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Abstract

We survey results on edge isoperimetric problems on graphs, present some new results
and show some applications of such problems in combinatorics and computer science.

1 Introduction

Let G = (VG, EG) be a simple connected graph. For a subset A ⊆ VG denote

IG(A) = {(u, v) ∈ EG | u, v ∈ A},
θG(A) = {(u, v) ∈ EG | u ∈ A, v 6∈ A}.

We omit the subscript G if the graph is uniquely defined by the context. By edge isoperimetric
problems we mean the problem of estimation of the maximum and minimum of the functions I
and θ respectively, taken over all subsets of VG of the same cardinality. The subsets on which
the extremal values of I (or θ) are attained are called isoperimetric subsets.

These problems are discrete analogies of some continuous problems, many of which can be
found in the book of Pólya and Szegö [99] devoted to continuous isoperimetric inequalities and
their numerous applications. Although the continuous isoperimetric problems have a history of
thousand years, the discrete structures studied mostly in the present century, also gave rise to
hundreds of specific discrete problems. Two of such problems we study in our paper.

Denote
IG(m) = max

A⊆VG
|A|=m

|IG(A)|, θG(m) = min
A⊆VG
|A|=m

|θG(A)|.

∗Supported by the German Research Association (DFG) within the SFB 376 project “Massive Parallelität:
Algorithmen, Entwurfsmethoden, Anwendungen” and the EC ESPRIT Long Term Research Project 200244
(ALCOM-IT).

1



The two discrete problems mentioned above are closely related and for k-regular graphs are
equivalent due to the equation

2 · |IG(A)|+ |θG(A)| = k · |A|, (1)

which implies 2IG(m) + θG(m) = km, m = 1, . . . , |VG|. For non-regular graphs, however, the
difference between the two problems can be significant, as we will demonstrate below.

The both problems are known to be NP-hard in general [57], however the problem of maximiza-
tion of I is a bit simpler in a sense, because it is free of so-called “border effects”. Consider for
example a two-dimensional grid and let m = 4. It is a simple exercise to show that a cycle of
length 4 provides an isoperimetric set with respect to the function I and for each such a cycle
the value of I is the same. Also if each side of the grid consists of at least 4 vertices, the same
cycle located in one of the grid corners provides minimum to the function θ. However, in this
case the value of θ of a 4-cycle strictly depends on the location of the cycle in the grid. Because
of such effects most of the exact results concern the maximization problem, however in most
applications the function θ arises.

We distinguish three kinds of solutions of our problems. The general goal is to find a function
f(m, G) such that θG(m) ≥ f(m, G). We call such inequality isoperimetric inequality. Ideally,
one would determine the function θG(m) in order to get the best possible inequality of this kind.
The next step is to specify for each m one of the isoperimetric subsets. Usually, the structure
of an isoperimetric set allows to find the corresponding function IG(m) or θG(m), which may
look horrible and for a number of applications a lower bound on θ is often preferable. Finally,
the last step is to specify for a given m all isoperimetric subsets of this cardinality.

In the most of known in the literature cases to specify one of the isoperimetric subsets con-
structively is possible if the problem has the nested solutions property. By this we mean the
existence of isoperimetric (with respect to I or θ) subsets Ai ⊆ VG, i = 1, . . . , |VG|, with |Ai| = i
such that

A1 ⊂ A2 ⊂ · · · ⊂ A|VG|.

In other words, there exists an order of vertices of G induced by the inclusions above, such
that each initial segment of this order represents an isoperimetric subset with respect to the
considered function. We call such an order optimal order. However, in a number of cases
isoperimetric inequalities are strict for particular values of m and provide isoperimetric subsets
even if the nested solutions property does not exist.

The paper is organized as follows. The next Section 2 is devoted to the proof technique of
exact results on the edge isoperimetric problem for a number of graphs and to some methods
of obtaining isoperimetric inequalities. In Section 3, we extend the methods of Section 2 for
maximization of more general functions and present a kind of equivalence relations allowing to
solve an edge isoperimetric problem for some classes of graphs if it is solved for a representative
of this class. In Section 4, we list some applications of the edge-isoperimetric problems and
conclude the paper with Section 5 containing some remarks and research topics.

Note that there, of course, exist vertex-isoperimetric problems consisting of minimization of
e.g. the number of vertices on distance 1 of a set. We refer the reader to the survey paper [16]
or to the book [38] devoted to such problems and their applications.
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2 Proof technique

In this section, we stress our attention on some combinatorial methods for construction of
isoperimetric subsets, some methods of continuous approximation of the considered discrete
problems providing good isoperimetric inequalities and on methods involving eigenvalues of
related matrices and isoperimetric constants.

2.1 Combinatorial results

Let us start with simple graphs first.

Proposition 2.1 Let T be a tree with p vertices. Then I(m) = m− 1.

Clearly, if A ⊆ VT , then the number of edges in the induced by the vertex set A subgraph G′

equals |A|−c(G′), where c(G′) is the number of components of G′. Therefore the maximization
of the function I is equivalent is this case to minimization of the number of components. Clearly,
if a vertex set A induces a connected component and there exists a vertex a ∈ VT \A, then the
vertex set A∪{a} also induces a connected component. Therefore, the problem of maximization
of I for trees has the nested solutions property and there is a simple way to generate all optimal
numberings.

Although minimization of θ is trivial for the clique, this problem for a complete n-partite graph
is not [94]. The complete n-partite graph Kp1,...,pn is defined as a graph, whose vertex set
can be partitioned into n subsets P1, . . . , Pn (independent subsets) so that two vertices are
adjacent iff they belong to different Pi. Denote pi = |Pi| and p = p1 + · · · + pn and assume
that p1 ≥ p2 ≥ · · · ≥ pn. Consider the following numbering K of the vertex set of Kp1,...,pn by
numbers 1, 2, . . . , p. The numbering process consists of repetition of the following procedure,
each time with the next numbers in increasing and decreasing order respectively until all the
vertices are numbered:

Let k be maximal integer for which p1 = p2 = · · · = pk. Take one (arbitrary) vertex
from each set Pi (i = 1, 2, . . . , k) and number them by 1, . . . , k in arbitrary order. Repeat
the same operation: take one (arbitrary) vertex from each set Pi (i = 1, 2, . . . , k) but
number them by p, . . . , p − k + 1 in arbitrary order. Remove the 2k numbered vertices
from the graph together with all incident edges, obtaining this way a new complete
multipartite graph. Reorder (if necessary) the independent sets of this graph placing
them in decreasing order of their cardinalities.

