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Abstract

In this paper we consider two conjectures of H.M. Mulder [M] and give partial
solutions for them. First we prove that a triangle free superspherical graph is interval
regular provided it satisfies an additional (not too strong) condition. Furthermore,
we show that a spherical interval regular graph is interval monotone.

1 Introduction

Graphs that are well-structured or highly symmetrical are studied extensively. In par-
ticular hypercubes and graphs that are close to hypercubes draw much attention. In his
book [M] H.M. Mulder put forward the following conjecture (see the definitions below).

Conjecture 1.1 An interval regular graph is interval monotone.

Furthermore, he proposed the following.

Conjecture 1.2 A triangle free superspherical graph is interval regular.

In the present paper we prove two related theorems. In order to formulate the results we
need some definitions.

Definition 1.3 Let G = (V, E) be a finite graph and let u, v ∈ V . The interval I(u, v) is
the subgraph of G induced by the set of all vertices lying on a shortest path between u and
v. The length of the interval is the distance d(u, v) of u and v.

Let us denote the d-dimensional hypercube by Bd. So Bd is the graph whose vertex set is
{0, 1}d and two vertices are connected by an edge iff they differ in exactly one position.

Definition 1.4 Let G = (V, E) be a finite connected graph. G is called interval regular
if for any u, v ∈ V the subgraph induced by the set of edges between levels in the interval
I(u, v) is a hypercube Bd with d = d(u, v).
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Note that this definition is different from that of [M], but the two are equivalent.
Furthermore, I(u, v) need not be isomorphic to Bd even in the case of an interval regular
G. Let us denote the property that the subgraph induced by the set of edges between levels
in the interval I(u, v) is a hypercube Bd with d = d(u, v) by I(u, v) ./ Bd. The next
definition deals with convexity properties of intervals.

Definition 1.5 Let G = (V, E) be a finite graph and let A ⊂ V . We say that A is convex
if for every x, y ∈ A the vertices of I(x, y) are contained in A. G is interval monotone
if each interval of G is convex. G is said to have the quadrangle property, if for every
interval I(u, v) of G and every x, y ∈ I(u, v) such that d(x, u) = 1 and d(y, u) = 1, there
exists a u 6= z ∈ I(u, v) such that d(z, x) = d(z, y) = 1.

One more definition is needed.

Definition 1.6 Let G = (V, E) be a finite graph and let u, v ∈ V such that d(u, v) = d.
Let x, y ∈ I(u, v). We say that x and y are diametrical if d(x, y) = d(u, v) = d. G is
called spherical if for every point in each of its intervals there exists at least one diametrical
point in that particular interval. G is superspherical if spherical and for every point the
diametrical pair is unique in every interval.

If x and y are diametrical in some interval, then y is often called the opposite or
complement of x in that interval. It is easy to see that Bd is an example of superspherical
graphs. However, a superspherical graph need not be a hypercube as the following example
shows. Let Bd(1, d) denote the graph whose vertex set is {0, 1}d and two vertices are
connected by an edge iff they differ in exactly one or d positions. Then B2t(1, 2t) is a
superspherical graph.

Now we can formulate the main results.

Theorem 1.7 If a triangle free superspherical graph G satisfies the quadrangle property,
then it is interval regular.

Theorem 1.8 If an interval regular graph G is spherical, then it is interval monotone.

As an immediate corollary we obtain the following.

Corollary 1.9 For triangle free superspherical graphs the following three conditions are
equivalent:

(i) G satisfies the quadrangle property
(ii) G is interval monotone
(iii) G is interval regular.

We mention that Havel and Liebl proved that a bipartite superspherical graph is in
fact isomorphic to a hypercube [HL].
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2 Proofs

The proof of Theorem 1.7 consists of several small steps. We use induction on d. Let α
be a neighbor of v in I(u, v). Let ᾱ be its unique diametrical pair. Let level i consist of
vertices in I(u, v) of distance i from u. For z ∈ I(u, v) let l(z) denote the level of z. The
first step is the case d = 2.

