Properties of Graded Posets Preserved by Some Operations

SERGEI L. BEZRUKOV[†] Universität Bielefeld, Fakultät für Mathematik Postfach 100131, W-4800 Bielefeld

> KONRAD ENGEL Universität Rostock, FB Mathematik Postfach 999, O-2500 Rostock

Abstract

We answer the following question: Let P and Q be graded posets having some property and let \circ be some poset operation. Is it true that $P \circ Q$ has also this property? The considered properties are: being Sperner, a symmetric chain order, Peck, LYM, and rank compressed. The studied operations are: direct product, direct sum, ordinal sum, ordinal product, rankwise direct product, and exponentiation.

1 Introduction and overview

Throughout we will consider finite graded partially ordered sets, i.e. finite posets in which every maximal chain has the same length. For such posets P there exists a unique function $r: P \mapsto \mathbb{N}$ (called rank function) and a number m (called rank of P), such that r(x) = 0(r(x) = m) if x is a minimal (resp., maximal) element of P, and r(y) = r(x) + 1 if ycovers x in P (denoted x < y). The set $P_{(i)} := \{x \in P : r(x) = i\}$ is called *i*-th level and its cardinality $|P_{(i)}|$ the *i*-th Whitney number. If S is a subset of P, let $r(S) := \sum_{x \in S} r(x)$, in particular $r(P) := \sum_{x \in P} r(x)$. Let us emphasize, that r(P) is here not the rank of P.

A symmetric chain is a chain of the form $C = (x_0 < x_1 < \dots < x_s)$, where $r(x_0) + r(x_s) = m$. A subset A of P is called a k-family, if there are no k+1 elements of A lying on one chain in P. Further, $F \subseteq P$ is called a filter, if $y \ge x \in F$ implies $y \in F$, and $I \subseteq P$ is said to be an *ideal*, if $y \le x \in I$ implies $y \in I$. Let $d_k(P) := \max\{|A| : A \text{ is a } k\text{-family}\}$ and $w_k(P)$ denotes the largest sum of k Whitney numbers. Obviously, $w_k(P) \le d_k(P)$, for $k \ge 1$. The poset P is said to be:

[†]On leave of the Institute for Problems of Information Transmission, Ermolova str.19, 101447 Moscow.

- i) Sperner (S), if $d_1(P) = w_1(P)$,
- ii) symmetric chain order (SC), if P has a partition into symmetric chains,
- iii) Peck, if $d_k(P) = w_k(P)$, for $k \ge 1$, and $|P_{(0)}| = |P_{(m)}| \le |P_{(1)}| = |P_{(m-1)}| \le \cdots \le |P_{(\lfloor m/2 \rfloor)}| = |P_{(\lceil m/2 \rceil)}|$,
- iv) LYM, if $\sum_{x \in A} \frac{1}{|P(r(x))|} \leq 1$ for every antichain A of P,
- v) rank compressed (RC), if $\mu_r := \frac{r(F)}{|F|} \ge \frac{r(P)}{|P|} =: \mu_P$ for every filter $F \neq \emptyset$ of P.

Since F is a filter iff $P \setminus F$ is an ideal, one can define equivalently

v)' *P* is rank compressed, if $\mu_I := \frac{r(I)}{|I|} \le \mu_P$ for every ideal $I \neq \emptyset$ of *P*.

Let us mention that P.Erdös [6] proved already in 1945 that finite Boolean lattices are Peck.

In the following we will study which of these properties are preserved by usual poset operations, i.e. the question is: if P and Q have some property, is it true that $P \circ Q$ has this property either (here \circ is some operation)?

Throughout let m (resp., n) be the rank of P (resp., Q). If it is not clear from the context whether r is the rank function of P, Q, or $P \circ Q$ we will write r_P , r_Q , $r_{P \circ Q}$, respectively.

A widely studied operation is the *direct product* $P \times Q$, i.e. the poset on the set $\{(x, y) : x \in P \text{ and } y \in Q\}$, such that $(x, y) \leq (x', y')$ in $P \times Q$ if $x \leq_P x'$ and $y \leq_Q y'$. It is well-known, that the direct product preserves the properties SC (de Bruijn et al. [2] and Katona [10]), Peck (Canfield [3]), and RC (Engel [4]), and it does not preserve the properties S and LYM (but with an additional condition it does (Harper [8] and Hsieh, Kleitman [9])), see Figure 1.