Fig. 1 shows the numbering of K5,5,3,2. In this picture the independent sets of the graph are
shown in ovals and all the edges are omitted.

Theorem 2.1 (Muradyan [94])
For each m, m = 1, . . . , p, the collection of the first m vertices of Kp1,...,pn taken in the order K
provides minimum for the function θ.

3



s s s s s s s s s s s s s s s�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

1 15 3 13 7 2 14 4 12 8 5 11 9 10 6

Figure 1: Numbering of vertices of K5,5,3,2

These results are extendible for cartesian products of such graphs, and for this operation a nice
technique is designed based on the notion of compression and stabilization. By the cartesian
product G1 × · · · × Gn of n ≥ 2 graphs Gi = (Vi, Ei), i = 1, . . . , n, we mean the graph on the
vertex set V1 × · · · × Vn where two tuples (v1, . . . , vn) and (u1, . . . , un) form an edge iff they
agree in some n− 1 entries and for the remaining entry, say i, holds (vi, ui) ∈ Ei.

One of the first classical results on edge isoperimetric problems for the cartesian products was
proved by Harper [63] for the binary n-cube Qn. In order to present his and some other results
we need the notion of the lexicographic order L. Let [k] = {0, . . . , k−1} and consider two vectors
(x1, . . . , xn), (y1, . . . , yn) ∈ [k1]× [k2]× · · · × [kn]. We say x is less than y in the lexicographic
order (notation x <L y) iff there exists an index i such that x1 = y1, . . . , xi−1 = yi−1 and
xi < yi holds. Denote by L(m) the collection of the first m vectors of [k1]× · · · × [kn] taken in
the lexicographic order.

Theorem 2.2 (Harper [64])
For any subset A ⊆ VQn it holds |I(A)| ≤ |I(L(|A|))|, where the minimum is attained only for
the sets A isometrically equivalent to L(|A|).

Two subsets A, B ⊆ VQn are called isometrically equivalent if B = ϕ(A ⊕ a) for some a =
(a1, . . . , an) ∈ VQn . Here by A⊕ a we denote the subset obtained by inverting those positions
xi of all vectors of A for which ai = 1 holds. Furthermore, for a permutation φ ∈ Sn we denote
by φ(A) subset obtained from A by applying φ to coordinates of all its vectors. Clearly, none
of these transformations changes the size of I(A) or θ(A).

Theorem 2.2 was rediscovered a number of times (cf. e.g. [12, 62]). Many applications and
with years development of the extremal set theory lead to a very simple proof, which now may
be considered as a standard and powerful approach working for many other problems.

We denote Aσ(i) = {(a1, . . . , an) ∈ A | ai = σ} for σ ∈ {0, 1} and let mσ = |Aσ(i)|. Introduce
the compression operator Ci(A), which replaces the set Aσ(i) with the first mσ vertices of the
subcube xi = σ taken in the lexicographic order. The proof is done by induction on n. Using
the induction hypothesis it is easy to verify

Lemma 2.1 It holds: |I(Ci(A))| ≥ |I(A)|.

Now let us apply the operator Ci for i = 1, 2, . . . , n. The crucial observation is that after
a finite number of such transformations we get a subset B ⊆ VQn which is stable under the
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compression, i.e., Ci(B) = B for i = 1, . . . , n. It turns out that the structure of a stable set is
almost well defined:

Lemma 2.2 If Ci(B) = B for i = 1, . . . , n, then either B = L(|B|) or |B| = 2n−1 and
B = L(2n−1 − 1) ∪ {(1, 0, . . . , 0)}.

To complete the proof it is left to verify that in the case |B| = 2n−1 the first alternative provided
by Lemma 2.2 is strictly better. With a little stricter analysis one can also prove the uniqueness.

The result of Harper was later extended in several directions. Let us first consider the Hamming
graph H(p1, . . . , pn), i.e., the cartesian product of complete graphs Kp1 × · · · × Kpn and let
p1 ≤ · · · ≤ pn.

Theorem 2.3 (Lindsey [83])
For each m, m = 1, . . . , p1 · · · pn, the collection of the first m vertices of H(p1, . . . , pn) taken in
the lexicographic order provides maximum for the function I.

This theorem one can also find in some other papers [75, 46, 84] and it can be proved with
the compression approach above. The proof starts with verifying the inductive hypothesis for
n = 2. For n ≥ 3 we use representation H(p1, . . . , pn) = H(p1, . . . , pi−1, pi+1, . . . , pn) × Kpi

for some i and make the compression in all components H(p1, . . . , pi−1, pi+1, . . . , pn). After
applying the similar stabilization arguments we come to a stable set of the same cardinality
with no less value of I.

Unfortunately, in the case of the Hamming graph the structure of a stable set B is not so simple.
Let us denote by b the last vertex of B in the lexicographic order and by a the first vertex of
H(p1, . . . , pn) \ B in the same order. Clearly, if b <L a, the proof is finished. Otherwise it is
remained to show that the exchange of b and a does not decrease the function I, which leads
to consideration of a number of cases. It should be mentioned that for Hamming graphs the
structure of stable sets is also known (see [4, 27]), but it does not make the proof much shorter.
It is easy to verify that the optimal subsets can also have another form (cf. [75]).

The next extension concerns the cartesian product of complete bipartite graphs with the inde-
pendent sets of the same size. Let p1 ≤ · · · ≤ pn and F (p1, . . . , pn) = Kp1,p1 ×· · ·×Kpn,pn . The
result is quite similar to the results of Harper and Lindsey:

Theorem 2.4 (Ahlswede, Cai [4])
For each m, m = 1, . . . , p1 · · · pn, the collection of the first m vertices of F (p1, . . . , pn) taken in
the lexicographic order provides maximum for the function I.

