the vertices (0101),(1010) and (0110),(1001) in the structures Si

with i = 1 (mod 3) and i = 2 (mod 3) respectively. The free vertices are shown as empty circles
in the bottom 4-cubes in Fig. 6. These bottom 4-cubes correspond to the subcubes B4 of the
structures Si (cf. Fig. 3a).
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To prove that our embedding of T l+3
l+3 can be (2, 2, 3, 4)-partitioned, we need to construct sets

M1, M2, M3 and M4 such that M1 is a covering set for a 2-partition of this section of T l+3
l+3 , M2

is a covering set for a 2-partition of M1, M3 is a covering set for a 3-partition of M2, and finally
M4 is a covering set for a 4-partition of M3.

M1: we use just the same construction for the set M1 as in the proof of Proposition 5. This set
is shown in Fig. 4 by the large solid circles.

M2: we take the top vertices of the subcube B3 to cover the top vertices of the subcubes B1, B2

(cf. Fig. 4) in each structure Si and use all the four vertices in the 3-d level of the subcube
B4 to cover the vertices of the 3-d levels of subcubes B3, B5. Now what remains to be done is
to cover the four solid vertices in the second level of the subcube B4 in each structure Si (see
Fig. 4) by the six vertices in the second level of the subcubes Ci (i = 1, ..., 4) (cf. Fig. 5). The
covering scheme is explained in Fig. 7a. In this figure we represent the six vertices of C1 by
the top block and the second levels of B4 in S1, S2, S3 by the three bottom blocks (for other Ci

and Si, the principle is the same). Each vertex of the top block is incident (in Bn) to the three
corresponding vertices of the bottom blocks, but we have to choose only two edges to cover all
the solid vertices. Remove now the edges shown in Fig. 7a. Then the remaining edges between
the top and bottom blocks form the required covering.
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a. b. c.
Fig. 7

M3: as constructed above, M2 consists of the top vertices of the subcubes B3, the second levels
of the subcubes B4 (cf. Fig. 4) and the second levels of the subcubes C1, ..., C4. Now we have
to cover all these vertices by the top vertices of the subcubes B4, the third levels of C1, ..., C4

and the second level of C5, in such a way that no vertex is matched to more than three from
M2.

Consider now the subcube C1 and the subcubes B4 in the structures S1, S2, S3. We cover
the top vertices of the subcubes B3, B5 from the top vertex of the subcubes B4 in each Si

(cf. Fig. 4) and use the third edge to cover one of the three vertices in the 3-d levels of B4

as shown in Fig. 6 (these three vertices are depicted by small circles). In order to cover the
remaining three vertices of B4’s (depicted by large circles in Fig 6) we use the 3-d level of C1

and the covering scheme as shown in Fig. 7b. In this picture the leftmost (large) vertex has
degree three while all the other vertices have degree two. We use the remaining three edges
incident to these vertices to cover some three vertices in the second level of C1, as shown in
Fig. 6.

Therefore the vertex of each subcube B4 represented by the largest circle (see Fig. 6) in
the structures Si (i = 1, 2, 3) plays a particular role. In other structures we use a similar
principle, and the corresponding vertices of the B4’s are represented in Fig. 6 by large circles.
Of course, one then has to correct the covering scheme in the subcubes C2, C3, C4, which we do
in accordance with Fig. 6.

Considering now the 4-cubes C1, ..., C4 in Fig. 6, notice that the two rightmost vertices in
their second levels are already covered from the 3-d levels and just one of the other four vertices
is also covered. In order to cover the remaining three vertices in each subcube C1, ..., C4 we
use the leftmost four vertices of C5 and the covering graph depicted in Fig. 7c. Each vertex of
the top block is incident to the corresponding vertex in each bottom block, and removing the
depicted edges we get the required covering.

M4: finally we construct M4 from the top vertices of the subcubes C1, ..., C4 and the third level
of C5. Indeed, cover the top vertices of the subcubes B4 in each structure Sj from the top
vertex of the corresponding subcube Ci (i = 1, ..., 4). Thus we used three edges for each Ci.

The 4th edge is used to cover the large vertices of the 3-d level in each Ci, as shown at the top
of Fig. 6. The remaining (small) vertices of Ci (i = 1, ..., 4) we cover from the 3-d level of C5

using three edges, with a covering scheme similar to that in Fig. 7c. Now each vertex of the

third level of C5 is used to cover some three vertices of M3, and we use the 4th edge incident
to each of them to cover the leftmost four vertices in the second level of C5 (see Fig. 6).

We hope that, using similar techniques, one can operate with larger graphs, and construct
an embedding of 10 extra levels in 13 extra dimensions and finally prove the following.

Conjecture 4 liml→∞ ~dim(T l)/l ≤ 13/10 = 1.30.
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