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Abstract

We answer the following question: Let P and ) be graded posets having some
property and let o be some poset operation. Is it true that P o @ has also this prop-
erty? The considered properties are: being Sperner, a symmetric chain order, Peck,
LYM, and rank compressed. The studied operations are: direct product, direct
sum, ordinal sum, ordinal product, rankwise direct product, and exponentiation.

1 Introduction and overview

Throughout we will consider finite graded partially ordered sets, i.e. finite posets in which
every maximal chain has the same length. For such posets P there exists a unique function
r: P — IN (called rank function) and a number m (called rank of P), such that r(z) =0
(r(z) = m) if x is a minimal (resp., maximal) element of P, and r(y) = r(z) + 1 if y
covers x in P (denoted & < y). The set P := {x € P :r(x) =i} is called i-th level and
its cardinality | P | the i-th Whitney number. 1f S is a subset of P, let r(S) := Y, cqr(2),
in particular r(P) := Y ,cp7(x). Let us emphasize, that r(P) is here not the rank of P.

A symmetric chain is a chain of the form C' = (zg <21 < ... < x,), where r(zg) +
r(xs) = m. A subset A of P is called a k-family, if there are no k+1 elements of A lying on
one chain in P. Further, F' C P is called a filter, if y > x € F impliesy € F, and I C P
is said to be an ideal, if y < x € I implies y € I. Let di(P) := max{|A| : A is a k-family}
and wy(P) denotes the largest sum of & Whitney numbers. Obviously, wi(P) < di(P),
for kK > 1. The poset P is said to be:
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i) Sperner (S), if d1(P) = wy(P),
ii) symmetric chain order (SC), if P has a partition into symmetric chains,
iii) Peck, if dp(P) = wi(P), for k > 1, and |P)| = |Pun)| < |Pa)| = |Pim-1] < --- <
[Pim2n] = [Ppm/2n)l;

iv) LYM, if > ca m < 1 for every antichain A of P,

v) rank compressed (RC), if p, := Tg') > T|(I];|) =: up for every filter F' # () of P.

Since F' is a filter iff P\ F is an ideal, one can define equivalently

v)" P is rank compressed, if py := % < up for every ideal I # () of P.
Let us mention that P.Erdés [6] proved already in 1945 that finite Boolean lattices are
Peck.

In the following we will study which of these properties are preserved by usual poset
operations, i.e. the question is: if P and () have some property, is it true that P o () has
this property either (here o is some operation)?

Throughout let m (resp., n) be the rank of P (resp., Q). If it is not clear from the
context whether r is the rank function of P, @), or P o ) we will write 7p, 79, 7poq,
respectively.

A widely studied operation is the direct product P x @), i.e. the poset on the set
{(z,y) 2 € Pand y € Q}, such that (z,y) < (2/,¢/) in Px Q if x <p 2’ and y <g v
It is well-known, that the direct product preserves the properties SC (de Bruijn et al. [2]
and Katona [10]), Peck (Canfield [3]), and RC (Engel [4]), and it does not preserve the
properties S and LYM (but with an additional condition it does (Harper [8] and Hsieh,
Kleitman [9])), see Figure 1.
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A simple operation is the direct sum P + @, i.e. the poset on the union P U (), such
that v <y in P+ Q if either z,y € P and v <p y, or z,y € Q and x <g y. In order to
obtain again a graded poset we will suppose here m = n. Then it is easy to see, that SC
and Peck properties are preserved, but S, LYM, and RC not, see Figure 2.



N

P + Q

Fig. 2

Another easy operation is the ordinal sum P @® (), i.e. the poset on the union P U Q),
such that r <yin PO Q,ifz,y€ Pandz <py,orz,y € Q and x <gy, or x € P and
y € Q. To draw the Hasse diagram of P & @), put @) above P and connect each maximal
element of P with each minimal element of ). Then it is obvious, that properties S and
LYM are preserved (note that any antichain in P @ @) is either contained completely in P
or completely in @), and also property RC is preserved (see Theorem 1), but properties
SC and Peck are not preserved, see Figure 3.
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Fig. 3

An interesting operation is the ordinal product P ® @), i.e. the poset on the set
{(z,y) : x € P and y € Q}, such that (z,y) < (¢/,¥) in PR Q, if x = 2" and y <g v/, or
x <p 2'. To draw the Hasse diagram of P ® @, replace each element x of P by a copy Q.
of @, and then connect every maximal element of ), with every minimal element of @),
whenever y covers x in P. In Theorem 2 we will prove, that properties S, LYM, and RC
are preserved. Figure 4 shows that properties SC and Peck are not preserved.
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Fig. 4

Studying posets like square submatrices of a square matrix, Sali [11] introduced the
rankwise direct product P x, (). We will suppose here again m = n. Then P X, () is the
subposet of P x @, induced by Ui~ Py x Q(;). Sali [11] showed, that properties SC, Peck,
and LYM are preserved and gave an example that property S is not preserved. Here we
present an example, which shows that also RC property is not preserved. Look at the
poset P of Figure 5, which is easily seen to be rank compressed.
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The indicated elements form a filter F'. Now it is easy to see that the filter F' X, F' in
P x,. P does not verify the filter inequality of v).

Finally, we will consider also the exponentiation QF, i.e. the poset on the set of all
order-preserving maps f : P — @ (that is,  <p y implies f(z) <o f(y)), such that f <g
if f(x) <g g(z) for all x € P. In Theorem 3 we will prove that none of the 5 properties
is preserved.