Here the proof also claims to consider the case n = 2 separately, but, however, it is based on
an interesting observation, called by the authors “the local-global principle” which we consider
in Section 3.2. It is interesting that the nested solution property does not take place in general
if the independent sets of the bipartite graphs are of different size.

5



This result is in turn extended in [21] in various directions. Thus, it is proved there that the
lexicographic order still works well for the powers of complete t-partite graphs Kp,p,...,p. The
graphs in the product should be numbered as explained in Fig. 1.

New types of graphs are introduced in [21]. Consider the complete bipartite graph Kp,p and
remove a perfect matching from it. The resulting graph is regular and has a perfect matching
as well. Removal t perfect matchings from Kp,p results in a a regular graph which we denote
by B(p, t). The graphs obtained this way are not isomorphic but as it is easily shown, they all
have the same function I.

Furthermore, denote by H(p, t) the graph obtained from B(p, t) by joining any pair of vertices
within each independent set (of size p). The graph H(p, t) is regular of degree 2p − t − 1 and
is of interest due to the following inequality. If G is a regular graph of the order 2p and degree
2p−t−1 and with the nested solutions property in the edge-isoperimetric problem, then for the
cartesian product of n such graphs it holds IH(p,t)×···×H(p,t)(m) ≥ IG×···×G(m), m = 1, . . . , (2n)n.

Theorem 2.5 (Bezrukov, Elsässer [21])
For t ∈ {0, . . . , dp/2e, p−1} and each m, m = 1, . . . , (2p)n, the collection of the first m vertices
of B(p, t)× · · · × B(p, t) (n times) (resp. of H(p, t)× · · · ×H(p, t)) taken in the lexicographic
order provides maximum for the function I.

Thus, Theorem 2.5 provides a best possible isoperimetric inequality for products of regular
graphs. We conjecture that this theorem concerning the graphs B(p, t) also provides such
inequality for products of regular bipartite graphs. It is interesting to mention that for any t
outside the range mentioned in the theorem the products of graphs B(p, t) and H(p, t) do not
have nested solutions property even for n = 2.

Since the last considered graphs are regular, then the same sets automatically provide a solution
for the minimization of θ. However, this is not the case with the grid G(p1, . . . , pn) defined
as the cartesian product of paths with p1, . . . , pn vertices. We assume that p1 ≤ · · · ≤ pn and
introduce the following order I.

For a vector x = (x1, . . . , xn) denote ]x[= maxi xi and let x̃ be the vector obtained from x by
replacing all entries not equal to ]x[ by 0. The order I is defined inductively. For x,y we say
x >I y iff

a. ]x[>]y[, or

b. ]x[=]y[ and x̃ >L ỹ, or

c. ]x[=]y[= t > 1, x̃ = ỹ, and x′ >I y′, where x′,y′ are obtained from x,y respectively by
deleting all entries with xi = yi = t, and L is the lexicographic order.

Theorem 2.6 (Bollobás, Leader [32] for p1 = pn, Ahlswede, Bezrukov [1] in general)
For each m, m = 1, . . . , p1 · · · pn, the collection of the first m vertices of G(p1, . . . , pn) taken in
the order I provides maximum for the function I.
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In the two-dimensional case taking the first m = r2 vertices of this order for some r ≤ p1 we get
a quad {(x, y) | x, y < r} located in a corner of the grid. This corresponds to the well-known
fact of the Euclidean geometry that a quad with a given perimeter has maximal square in the
class of rectilinear figures on the plane. The proof in general is based on the compression and
stabilization arguments as well, followed by exchange of appropriate vertices as in the case of
the Hamming graphs.

Several results are known for two-dimensional (infinite) grid-like graphs. The vertex sets of
these graphs are given by {(x, y) | x, y are integers}. The edge sets of the graphs G1, G2 and
G3 are defined as

EG1 = {((x, y), (x′, y′)) | |x− x′|+ |y − y′| = 1},
EG2 = EG1 ∪ {((x, y), (x′, y′)) | x′ = x + 1, y′ = y + 1},
EG3 = EG2 ∪ {((x, y), (x′, y′)) | x′ = x + 1, y′ = y − 1}.

Thus informally the graph G1 is simply an infinite grid, G2 is a grid with one diagonal in each
cell (i.e. a cycle of length 4) and G3 is a grid with two diagonals in each cell. It is shown (cf.
[60, 61, 36] respectively) that

IG1(m) =
⌊
2m− 2

√
m
⌋
,

IG2(m) =
⌊
3m−

√
12m− 3

⌋
,

IG3(m) =
⌊
4m−

√
28m− 12

⌋
.

The corresponding extremal sets of m vertices grow with m like a spiral. The graph G3 can
be viewed as the Shannon product of paths. See [4] for asymptotically optimal bounds for the
Shannon product of arbitrary graphs.

The problem of minimization of θ for the grid is much more difficult. However, if all the pi’s are
infinite, then the problem still has the nested solutions property and the same order I provides
isoperimetric subsets with respect to θ [1]. If all the pi’s are finite, then this problem does
not have the nested solutions property even for n = 2. In the two-dimensional case the exact
solution is easy to get (cf. [1, 32]), however in the general case the exact solution is known just
for some special cardinalities, which follows from the isoperimetric inequalities below.

A more complicated order provides nestedness for the cartesian powers P n of the Petersen
graph P [24]. The orders P1 and P2 are shown in Fig. 2. The vertices of the graph P 2 = P ×P
are represented as the entries of a 10 × 10 matrix {ai,j}, where i, j = 0, ..., 9. It is assumed
in this figure that the entry a0,0 is in the bottom left corner of the matrix. Furthermore, it is
assumed that the elements a0,0, ..., a9,0 of the bottom row and the elements a0,0, ..., a0,9 of the
leftmost column represent the vertices of the multiplicands of the product (i.e., vertices of P )
taken in the order P1. The value of the matrix element ai,j is the number of the corresponding
vertex of the graph P 2 in the order P2, as shown in Fig. 2b).