Step 1 If x and y are such that d(x, y) = 2, then I(x, y) ∼= B2.

Proof.
I(x, y) consists of common neighbors of x and y besides x and y because d(x, y) = 2.
By the triangle free property there does not exist edge between two different neighbors
of x. There is at least one vertex z ∈ I(x, y), so there must exist its diametrical pair,
say w. Now, if there was any other vertex in I(x, y), then z would have more than one
diametrical pair, a contradiction.

Step 2 I(u, α) ∩ I(ᾱ, v) = ∅.

Proof.
Suppose in contrary that there exists β of level i in I(u, v) such that β ∈ I(u, α)∩ I(ᾱ, v).
Then we have d(ᾱ, β) = i− 1 and d(β, α) = d− i so

d(α, ᾱ) ≤ d(ᾱ, β) + d(β, α) = i− 1 + d− i < d

would hold, a contradiction.

Step 3 There does not exist an x ∈ (I(u, v) \ (I(u, α) ∪ I(ᾱ, v))) of level i such that it
has a neighbor of level i− 1 in I(u, α), and one of level i + 1 in I(ᾱ, v).

Proof.
Suppose that there exists such an x and let its neighbors be z and w (l(z) = i − 1 and
l(w) = i + 1). Then d(z, w) = 2, so I(z, w) ∼= B2. Hence, there exists a vertex t such
that t ∈ I(z, w) \ {x}. It is easy to see that t is of level i in I(u, v). Suppose first, that
w 6= v and z 6= u. If t /∈ I(ᾱ, v), then w would have at least i + 2 neighbors of level
i in I(u, v) that contradicts to the induction hypothesis I(u, w) ./ Bi+1 . On the other
hand, if t ∈ I(ᾱ, v), then z has at least d − i + 2 neighbors on level i. If z 6= u, then
this contradicts to the induction hypothesis. Now let w = v. Pick a neighbor q of v in
I(ᾱ, v). Let a be a common neighbor of x and q on level d − 2, and let b be that of α
and q provided by the quadrangle property. Then q 6∈ I(u, α) ∪ I(ᾱ, v) and b ∈ I(u, α).
So q has at least d neighbors on level d − 2 in I(u, v) that contradicts to the induction
hypothesis I(u, q) ./ Bd−1. For z = u we obtain contradiction in similar way as in the
case w = v.

Step 4 If l(y) = j 6= d and all neighbors of y of level j − 1 are in I(u, v) \ I(u, α), then
I(u, α) ∩ I(u, y) = {u}.
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Proof.
Suppose that z 6= u, such that z ∈ I(u, α) ∩ I(u, y) and z is of the highest level subject
to this condition. Let l(z) = k. Then z has d− 1− k neighbors of level k + 1 in I(u, α).
Furthermore, z has j − k neighbors of level k + 1 in I(u, y). All these are different, so z
has at least d + j − 2k − 1 > d− k neighbors of level k + 1 in I(u, v) that contradicts to
the induction hypothesis I(z, v) ./ Bd−k.

Note 1 Similar proposition holds if we consider level j + 1 neighbors with the conclusion
that I(ᾱ, v) ∩ I(y, v) = {v}.

Step 5 If z ∈ I(u, α), z 6= u, l(z) = i, w ∈ I(u, v)\ I(u, α), l(w) = i+1 and {z, w} is an
edge, then w ∈ I(ᾱ, v). The same holds for changing I(u, α) to I(ᾱ, v) and i + 1 to i− 1.

Proof.
Suppose that w /∈ I(ᾱ, v). Then no neighbor of w of level i + 2 can be in I(ᾱ, v) by Step
3. Thus, by Step 4 we have that I(ᾱ, v) ∩ I(w, v) = {v}. Let w = t0, t1, . . . , ts = v be a
shortest (d− i− 1-long) path from w to v. Because I(u, ts−1)∩ I(u, α) 3 z 6= u, ts−1 must
have a neighbor of level d− 2 in I(u, α). This contradicts to Step 3.