2 Main results
Theorem 1 If P and @) are rank compressed, then P @ () is rank compressed either.

Proof. Obviously, if y has rank ¢ in @), then it has rank ¢ + m + 1 in P & (). Hence

[tpao = TP(P)JF”'%&)&"LH”Q'. Let I be an ideal in P @ Q and I # 0.

Case 1. Assume I N Q = (. Since pup < ppag, and pur < pp as p is rank compressed, it
follows pr < ppag.

Case 2. Let no I'NQ # . Then P C I and~I~ ;= QNI is an ideal in ). One has
\I| = |P|+ |1|, r(I) = rp(P) +ro(I) + (m+ 1)|I|. Therefore, pu; < ppgg is equivalent to

(17e(@) = Qlre(D) + Q@ \ I|((m + D|P| = r(P)) + [P|r(@\ T) > 0.

This inequality is true, since () is rank compressed and any element of P has rank at
most m. ]

Theorem 2 If P and () are Sperner or LYM or rank compressed, then P ® Q) s resp.,
Sperner or LYM or rank compressed either.

Proof. Let A be an antichain in P ® Q. Denote A, = {y € Q : (v,y) € A} and
A={x e P:A,+#0}. Obviously, A and A, are antichains in P and Q,, respectively.

If P and () are Sperner, then

Al =" A < 3 wi(Q) = |[Alwi(Q) < wi(P)wi(Q) = w1 (P ® Q),

zeA z€A



hence P ® (@) is Sperner.

Now let P and @ be LYM. Obviously, the level containing (,y) has | Py @))||Q )]
elements. We have
1 1 1 1 <1

wagen (PO Q)uwm|  weal PranllQuwyl 25 [Pewyl ye7, 1Quwn] ~

Finally, let P and @ be rank compressed. Let I be an ideal in P ® @) and A be the
set of maximal elements of I (note that A is an antichain). We use the notation A from
above and define further I, := INQ,, F, := Qu\ I, [ :={x € P: I, #0}. Then I, (F,)

is an ideal (resp., a filter) in ), and [ is an ideal in P. It is easy to see that:

1] = 1110l = X |Fl,

z€A
(1) = re(Q) + (n+ DIQIrp(1) = 3 (ro(Fy) + (n + 1)| Eylrp(x))
€A
PeQl = |PlQ]
r(PeQ) = [Plre(@)+ (n+1)|Qlrs(P).
Now £ < t2ed) i

IPIY (1Falro(Q) = |Qlrg(Fe)) < (n+1)|Q] %

zeA

QI(11rp(P) = |Plrp(D)) + 3= (I1Plre(x) — rp(P))|Ful| -
z€A
The LHS is not greater than 0 since ) is rank compressed. So it is sufficient to verify, that
the formula in brackets is not smaller than 0. Denote A’ = {z € A : |P|rp(x)—rp(P) < 0}.
Since one can omit the positive summands in the formula and in view of |F}| < |Q,] it is
enough to show that

| lre(P) = |Plre(D) + ([Plre(A) — [A'rp(P)) > 0,

which is equivalent to o o
I\ A'lrp(P) — |Plrp(I\ A") > 0.

This inequality is true, since P is rank compressed and I \ A’ is an ideal in P. [

Let P! be the direct product of [ copies of P. The investigation of rank compressed
posets was initiated by the following result of Alekseev [1]:

P is rank compressed iff di(P') ~ w(P') as [ — oo. (1)

Moreover, from the Local Limit Theorem of Gnedenko one can easily derive

P l
wy (P ~ Il if P is not an antichain,

V2rlop
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Oheg = 0g+ (n+1)%0h,

2 |P||Q 2 1 2 2

o = (o (m+1—pp)) +——— (P02 +|Q|o3).
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|

Theorem 3 The exponentiation does not preserve any of the properties S, SC, Peck,
LYM, or RC.

Proof. First take P and () from Figure 6.

Fig. 6

Here we mean that the complete bipartite graphs K;; are forms on the indicated vertices.

Obviously, P and @ have properties S, SC, Peck, LYM, and RC. Now Q* is isomorphic
to the subposet of ) x @) induced by the set {(z,y) :  <g y}. Consider the ideal

I={(z,y) €QF 1z <iandy <iforsomei=1,...,t}
Easy calculations give us

9t% + 21t

M e 7 1

and  pgr = 4.

But p; > pge iff t > 8. Hence, QT is not rank compressed if t > 8, and consequently has
not properties SC, Peck, LYM, since these properties imply property RC (see [5]).

Finally let ¢ > 8 and denote P' = P + --- + P (I times). Again, P’ has all of the
properties above. It is known (see Stanley [12]), that QT = QF x ... x QF, hence
QY = (QF)!. Since Q” is not rank compressed, by (1)

h(Q7) = 4((@7)) > w (@) = w (@)
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if 1 is sufficiently large. Thus, Q" is not Sperner. [

Concerning the exponentiation, let us mention that if () is a distributive lattice, then

so is QF. Since distributivity implies rank compression (see [5]), in a lot of cases the
exponentiation provides a rank compressed poset. In particular, if () is a two-element
chain, Q7 is isomorphic to the lattice of ideals of P, which is consequently rank compressed
for any poset P.

3

Summary

In the following table we have summarized which of the considered properties are preserved
and which not:

P+Q|PaQ|PxQ|P®Q|Px,Q|Q"

m=n m=n
Sperner no yes no yes no no
Symm. chain | yes no yes no yes no
Peck yes no yes no yes no
LYM no yes no yes yes no
Rank compr. no yes yes yes no no
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