With the help of a computer it is verified in [24] that any initial segment of the order P2 is
an optimal set. To verify this one can consider compressed sets only. In this case there are(

20
10

)
= 352, 716 compressed sets. The complete choice of such a size is doable by computer but

without compression there are 2100 ≈ 1.3× 1030 possibilities, a prohibitively large number.
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Figure 2: The orders P1 (a) and P2 (b)

For n ≥ 2 and xi, yi ∈ {0, . . . , 9} we say that (x1, . . . , xn) >Pn (y1, . . . , yn) iff

a. x1 − 1 > y1, or

b. x1 − 1 = y1 and y1 ∈ {1, 2, 4, 6, 7}, or

c. x1 − 1 = y1, y1 ∈ {0, 3, 5, 8} and (x2, . . . , xn) ≥Pn−1 (y2, . . . , yn), or

d. x1 = y1 and (x2, . . . , xn) >Pn−1 (y2, . . . , yn), or

e. x1 + 1 = y1, y1 ∈ {1, 4, 6, 9} and (x2, . . . , xn) >Pn−1 (y2, . . . , yn).

Theorem 2.7 (Bezrukov, Das, Elsässer [24])
Any initial segment of the order Pn for n ≥ 2 is an optimal set.

Let us mention one more result where the compression technique is effectively applied. Given
two graphs G1 = (V1, E1) and G2 = (V2, E2), denote by G1[G2] their composition, i.e., the graph
on the vertex set V1 × V2 where two vertices ((v1, u1), (v2, u2)) are adjacent iff (v1, v2) ∈ E1 or
v1 = v2 and (u1, u2) ∈ E2. Let Pq and Cq denote the path and the circle with q vertices
respectively.

Theorem 2.8 (Liu, Williams [85])
If p ≤ q and G = Kp[Pq] or G = Kp[Cq], then for each m, m = 1, . . . , pq, the collection of the
first m vertices of G taken in the lexicographic order provides minimum for the function θ.

The proof is based on the compression approach used in the paper of Chvátalová [45] who
studied the bandwidth of two-dimensional grids.
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2.2 Isoperimetric inequalities

First consider the n-cube Qn. For each integer m, 1 ≤ m ≤ 2n, there exist integers a1, . . . , at

with n ≥ a1 > a2 > · · · > at ≥ 0, such that

m = 2a1 + 2a2 + · · ·+ 2at ,

and this representation is unique. By induction it is easy to show that

IQn(m) =
[
a1 · 2a1−1 + · · ·+ at · 2at−1

]
+
[
2a2 + 2 · 2a3 + · · ·+ (t− 1) · 2at

]
.

With the help of (1) one can also get an exact formula for θQn(m). For the applications,
however, the following estimation is much more convenient:

Theorem 2.9 (Chung, Füredi, Graham, Seymour [43])
Let m > 0. Then θQn(m) ≥ m(n− log2 m).

Theorem 2.2 implies that this bound is strict if m = 2t.

Concerning the minimization of θ on grids, it is natural to consider the rectilinear bodies of
the continuous n-dimensional cube with the side length 1. By the rectilinear body we mean a
finite union of the sets of the form

∏n
i=1[ai, bi], where [ai, bi] with ai < bi is a segment. For a

rectilinear body A the continuous analog of the function θ is the surface area of A, which is
expressed as an easy computable integral (cf. [32] for details).

Using the compression approach and a one-dimensional parameterization, the problem of mini-
mization of the surface area of the rectilinear bodies can be exactly solved due to the convexity
of the functions involved. The obtained solution of the continuous problem provides a lower
bound for its discrete version:

Theorem 2.10 (Bollobás, Leader [32])

Let m ≤ pn. Then θG(p,...,p)(m) ≥ min
1≤k≤n

{
m1−1/kkpn/k−1

}
.

This result shows that for m of the form m = tkpn−k an θ-optimal set is among the sets of the
form

{
[t]k × [p]n−k

}
, k = 1, . . . , n. Therefore, the problem of minimization of θ does not have

the nested solutions property.

Finding of continuous analogs also helps in analyzing the Kleitman-West problem. Denote

Qn
k = {(a1, . . . , an) ∈ VQn | a1 + · · ·+ an = k}

and define the graph J(n, k) on the vertex set Qn
k by joining with an edge each two vertices of

Qn
k on Hamming distance 2. Thus, the graph J(n, k) is regular. The case k = 2 was studied by

Ahlswede and Katona [5], who proved that an isoperimetric set is formed either by the first or
the last vertices of Qn

2 taken in the lexicographic order.
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Harper in [67] and Ahlswede and Cai in [3] transformed the problem of minimization of θ on
the graph J(n, k) into the problem of maximizing some functions defined on downsets of the
poset L(n − k, k). The poset L(n − k, k) is defined by the integer sequences (a1, . . . , ak) with
0 ≤ a1 ≤ · · · ≤ ak ≤ n− k ordered coordinatewise. We call a subset S ⊆ L(n− k, k) downset
if the conditions a ∈ S and b ≺ a imply b ∈ S. Denoting r(m) = max|S|=m

∑
a∈S(a1 + · · ·+ ak)

taken over all downsets S, one has similarly to (1): θ(m) = k(n− k)− 2r(m).

Such a transformation makes the proof in the case k = 2 much shorter comparing to [5] due to a
simple geometric interpretation of L(n− 2, 2). In [3] the authors mostly studied the case k = 3
using essentially combinatorial arguments and obtained an exact solution of the continuous
problem for this case.

In a continuous analog of this problem we let n →∞ and obtain the set Lk = {(x1, . . . , xk) ∈
Rk | 0 ≤ x1 ≤ · · · ≤ xk ≤ 1} ordered coordinatewise. Since

∫
Lk

dx = 1/k!, the problem now
is for a given l ≤ 1/k! to maximize r(S) =

∫
S r(x) dx over all downsets S ⊆ Lk with volume

l, where r(x) =
∑k

i=1 xi. Denote this maximal value by r′(l). Harper in [67] used variational
methods to show that only the sets Sj = {x ∈ Lk | xj ≤ t} can be optimal, where t is chosen
so that the volume of Sj is l. Furthermore, he also proved that the optimum is attained only
either for j = 1 or j = k.

Theorem 2.11 (Harper [67])
Let for a given l, l ≤ 1/k!, t be defined by

∫
Sj(t)

dx =
1

k!

