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Abstract

We answer the following question: Let P and Q be graded posets having some
property and let ◦ be some poset operation. Is it true that P ◦Q has also this prop-
erty? The considered properties are: being Sperner, a symmetric chain order, Peck,
LYM, and rank compressed. The studied operations are: direct product, direct
sum, ordinal sum, ordinal product, rankwise direct product, and exponentiation.

1 Introduction and overview

Throughout we will consider finite graded partially ordered sets, i.e. finite posets in which
every maximal chain has the same length. For such posets P there exists a unique function
r : P 7→ IN (called rank function) and a number m (called rank of P ), such that r(x) = 0
(r(x) = m) if x is a minimal (resp., maximal) element of P , and r(y) = r(x) + 1 if y
covers x in P (denoted x <· y). The set P(i) := {x ∈ P : r(x) = i} is called i-th level and
its cardinality |P(i)| the i-th Whitney number. If S is a subset of P , let r(S) :=

∑
x∈S r(x),

in particular r(P ) :=
∑

x∈P r(x). Let us emphasize, that r(P ) is here not the rank of P .

A symmetric chain is a chain of the form C = (x0 <·x1 <· . . . <·xs), where r(x0) +
r(xs) = m. A subset A of P is called a k-family, if there are no k+1 elements of A lying on
one chain in P . Further, F ⊆ P is called a filter, if y ≥ x ∈ F implies y ∈ F , and I ⊆ P
is said to be an ideal, if y ≤ x ∈ I implies y ∈ I. Let dk(P ) := max{|A| : A is a k-family}
and wk(P ) denotes the largest sum of k Whitney numbers. Obviously, wk(P ) ≤ dk(P ),
for k ≥ 1. The poset P is said to be:
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i) Sperner (S), if d1(P ) = w1(P ),

ii) symmetric chain order (SC), if P has a partition into symmetric chains,

iii) Peck, if dk(P ) = wk(P ), for k ≥ 1, and |P(0)| = |P(m)| ≤ |P(1)| = |P(m−1)| ≤ · · · ≤
|P(bm/2c)| = |P(dm/2e)|,

iv) LYM, if
∑

x∈A
1

|P(r(x))|
≤ 1 for every antichain A of P ,

v) rank compressed (RC), if µr := r(F )
|F | ≥

r(P )
|P | =: µP for every filter F 6= ∅ of P .

Since F is a filter iff P \ F is an ideal, one can define equivalently

v)’ P is rank compressed, if µI := r(I)
|I| ≤ µP for every ideal I 6= ∅ of P .

Let us mention that P.Erdös [6] proved already in 1945 that finite Boolean lattices are
Peck.

In the following we will study which of these properties are preserved by usual poset
operations, i.e. the question is: if P and Q have some property, is it true that P ◦Q has
this property either (here ◦ is some operation)?

Throughout let m (resp., n) be the rank of P (resp., Q). If it is not clear from the
context whether r is the rank function of P , Q, or P ◦ Q we will write rP , rQ, rP◦Q,
respectively.

A widely studied operation is the direct product P × Q, i.e. the poset on the set
{(x, y) : x ∈ P and y ∈ Q}, such that (x, y) ≤ (x′, y′) in P × Q if x ≤P x′ and y ≤Q y′.
It is well-known, that the direct product preserves the properties SC (de Bruijn et al. [2]
and Katona [10]), Peck (Canfield [3]), and RC (Engel [4]), and it does not preserve the
properties S and LYM (but with an additional condition it does (Harper [8] and Hsieh,
Kleitman [9])), see Figure 1.
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Fig. 1

A simple operation is the direct sum P + Q, i.e. the poset on the union P ∪ Q, such
that x ≤ y in P + Q if either x, y ∈ P and x ≤P y, or x, y ∈ Q and x ≤Q y. In order to
obtain again a graded poset we will suppose here m = n. Then it is easy to see, that SC
and Peck properties are preserved, but S, LYM, and RC not, see Figure 2.
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Another easy operation is the ordinal sum P ⊕Q, i.e. the poset on the union P ∪Q,
such that x ≤ y in P ⊕Q, if x, y ∈ P and x ≤P y, or x, y ∈ Q and x ≤Q y, or x ∈ P and
y ∈ Q. To draw the Hasse diagram of P ⊕Q, put Q above P and connect each maximal
element of P with each minimal element of Q. Then it is obvious, that properties S and
LYM are preserved (note that any antichain in P ⊕Q is either contained completely in P
or completely in Q), and also property RC is preserved (see Theorem 1), but properties
SC and Peck are not preserved, see Figure 3.
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An interesting operation is the ordinal product P ⊗ Q, i.e. the poset on the set
{(x, y) : x ∈ P and y ∈ Q}, such that (x, y) ≤ (x′, y′) in P ⊗Q, if x = x′ and y ≤Q y′, or
x <P x′. To draw the Hasse diagram of P ⊗Q, replace each element x of P by a copy Qx