Fig. 1

A simple operation is the *direct sum* P + Q, i.e. the poset on the union $P \cup Q$, such that $x \leq y$ in P + Q if either $x, y \in P$ and $x \leq_P y$, or $x, y \in Q$ and $x \leq_Q y$. In order to obtain again a graded poset we will suppose here m = n. Then it is easy to see, that SC and Peck properties are preserved, but S, LYM, and RC not, see Figure 2.

Another easy operation is the ordinal sum $P \oplus Q$, i.e. the poset on the union $P \cup Q$, such that $x \leq y$ in $P \oplus Q$, if $x, y \in P$ and $x \leq_P y$, or $x, y \in Q$ and $x \leq_Q y$, or $x \in P$ and $y \in Q$. To draw the Hasse diagram of $P \oplus Q$, put Q above P and connect each maximal element of P with each minimal element of Q. Then it is obvious, that properties S and LYM are preserved (note that any antichain in $P \oplus Q$ is either contained completely in Por completely in Q), and also property RC is preserved (see Theorem 1), but properties SC and Peck are not preserved, see Figure 3.

Fig. 3

An interesting operation is the ordinal product $P \otimes Q$, i.e. the poset on the set $\{(x, y) : x \in P \text{ and } y \in Q\}$, such that $(x, y) \leq (x', y')$ in $P \otimes Q$, if x = x' and $y \leq_Q y'$, or $x <_P x'$. To draw the Hasse diagram of $P \otimes Q$, replace each element x of P by a copy Q_x of Q, and then connect every maximal element of Q_x with every minimal element of Q_y whenever y covers x in P. In Theorem 2 we will prove, that properties S, LYM, and RC are preserved. Figure 4 shows that properties SC and Peck are not preserved.

Fig. 4

Studying posets like square submatrices of a square matrix, Sali [11] introduced the rankwise direct product $P \times_r Q$. We will suppose here again m = n. Then $P \times_r Q$ is the subposet of $P \times Q$, induced by $\bigcup_{i=0}^{m} P_{(i)} \times Q_{(i)}$. Sali [11] showed, that properties SC, Peck, and LYM are preserved and gave an example that property S is not preserved. Here we present an example, which shows that also RC property is not preserved. Look at the poset P of Figure 5, which is easily seen to be rank compressed.

Fig. 5

The indicated elements form a filter F. Now it is easy to see that the filter $F \times_r F$ in $P \times_r P$ does not verify the filter inequality of v).

Finally, we will consider also the exponentiation Q^P , i.e. the poset on the set of all order-preserving maps $f: P \mapsto Q$ (that is, $x \leq_P y$ implies $f(x) \leq_Q f(y)$), such that $f \leq g$ if $f(x) \leq_Q g(x)$ for all $x \in P$. In Theorem 3 we will prove that none of the 5 properties is preserved.

2 Main results

Theorem 1 If P and Q are rank compressed, then $P \oplus Q$ is rank compressed either.

Proof. Obviously, if y has rank i in Q, then it has rank i + m + 1 in $P \oplus Q$. Hence $\mu_{P \oplus Q} = \frac{r_P(P) + r_Q(Q) + (m+1)|Q|}{|P| + |Q|}$. Let I be an ideal in $P \oplus Q$ and $I \neq \emptyset$.

Case 1. Assume $I \cap Q = \emptyset$. Since $\mu_P \leq \mu_{P \oplus Q}$, and $\mu_I \leq \mu_P$ as p is rank compressed, it follows $\mu_I \leq \mu_{P \oplus Q}$.

Case 2. Let no $I \cap Q \neq \emptyset$. Then $P \subseteq I$ and $\tilde{I} := Q \cap I$ is an ideal in Q. One has $|I| = |P| + |\tilde{I}|, r(I) = r_P(P) + r_Q(\tilde{I}) + (m+1)|\tilde{I}|$. Therefore, $\mu_I \leq \mu_{P \oplus Q}$ is equivalent to

$$\left(|\tilde{I}|r_Q(Q) - |Q|r_Q(\tilde{I})\right) + |Q \setminus \tilde{I}|\left((m+1)|P| - r(P)\right) + |P|r(Q \setminus \tilde{I}) \ge 0.$$

This inequality is true, since Q is rank compressed and any element of P has rank at most m.

Theorem 2 If P and Q are Sperner or LYM or rank compressed, then $P \otimes Q$ is resp., Sperner or LYM or rank compressed either.