∑
i≥j

(
k

i

)
ti(1− t)k−i = l.

Then it holds

r′(l) = min
j∈{1,k}

∫
Sj(t)

r(x) dx =
1

k!

∑
i≥j

(kt + k − i)

(
k

i

)
ti(1− t)k−i.

The isoperimetric sets Sj(t) of the continuous model provide corresponding extremal downsets

for the discrete model in the case of “good” cardinalities m of the form m =
(

n
k

)
−
(

a
k

)
, 0 ≤ a ≤ n.

It is, however, not clear what happens in between these good cardinalities. Counterexamples
to a natural conjecture in [5] were constructed in the discrete case k = 3 in [3] (see also [67] for
more details).

It was noticed by many researchers that eigenvalues of graphs play an important role in combi-
natorial optimization (see the survey paper [91] for a number of applications). Let A(G) = {aij}
be the adjacency matrix of a graph G and denote by L(G) its Laplacian matrix obtained from
A(G) by multiplying all its elements with −1 and replacing aii = 0 with the degree of the ith

vertex of G. It is well known that L(G) is positive semidefinite, all eigenvalues of L(G) are real
and non-negative, the smallest eigenvalue is equal to 0 and the second smallest eigenvalue λG

is positive iff G is connected. It is also known that λG can be estimated within arbitrary given
accuracy in polynomial time.

10



Let |VG| = p and f : VG 7→ R be some mapping. Using the Lagrange identity, Fiedler [54]
rewrote the Courant-Fisher principle in the form

λG = min
f 6=0

2n · ∑
(u,v)∈EG

(f(u)− f(v))2

∑
u∈VG

∑
v∈VG

(f(u)− f(v))2
. (2)

The minimum is attained for any eigenvector corresponding to λG. Now, by taking A ⊆ VG

with |A| = m and θG(A) = θG(m) and substituting to (2) the characteristic function of the set
A defined by f(u) = 1 for u ∈ A and f(u) = 0 for u 6∈ A one immediately gets the following
result, which is a weaker version of result in [8]:

Theorem 2.12 (Alon, Milman [8])
For any graph G with p vertices holds

θG(m) ≥ λG
m(p−m)

p
.

This bound is attainable for complete graphs and is the case m = p/2 for the n-cube Qn

(λQn = 2) and the Petersen graph P shown in Fig. 4a (λP = 2). In the last case we make a
partition cutting the edges connecting the inner and the outer cycles.

Since for any graphs G, H it holds λG×H = min{λG, λH}, the bound of Theorem 2.12 (with m =
p/2) is also attainable on G×H, with λG = 2 and λH ≥ 2, for example on the cartesian product
of n Petersen graphs (graph P n) and for P n × Ql. This solves a problem of Das and Öhring
[50], who studied such graphs and proposed constructions for their bisection, conjecturing that
they are optimal (cf. Theorem 2.7).

For a survey on spectral methods in graph theory we refer the reader to [91]. A number
of further isoperimetric inequalities related to other graph parameters are stored in [89, 92].
Isoperimetric inequalities for vertex versions of the discrete isoperimetric problem can be found
in [30, 31, 34, 77].

2.3 Graph isoperimetric constants

Closely related to the values of θG(m) are the quantities which are called isoperimetric numbers
of G. In the literature a few definitions of such numbers are known, we consider here just some
of them. Assume that |VG| = p and for A ⊆ VG denote vol(A) =

∑
v∈A deg(v). Further denote

i1(G) = min
A

|θG(A)|
min{|A|, p− |A|}

,

i′1(G) = min
A

|θG(A)|
min{vol(A), vol(VG \ A)}

,

i2(G) = min
A

|θG(A)| · p
|A|(p− |A|)

,

i3(G) = min
A

|θG(A)|
|A| log p

|A|
,

11



where all the minima are running over all proper nonempty sets of VG. Isoperimetric numbers
can be used, in particular, for deriving isoperimetric inequalities as will be shown later.

Theorem 2.13 (Mohar [90] and Chung [42] respectively)

λG/2 ≤ i1(G) ≤
√

λG(2∆G − λG), (3)

λ′G/2 ≤ i′1(G) ≤
√

1− (λ′G − 1)2. (4)

Here ∆G is the maximum vertex degree and λ′G is the second smallest eigenvalue of the p × p
matrix L′(G) = {mij} defined by mii = 1, mij = (deg(i) · deg(j))−1/2 if the vertices i and j are
adjacent and mij = 0 otherwise.

The lower bounds in (3) and (4) are simple and provided by a similar approach used for the
proof of Theorem 2.10. The upper bounds can be considered as Cheeger-like inequalities. If
the graph G is regular, then L′(G) = (1/∆G)L(G) and so λ′G = λG/∆G. It is easily shown
that the upper bound in (4) is in this case better than the one in (3). An alternative upper
bound involving the genus gG of the graph was derived by Boshier [35] and later significantly
improved by Sýkora and Vrt’o [109], who showed that for gG > 0

i1(G) ≤ 15

√
3gG∆G

p
.

Let us refer now to the cartesian products of graphs. In the recent years this operation is
extensively studied in the literature and many deep results have been found.

Theorem 2.14 (Houdré, Tetali [69], see also Chung, Tetali [44])

min{i1(G), i1(H)}/2 ≤ i1(G×H) ≤ min{i1(G), i1(H)}. (5)

The upper bound in (5) follows immediately if one takes an isoperimetric set A ⊆ VG (with
|A| ≤ p/2) and considers the set B = A× VH ⊆ VG×H . For this set one has: |B| = |A||VH | and
|θ(B)| = |θ(A)||VH |, thus i1(G×H) ≤ |θ(B)|/|B| = i1(G). The lower bound, however, is much
more tricky and based on a modification of formula (2).

Clearly, i1(Kp) = dp/2e. In this case the following inequalities are shown in [76] as a consequence
of more general results concerning graph bundles:

min{i1(G), p/2}/2 ≤ i1(G×Kp) ≤ min{i1(G), dp/2e},

which is an extension of the corresponding result in [90]. On the other hand [90] contains an
example of graphs for which strict inequality in the upper bound in Theorem 2.14 holds. Playing
with parameters of this example it is possible to construct a graph G for which i1(G×· · ·×G) →
ln 2 ≈ 0.69 as the number of the graphs in the product grows.