of Q, and then connect every maximal element of Qx with every minimal element of Qy

whenever y covers x in P . In Theorem 2 we will prove, that properties S, LYM, and RC
are preserved. Figure 4 shows that properties SC and Peck are not preserved.
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Studying posets like square submatrices of a square matrix, Sali [11] introduced the
rankwise direct product P ×r Q. We will suppose here again m = n. Then P ×r Q is the
subposet of P ×Q, induced by

⋃m
i=0 P(i)×Q(i). Sali [11] showed, that properties SC, Peck,

and LYM are preserved and gave an example that property S is not preserved. Here we
present an example, which shows that also RC property is not preserved. Look at the
poset P of Figure 5, which is easily seen to be rank compressed.
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Fig. 5

The indicated elements form a filter F . Now it is easy to see that the filter F ×r F in
P ×r P does not verify the filter inequality of v).

Finally, we will consider also the exponentiation QP , i.e. the poset on the set of all
order-preserving maps f : P 7→ Q (that is, x ≤P y implies f(x) ≤Q f(y)), such that f ≤ g
if f(x) ≤Q g(x) for all x ∈ P . In Theorem 3 we will prove that none of the 5 properties
is preserved.

2 Main results

Theorem 1 If P and Q are rank compressed, then P ⊕Q is rank compressed either.

Proof. Obviously, if y has rank i in Q, then it has rank i + m + 1 in P ⊕ Q. Hence
µP⊕Q =

rP (P )+rQ(Q)+(m+1)|Q|
|P |+|Q| . Let I be an ideal in P ⊕Q and I 6= ∅.

Case 1. Assume I ∩ Q = ∅. Since µP ≤ µP⊕Q, and µI ≤ µP as p is rank compressed, it
follows µI ≤ µP⊕Q.

Case 2. Let no I ∩ Q 6= ∅. Then P ⊆ I and Ĩ := Q ∩ I is an ideal in Q. One has
|I| = |P |+ |Ĩ|, r(I) = rP (P ) + rQ(Ĩ) + (m + 1)|Ĩ|. Therefore, µI ≤ µP⊕Q is equivalent to(

|Ĩ|rQ(Q)− |Q|rQ(Ĩ)
)

+ |Q \ Ĩ|
(
(m + 1)|P | − r(P )

)
+ |P |r(Q \ Ĩ) ≥ 0.

This inequality is true, since Q is rank compressed and any element of P has rank at
most m.

Theorem 2 If P and Q are Sperner or LYM or rank compressed, then P ⊗ Q is resp.,
Sperner or LYM or rank compressed either.

Proof. Let A be an antichain in P ⊗ Q. Denote Ax = {y ∈ Q : (x, y) ∈ A} and
Ã = {x ∈ P : Ax 6= ∅}. Obviously, Ã and Ax are antichains in P and Qx, respectively.

If P and Q are Sperner, then

|A| =
∑
x∈Ã

|Ax| ≤
∑
x∈Ã

w1(Q) = |Ã|w1(Q) ≤ w1(P )w1(Q) = w1(P ⊗Q),
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hence P ⊗Q is Sperner.

Now let P and Q be LYM. Obviously, the level containing (x, y) has |P(r(x))||Q(r(x))|
elements. We have∑

(x,y)∈A

1

|(P ⊗Q)(r(x,y))|
=

∑
(x,y)∈A

1

|P(r(x))||Q(r(y))|
=

∑
x∈Ã

1

|P(r(x))|
∑

y∈Ax

1

|Q(r(y))|
≤ 1.

Finally, let P and Q be rank compressed. Let I be an ideal in P ⊗ Q and A be the
set of maximal elements of I (note that A is an antichain). We use the notation Ã from
above and define further Ix := I ∩Qx, Fx := Qx \ Ix, Ĩ := {x ∈ P : Ix 6= ∅}. Then Ix (Fx)
is an ideal (resp., a filter) in Qx and Ĩ is an ideal in P . It is easy to see that:

|I| = |Ĩ||Q| −
∑
x∈Ã

|Fx|,

r(I) = |Ĩ|rQ(Q) + (n + 1)|Q|rP (Ĩ)−
∑
x∈Ã

(
rQ(Fx) + (n + 1)|Fx|rP (x)

)
|P ⊗Q| = |P ||Q|

r(P ⊗Q) = |P |rQ(Q) + (n + 1)|Q|rP (P ).