Proof. Let A be an antichain in $P \otimes Q$. Denote $A_x = \{y \in Q : (x, y) \in A\}$ and $\tilde{A} = \{x \in P : A_x \neq \emptyset\}$. Obviously, \tilde{A} and A_x are antichains in P and Q_x , respectively.

If P and Q are Sperner, then

$$|A| = \sum_{x \in \tilde{A}} |A_x| \le \sum_{x \in \tilde{A}} w_1(Q) = |\tilde{A}| w_1(Q) \le w_1(P) w_1(Q) = w_1(P \otimes Q),$$

hence $P \otimes Q$ is Sperner.

Now let P and Q be LYM. Obviously, the level containing (x, y) has $|P_{(r(x))}||Q_{(r(x))}|$ elements. We have

$$\sum_{(x,y)\in A} \frac{1}{|(P\otimes Q)_{(r(x,y))}|} = \sum_{(x,y)\in A} \frac{1}{|P_{(r(x))}||Q_{(r(y))}|} = \sum_{x\in\tilde{A}} \frac{1}{|P_{(r(x))}|} \sum_{y\in A_x} \frac{1}{|Q_{(r(y))}|} \le 1.$$

Finally, let P and Q be rank compressed. Let I be an ideal in $P \otimes Q$ and A be the set of maximal elements of I (note that A is an antichain). We use the notation \tilde{A} from above and define further $I_x := I \cap Q_x$, $F_x := Q_x \setminus I_x$, $\tilde{I} := \{x \in P : I_x \neq \emptyset\}$. Then $I_x (F_x)$ is an ideal (resp., a filter) in Q_x and \tilde{I} is an ideal in P. It is easy to see that:

$$\begin{aligned} |I| &= |\tilde{I}||Q| - \sum_{x \in \tilde{A}} |F_x|, \\ r(I) &= |\tilde{I}|r_Q(Q) + (n+1)|Q|r_P(\tilde{I}) - \sum_{x \in \tilde{A}} \left(r_Q(F_x) + (n+1)|F_x|r_P(x) \right) \\ |P \otimes Q| &= |P||Q| \end{aligned}$$

$$r(P \otimes Q) = |P|r_Q(Q) + (n+1)|Q|r_P(P).$$

Now $\frac{r(I)}{|I|} \leq \frac{r(P \otimes Q)}{|P \otimes Q|}$ iff $|P| \sum_{x \in \tilde{A}} \left(|F_x| r_Q(Q) - |Q| r_Q(F_x) \right) \leq (n+1) |Q| \times \left[|Q| \left(|\tilde{I}| r_P(P) - |P| r_P(\tilde{I}) \right) + \sum_{x \in \tilde{A}} \left(|P| r_P(x) - r_P(P) \right) |F_x| \right].$

The LHS is not greater than 0 since Q is rank compressed. So it is sufficient to verify, that the formula in brackets is not smaller than 0. Denote $\tilde{A}' = \{x \in \tilde{A} : |P|r_P(x) - r_P(P) \leq 0\}$. Since one can omit the positive summands in the formula and in view of $|F_x| \leq |Q_x|$ it is enough to show that

$$|\tilde{I}|r_P(P) - |P|r_P(\tilde{I}) + (|P|r_P(\tilde{A}') - |\tilde{A}'|r_P(P)) \ge 0,$$

which is equivalent to

$$|\tilde{I} \setminus \tilde{A}'|r_P(P) - |P|r_P(\tilde{I} \setminus \tilde{A}') \ge 0.$$

This inequality is true, since P is rank compressed and $\tilde{I} \setminus \tilde{A}'$ is an ideal in P.

Let P^l be the direct product of l copies of P. The investigation of rank compressed posets was initiated by the following result of Alekseev [1]:

$$P$$
 is rank compressed iff $d_1(P^l) \sim w_1(P^l)$ as $l \mapsto \infty$. (1)

Moreover, from the Local Limit Theorem of Gnedenko one can easily derive

$$w_1(P^l) \sim \frac{|P|^l}{\sqrt{2\pi l}\sigma_P}$$
 if P is not an antichain,

where $\sigma_P^2 = \frac{1}{|P|} \sum_{x \in P} r^2(x) - \mu_p^2$ (see Engel, Gronau [5]).