In contradistinction to the number i1 for the cartesian products, the numbers i2 and i3 behave
completely different. Denote by Gn the cartesian product of n copies of a graph G.

12



Theorem 2.15 (Tillich [111])
a. Let A ⊆ VG be an isoperimetric set with respect to i2. Then the set A×VGn−1 is isoperimetric
with respect to i2;

b. Let A ⊆ VG be an isoperimetric set with respect to i3. Then for each i = 1, . . . , n− 1 the set
Ai × VGn−i is isoperimetric with respect to i3.

More precise analysis shows [111] that

i2(G×H) = min{i2(G), i2(H)} and i3(G×H) = min{i3(G), i3(H)}.

Observing that i1(G) < i2(G) ≤ 2i1(G), one gets

min{i1(G), i1(H)}/2 < min{i2(G), i2(H)}/2 ≤ i1(G×H),

which strengthens the lower bound in (5). It would be interesting to find examples of graphs
with i1(G×H) that are closer to the lower bound (5).

Theorem 2.15 implies in particular that

i2(G
n) = i2(G) and i3(G

n) = i3(G). (6)

Tillich in [111] found a sufficient condition for an isoperimetric constant to be “stable” with
respect to cartesian products. His paper also contains an interesting observation on equivalence
of certain analytic inequalities with isoperimetric inequalities for graphs.

The isoperimetric numbers may be used to derive edge isoperimetric inequalities for Gn of the
form

θGn(m) ≥ i2(G) ·m · (pn −m)/pn,
θGn(m) ≥ i3(G) ·m · log(pn/m).

(7)

Therefore, if we know i2(G), then the first lower bound in (7) is strict at least for one value of
m for any n. Similarly, the knowledge of i3(G) provides the strictness of the second inequality
in (7) at least for n− 1 values of m.

Consider, for example, the n-cube Qn. Clearly, i3(Q
1) = 1, thus i3(Q

n) = 1 by (6). Therefore,
(7) implies θQn(m) ≥ m log(2n/m) with equality for m of the form m = 2a, a = 1, . . . , 2n−1.
This is exactly what is provided by Theorem 2.9. As another example consider the Petersen
graph P (cf. Fig. 4a). It is easily shown that the set of vertices numbered with 1, . . . , 5 is
isoperimetric with respect to i2(P ). Thus, i2(P ) = 2 and θP n(10n/2) = 10n/2, which matches
with the results based on Theorems 2.7 and 2.12 (see [111] for isoperimetric sets with respect
to i3).

Concerning random r-regular graphs, Bollobás showed in [29] that the isoperimetric number i1
of such graphs converges to r/2 as r →∞. More exactly denote

i1(r) = sup{γ | i1(G) > γ for infinitely many r-regular graphs G}.

It is known (see [29] and [7] for the lower and the upper bound respectively) that

r

2
−
√

ln 2 ·
√

r ≤ i1(r) ≤
r

2
− 3

8
√

2
·
√

r,
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where the upper bound is valid for sufficiently large n (surely for n ≥ 40r9).

Isoperimetric numbers found applications not only for isoperimetric inequalities but also for
many other problems. Among such examples is the relation between i2(G) and the edge for-
warding index shown in [106] and application of i1(G) for estimating the crossing number [101]:

cr(G) = Ω((i21(G)p2/∆G)− p),

for a graph G with p vertices. Further results on the isoperimetric numbers of graphs and their
applications can be found in [37, 90].

3 Generalizations

Here we consider the problem of maximization of I for graphs represented as cartesian products
of other (simple) graphs, for which this problem has the nested solutions property. The question
is what does it bring for the existence of a nested structure on the whole graph. In the next
subsection, we introduce and study an equivalence relation providing a solution of the problem
for each graph from its equivalence class if a solution for at least one representative of this
class is known. We also show relations between the isoperimetric problems in graphs and
minimization of shadows in posets. In the second subsection, we consider maximization of
more general functions on graphs and study a phenomenon providing for a number of orders
their optimality with respect to maximization of I on cartesian products of n ≥ 3 graphs if
they are optimal in the case n = 2.

3.1 Equivalence relations for graphs and posets

Let G1 = (V1, E1) and G2 = (V2, E2) be some graphs with |V1| = |V2| = p. We say that
these graphs are I-equivalent if the problem of maximization of I on each of them has a nested
structure of solutions and IG1(m) = IG2(m) holds for m = 1, . . . , p. Proposition 2.1 shows that
any two trees with the same number of vertices are I-equivalent.

Theorem 3.1 (Bezrukov [17])
Let the graphs Gi and Hi be I-equivalent for i = 1, . . . , n. Then

IG1×···×Gn(m) = IH1×···×Hn(m)

for each m. Moreover, the graph G1 × · · · × Gn has the nested solutions property iff so is for
the graph H1 × · · · ×Hn.

This theorem, in particular, allows to extend the result of Bollobás and Leader (cf. Theorem
2.6) from the cartesian product of chains to the cartesian products of arbitrary trees with the
same number of vertices. As an example, consider the trees P and T shown in Fig. 3a and
Fig. 3d respectively and take the cartesian products P × P and T × T shown in Fig. 3b and
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Fig. 3e. The optimal order of VP is shown in Fig. 3a, which induces a labeling of VP×P (see
Fig. 3b). The optimal order of VP×P is shown in Fig. 3c.

Now consider the optimal order of VT in Fig. 3d, which induces a labeling of VT×T (Fig. 3e).
Taking the vertices of T × T in the same order as the corresponding vertices (i.e. vertices with
the same labels) of P × P (cf. Fig. 3c), one gets an optimal order for T × T shown in Fig. 3f.
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Figure 3: Optimal orders for trees

The results concerning the edge isoperimetric problem on some special graphs listed in Section
2.1 allow to construct some families of I-equivalent graphs (see [17] for more details).