Now r(I)
|I| ≤

r(P⊗Q)
|P⊗Q| iff

|P |
∑
x∈Ã

(
|Fx|rQ(Q)− |Q|rQ(Fx)

)
≤ (n + 1)|Q|×

|Q|(|Ĩ|rP (P )− |P |rP (Ĩ)
)

+
∑
x∈Ã

(
|P |rP (x)− rP (P )

)
|Fx|

 .

The LHS is not greater than 0 since Q is rank compressed. So it is sufficient to verify, that
the formula in brackets is not smaller than 0. Denote Ã′ = {x ∈ Ã : |P |rP (x)−rP (P ) ≤ 0}.
Since one can omit the positive summands in the formula and in view of |Fx| ≤ |Qx| it is
enough to show that

|Ĩ|rP (P )− |P |rP (Ĩ) +
(
|P |rP (Ã′)− |Ã′|rP (P )

)
≥ 0,

which is equivalent to
|Ĩ \ Ã′|rP (P )− |P |rP (Ĩ \ Ã′) ≥ 0.

This inequality is true, since P is rank compressed and Ĩ \ Ã′ is an ideal in P .

Let P l be the direct product of l copies of P . The investigation of rank compressed
posets was initiated by the following result of Alekseev [1]:

P is rank compressed iff d1(P
l) ∼ w1(P

l) as l 7→ ∞. (1)

Moreover, from the Local Limit Theorem of Gnedenko one can easily derive

w1(P
l) ∼ |P |l√

2πlσP

if P is not an antichain,
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where σ2
P = 1

|P |
∑

x∈P
r2(x)− µ2

p (see Engel, Gronau [5]).

Remark. Straight-forward computations give us the following results:

σ2
P×Q = σ2

P + σ2
Q,

σ2
P⊗Q = σ2

Q + (n + 1)2σ2
P ,

σ2
P⊕Q =

|P ||Q|
(|P |+ |Q|)2

(
µQ + (m + 1− µP )

)2
+

1

|P |+ |Q|
(
|P |σ2

p + |Q|σ2
Q

)
.

Theorem 3 The exponentiation does not preserve any of the properties S, SC, Peck,
LYM, or RC.

Proof. First take P and Q from Figure 6.
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Here we mean that the complete bipartite graphs Kt,t are forms on the indicated vertices.

Obviously, P and Q have properties S, SC, Peck, LYM, and RC. Now QP is isomorphic
to the subposet of Q×Q induced by the set {(x, y) : x ≤Q y}. Consider the ideal

I := {(x, y) ∈ QP : x ≤ i and y ≤ i for some i = 1, . . . , t}.

Easy calculations give us

µI =
9t2 + 21t

2t2 + 7t + 1
and µQP = 4.

But µI > µQP iff t ≥ 8. Hence, QP is not rank compressed if t ≥ 8, and consequently has
not properties SC, Peck, LYM, since these properties imply property RC (see [5]).

Finally let t ≥ 8 and denote P ′ = P + · · · + P (l times). Again, P ′ has all of the
properties above. It is known (see Stanley [12]), that QP+...+P ∼= QP × . . . × QP , hence
QP ′ ∼= (QP )l. Since QP is not rank compressed, by (1)

d1

(
QP ′)

= d1

(
(QP )l

)
> w1

(
(QP )l

)
= w1

(
QP ′)
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if l is sufficiently large. Thus, QP ′
is not Sperner.

Concerning the exponentiation, let us mention that if Q is a distributive lattice, then
so is QP . Since distributivity implies rank compression (see [5]), in a lot of cases the
exponentiation provides a rank compressed poset. In particular, if Q is a two-element
chain, QP is isomorphic to the lattice of ideals of P , which is consequently rank compressed
for any poset P .

3 Summary

In the following table we have summarized which of the considered properties are preserved
and which not:

P + Q P ⊕Q P ×Q P ⊗Q P ×r Q QP

m = n m = n

Sperner no yes no yes no no
Symm. chain yes no yes no yes no
Peck yes no yes no yes no
LYM no yes no yes yes no
Rank compr. no yes yes yes no no
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