Note 2 If z ∈ I(u, α) (z ∈ I(ᾱ, v)) such that l(z) = i, then all neighbors of z of level
i− 1 (i + 1) are in I(u, α) (I(ᾱ, v)).

Step 6 For every z ∈ I(u, α), such that z 6= u and l(z) = i, there exists exactly one w
l(w) = i + 1 such that {z, w} is an edge and w /∈ I(u, α). The same holds for exchanging
I(u, α) to I(ᾱ, v) and i + 1 to i− 1.

Proof.
I(z, v) ./ Bd−i by the induction hypothesis (z 6= u), so z has d− i neighbors of level i + 1
in I(u, v). Out of those d− i− 1 lie in I(u, α).

Let us denote the above w by z′ and let u′ = ᾱ by definition. Then by Step 3-5,
z′ ∈ I(ᾱ, v) if z ∈ I(u, α) and vice versa. Furthermore, (z′)′ = z. Hence, z 7→ z′ is a
bijection between I(u, α) and I(ᾱ, v).

Step 7 z 7→ z′ is an isomorphism between the graphs induced by edges between different
levels of I(u, α) and I(ᾱ, v), respectively.

Proof.
It is enough to show that {x, y} is an edge in I(u, α) implies {x′, y′} is an edge in I(ᾱ, v).
The reverse comes from (z′)′ = z. Let {x, y} be an edge, such that l(x) = i and l(y) = i+1.
Then d(x, y′) = d(x′, y) = 2, so x and y′ must have a unique common neighbor other than
y. If it is in I(ᾱ, v), then by Step 6, it must be x′. If it is in I(u, α), then it must
be on level i + 1. Then again by Step 6, it must be y, a contradiction. If it is in
I(u, v) \ (I(u, α) ∪ I(ᾱ, v)), then it contradicts to Step 3.

Step 8 If l(z) = i, z ∈ I(u, α), l(w) ≤ i and w ∈ I(ᾱ, v), then {z, w} is not an edge.
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Proof.
By the triangle inequality we have that

d(α, ᾱ) ≤ d(α, z) + d(z, w) + d(w, ᾱ)

≤ d− 1− i + 1 + i− 1 = d− 1

a contradiction.

Now, if we do not consider edges between vertices of the same level, then I(u, α) and
I(ᾱ, v) are d − 1 dimensional hypercubes, respectively. Furthermore, the latter one is
positioned one level higher, and there is an edge between corresponding vertices of I(u, α)
and I(ᾱ, v). No other edge is going between vertices of different levels so we can conclude
that I(u, α) ∪ I(ᾱ, v) ./ Bd.

Step 9 I(u, v) = I(u, α) ∪ I(ᾱ, v).

Proof.
Suppose in contrary that there exists a neighbor x of v in I(u, v) \ (I(u, α) ∪ I(ᾱ, v)).
Then by the quadrangle property there exists z ∈ I(u, v) of level d − 2 such that z is
connected to both x and α. This implies that z ∈ I(u, α). However, this contradicts to
Step 3.

Proof of Theorem 1.8.
Let u, v ∈ V (G) and x, y ∈ I(u, v). Let us denote the distance of x and y in the graph
I(u, v) by duv(x, y) to distinguish from their distance in G, d(x, y). If duv(x, y) = d(x, y) =
b, then I(x, y) ./ Bb. However, I(u, v) contains a b-cube between x and y because I(u, v) ./
Bd. This means that I(x, y) ⊂ I(u, v). On the other hand, if duv(x, y) > d(x, y), then x
does not have a diametrical pair in I(u, v), which contradicts to the assumption that G
is spherical.
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