In [17] some relations between the edge isoperimetric problems on graphs and some extremal
problems on posets were studied. Let P = (X,≺) be a ranked poset with rank function rP .
We remind that a subset A ⊆ X is called downset in P if the conditions a ∈ A and b ≺ a
imply b ∈ A. Define weight of A by WP (A) =

∑
a∈A rP (a) and consider the problem of finding

a downset A ⊆ X with |A| = m such that WP (A) ≥ WP (B) for any downset B ⊆ X with
|B| = m (cf. Section 2.2). Similarly to above denote

WP (m) = max{WP (A) | A ⊆ X is downset with |A| = m}.

Now consider a graph G = (VG, EG) on which the problem of maximization of I has a nested
structure of solutions. We say that this graph is representable by a ranked poset P = (X,≺)
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with |X| = |VG| = p if the problem of maximization of W on this poset has a nested structure of
solutions and IG(m) = WP (m) holds for m = 1, . . . , p. It is shown in [17] that for any graph in
question the representing poset does exist. For example the Petersen graph shown in Fig. 4a is
representable by the poset shown in Fig. 4b. The labels of vertices represent the corresponding
optimal orders.
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Figure 4: The Petersen graph (a) and its representing poset (b)

Theorem 3.2 (Bezrukov [17])
Let the graph Gi be representable by a ranked poset Pi, i = 1, . . . , n. Then

IG1×···×Gn(m) = WP1×···×Pn(m)

for each m. Moreover, a nested structure of solutions for the graph G1 × · · · × Gn in the
edge-isoperimetric problem exists iff one exists for the poset P1 × · · · × Pn in the problem of
maximization of W .

Similar relations for the graphs not representable as cartesian products have already appeared
in Theorem 2.11 [3, 67], where the problem of maximization of W was solved by continuous
methods. In general, the solution of this problem for a ranked poset follows from solution of
the shadow minimization problem, if the last one has some nice properties. To formulate this
problem we introduce for a poset P = (X,≺) and Pi = {x ∈ X | rP (x) = i} the notion of
shadow ∆(A) for A ⊆ Pi:

∆(A) = {x ∈ Pi−1 | x ≺ a for some a ∈ A}.

The problem is to find for fixed i, m a subset A ⊆ Pi with |A| = m such that |∆(A)| ≤ |∆(B)|
for any B ⊆ Pi, |B| = m.

Assume that for a poset P = (X,≺) there exists a total order O of the set X such that for
any i, m the subset defined by the initial segment of length m of Pi in this order has minimal
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shadow and this shadow itself is an initial segment of Pi−1 in the order O. Then (cf. [14]) the
problem of maximization of W for a poset P has a nested structure of solutions.

Therefore, the known results on the shadow minimization problem allow to get results on the
edge isoperimetric problem via the considered representation of graphs by appropriate posets.
For further information we refer the reader to the book of Engel [52] containing a survey on
shadow minimization problems (see also [53]) and to the survey paper [56].

Under this approach the edge isoperimetric problem for grids and Hamming graphs are reduced
to the shadow minimization problem for the star posets [14, 78, 79] and for the lattice of mul-
tisets [47] respectively. In the first case, for example, the chain with p vertices is representable
by the star poset consisting of one element 0 of rank 0 and p − 1 elements of rank 1, each of
them is greater than 0. It should be mentioned that in the literature (cf. [14, 78, 79]) the
dual of the star poset was studied, i.e. the poset obtained from the star poset by inverting the
partial order. However, the shadow minimization problem for a poset is equivalent in a sense
to such problem on its dual (cf. [14]) and so the order I and the order from [14, 78, 79] should
be complementary, which is not so easy to see at once. Further applications of the shadow
minimization problems to the edge isoperimetric problems can be found in [17, 22].

3.2 Maximization of supermodular functions

The ideas of compression and stabilization can be well applied not only for the maximization
of the function I on a graph G, but also for many other functions ϕ : 2VG 7→ R. An example
is the wide-known folklore result on finding a subset of vertices A ⊆ VQn with maximal size of
Id(A), where Id(A) is the set of all d-dimensional subcubes of Qn induced by the vertex set A.
With the technique of section 2.1 one can prove that the sets extremal with respect to I are
also extremal with respect to Id for any d = 1, . . . , n.

Let us look on this problem from another side. Consider first the weighted poset Bn = (VQn ,≺
, w) with the coordinatewise partial relation ≺ and some rank-symmetric nonnegative weight
function w, i.e., such that the condition r(a) = r(b) implies w(a) = w(b) for any a, b ∈ VQn .
Thus, a rank-symmetric weight function is determined by a sequence w0, w1, . . . , wn, where wi

is the weight of any element of Bn of rank i. Consider a problem of finding a downset of Bn

of fixed size and with maximal weight denoted by Ww(A) and defined as the sum of weights of
its elements.

Theorem 3.3 (Bernstein, Hopkroft, Steiglitz [13])
Let w be a rank-symmetric weight function on Bn such that wi ≤ wj whenever i < j. Then for
any m = 1, . . . , 2n the collection of the first m vertices of Bn taken in the lexicographic order
has maximal weight among all downsets of Bn with the same cardinality.

It is important that an extremal downset remains the same, regardless of the concrete non-
decreasing sequence {wi}. Now turn back to the problem of maximization of Id. It can be
checked that the solution can be seen in the class of downsets of Bn. Let us consider the weight
function w defined by wi =

(
i
d

)
, i = 1, . . . , d, where we put

(
i
d

)
= 0 if i < d. For this weight
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function and a downset A one has: |Id(A)| = Ww(A). Therefore, by Theorem 3.3 the extremal
sets are the same for any d = 1, . . . , n. Clearly, Theorem 3.3 applied for d = 1 implies Theorem
2.2.

Theorem 3.3 was generalized for unimodal weight functions in [6] and [27] contains its gen-
eralization for such functions for the lattice of multisets. An interesting (and still unsolved)
problem was proposed in [75]: to find a subset of Qn containing maximal number of Hamming
triangles with sides 1,1,2.