Remark. Straight-forward computations give us the following results:

$$\begin{split} \sigma_{P \times Q}^2 &= \sigma_P^2 + \sigma_Q^2, \\ \sigma_{P \otimes Q}^2 &= \sigma_Q^2 + (n+1)^2 \sigma_P^2, \\ \sigma_{P \oplus Q}^2 &= \frac{|P||Q|}{(|P|+|Q|)^2} \Big(\mu_Q + (m+1-\mu_P) \Big)^2 + \frac{1}{|P|+|Q|} \Big(|P|\sigma_p^2 + |Q|\sigma_Q^2 \Big). \end{split}$$

Theorem 3 The exponentiation does not preserve any of the properties S, SC, Peck, LYM, or RC.

Proof. First take P and Q from Figure 6.

Fig. 6

Here we mean that the complete bipartite graphs $K_{t,t}$ are forms on the indicated vertices.

Obviously, P and Q have properties S, SC, Peck, LYM, and RC. Now Q^P is isomorphic to the subposet of $Q \times Q$ induced by the set $\{(x, y) : x \leq_Q y\}$. Consider the ideal

$$I := \{(x, y) \in Q^P : x \le i \text{ and } y \le i \text{ for some } i = 1, ..., t\}.$$

Easy calculations give us

$$\mu_I = \frac{9t^2 + 21t}{2t^2 + 7t + 1}$$
 and $\mu_{Q^P} = 4.$

But $\mu_I > \mu_{Q^P}$ iff $t \ge 8$. Hence, Q^P is not rank compressed if $t \ge 8$, and consequently has not properties SC, Peck, LYM, since these properties imply property RC (see [5]).

Finally let $t \geq 8$ and denote $P' = P + \cdots + P$ (*l* times). Again, P' has all of the properties above. It is known (see Stanley [12]), that $Q^{P+\dots+P} \cong Q^P \times \ldots \times Q^P$, hence $Q^{P'} \cong (Q^P)^l$. Since Q^P is not rank compressed, by (1)

$$d_1(Q^{P'}) = d_1((Q^P)^l) > w_1((Q^P)^l) = w_1(Q^{P'})$$

if l is sufficiently large. Thus, $Q^{P'}$ is not Sperner.

Concerning the exponentiation, let us mention that if Q is a distributive lattice, then so is Q^P . Since distributivity implies rank compression (see [5]), in a lot of cases the exponentiation provides a rank compressed poset. In particular, if Q is a two-element chain, Q^P is isomorphic to the lattice of ideals of P, which is consequently rank compressed for any poset P.

3 Summary

	$\begin{array}{c} P+Q\\ m=n \end{array}$	$P\oplus Q$	$P \times Q$	$P\otimes Q$	$\begin{array}{c} P \times_r Q \\ m = n \end{array}$	Q^P
Sperner	no	yes	no	yes	no	no
Symm. chain	yes	no	yes	no	yes	no
Peck	yes	no	yes	no	yes	no
LYM	no	yes	no	yes	yes	no
Rank compr.	no	yes	yes	yes	no	no

In the following table we have summarized which of the considered properties are preserved and which not:

References

- V.B. Alekseev. The number of monotone k-valued functions. Problemy Kibernet., 28:5–24, 1974.
- [2] N.G.de Bruijn, C.A.v.E. Tengbergen, and D. Kruyswijk. On the set of divisors of a number. *Nieuw Arch. Wiskunde*, 23:191–193, 1951.
- [3] E.R. Canfield. A Sperner property preserved by product. *Linear and Multilinear Algebra*, 9:151–157, 1980.
- [4] K. Engel. Optimal representations of partially ordered sets and a limit Sperner theorem. European J. Combin., 7:287–302, 1986.
- [5] K. Engel and H.-D.O.F. Gronau. Sperner theory in partially ordered sets. BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1985.
- [6] P.Erdös. On a lemma of Littlewood and Offord. Bull. Amer. Math. Sos., 51:898–902, 1945.
- [7] J.R. Griggs. Matchings, cutsets, and chain partitions in ranked posets. *preprint*, 1991.
- [8] L.H. Harper. The morphology of partially ordered sets. J. Combin. Theory, Ser. A, 17:44–58, 1974.

- [9] W.N. Hsieh and D.J. Kleitman. Normalized matching in direct products of partial orders. *Studies in Appl. Math.*, 52:285–289, 1973.
- [10] G.O.H. Katona. A generalization of some generalizations of Sperner's theorem. J. Combin. Theory, Ser. B, 12:72–81, 1972.
- [11] A. Sali. Constructions of ranked posets. Discrete Math., 70:77–83, 1988.
- [12] R.P. Stanley. Enumerative combinatorics, volume 1. Wadsworth & Brooks, Monterey, California, 1986.