All the proofs concerning maximization of concrete functions we considered up to now have
something in common. They are based on the compression and are done by induction on the
dimension. The case of dimension 2 lying in the basis of induction claims a special consideration.
For maximization of which else functions on cartesian products can we apply this technique ?
Ahlswede and Cai noticed in [4] that for the compression it is essential that the function to be
maximized is supermodular. Let G be a graph. We call a function ϕ : 2VG 7→ R supermodular
if

ϕ(A) + ϕ(B) ≤ ϕ(A ∪B) + ϕ(A ∩B) for all A, B ⊆ VG,

and assume that ϕ(∅) = 0. Clearly, the function Id is supermodular for any d.

Let G1, G2 be graphs and ϕi : 2VGi 7→ R, i = 1, 2 be supermodular functions. For A ⊆ VG1×G2

we define the function ϕ1 ∗ ϕ2 : 2VG1×G2 7→ R as

ϕ1 ∗ ϕ2(A) =
∑

a∈VG2

ϕ1(A1(a)) +
∑

b∈VG1

ϕ2(A2(b)),

where for all a ∈ VG2 and for all b ∈ VG1

A1(a) = {c ∈ VG1 | (c, a) ∈ A} and A2(b) = {c ∈ VG2 | (b, c) ∈ A}.

Since the operation ∗ is associative, we define the nth power of ϕ by ϕn = ϕ ∗ · · · ∗ ϕ.

Let the problem of maximization of a supermodular function ϕ on G have a nested structure of
solutions. This structure induces a labeling of vertices of G by 0, 1, . . . , |VG| − 1, such that for
each m and the set of vertices labeled by [m] = {0, . . . ,m − 1} holds: ϕ(A) ≤ ϕ([m]) for any
A ⊆ VG, |A| = m. This labeling in turn induces a labeling of the vertex set of Gn = G×· · ·×G.
Let us introduce the coordinatewise partial order on the set VGn and the downsets with respect
to this order. Using compression technique one can prove the following.

Proposition 3.1 (Ahlswede, Cai [4])
For any n ≥ 1 and any A ⊆ VGn there exists a downset B ⊆ VGn with |A| = |B| such that
ϕn(A) ≤ ϕn(B).

So far we have understood when the compression works out. It is a great step forward since the
downsets essentially reduce the number of subsets suspicious for optimality (cf. [38]). Never-
theless the question remains what to do further with a downset. If a problem of minimization
of ϕn has a nested structure of solutions, we need a definition of a total order to prove that it is
the optimal one. However, in some cases one can answer relatively easy whether a given order
is optimal. The first step in this direction was done in [4] with respect to the lexicographic
order.
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Theorem 3.4 (Ahlswede, Cai [4])
If |VG| ≥ 3, then for any n ≥ 2 the lexicographic order is optimal for ϕn iff it is optimal for ϕ2.

Thus, for a given graph G and the lexicographic order we have to check a finite number of cases
for ϕ2 to ensure its optimality for any n ≥ 2. This theorem the authors called the local-global
principle and it was used in [4] to prove Theorem 2.4.

Consider, for example, a 3 × 3 grid and the problem of minimization of θ. It is easily shown
that the lexicographic order provides nestedness in this case. Obviously, −θ is a supermodular
function and maximization of −θ is equivalent to minimization of θ. Therefore, by Theorem
3.4 the lexicographic order works for minimization of θ for 3 × · · · × 3 n-dimensional grids,
although for general grids the problem does not have nested solutions! Similar observation is
also valid for 2× · · · × 2 grids (i.e. for the hypercube) and for 4× · · · × 4 grids. However, for
5× 5 and larger grids no nested solutions exist.

For which other orders does the local-global principle hold ? Let |VG| = p and denote δϕ(m) =
ϕ([m])− ϕ([m− 1]), m = 0, . . . , p− 1, with [−1] = ∅. First let us study the order I defined in
Section 2.1.

Theorem 3.5 (Ahlswede, Bezrukov [2])
Let the order I be optimal for ϕ2 and p ≥ 3. Then I is optimal for ϕn for any n ≥ 3 iff
δϕ(0) ≤ δϕ(1) = δϕ(2) = · · · = δϕ(p− 1).

Proof.
Due to Proposition 3.1 we consider downsets only. Note that for a downset A one has (see
Lemma 3 in [4])

ϕn(A) =
∑

(x1,...,xn)∈A

n∑
i=1

δϕ(xi). (8)

First, we show that if the order I is optimal for ϕ2, then

δϕ(1) ≥ δϕ(2) · · · ≥ δϕ(p− 1). (9)

Indeed, for 1 ≤ t < p− 1 consider the sets

A = {0, 1, . . . , t− 1} × {0, 1, . . . , t},
B = A ∪ {(t, 0)},
C = A ∪ {(0, t + 1)}.

The sets A, B and C are downsets, |B| = |C| and B is an initial segment of order I. Applying
(8), the inequality ϕ2(B) ≥ ϕ2(C) is equivalent to δϕ(t) ≥ δϕ(t + 1).

Now assume that the order I is optimal for ϕn for some n ≥ 3 and

δϕ(1) = · · · = δϕ(t− 1) > δϕ(t) for some t, 1 < t ≤ p− 1.
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Denote by A the collection of n-dimensional vectors, which are not greater than the vector
(t, 1, . . . , 1) in order I. Let

B = A \ {(t, 1, . . . , 1)},
C = A \ {(t− 1, t, . . . , t)}.

Again the sets A, B and C are downsets, |B| = |C| and B is an initial segment of order I.
Applying (8), the inequality ϕn(B) ≥ ϕn(C) is equivalent to

(n− 2)δϕ(t) + δϕ(t− 1) ≥ (n− 1)δϕ(1).

From this and (9) follows δϕ(t) ≥ δϕ(1). A contradiction. Therefore, δϕ(1) = · · · = δϕ(p − 1).
Furthermore, since the order I is optimal for ϕ2 then

ϕ2({(0, 0), (0, 1), (1, 0), (1, 1)}) ≥ ϕ2({(0, 0), (0, 1), (1, 0), (2, 0)}).

Therefore,
2δϕ(1) ≥ δϕ(0) + δϕ(2) = δϕ(0) + δϕ(1),

from where δϕ(0) ≤ δϕ(1) follows.

On the other hand, if δϕ(0) = δϕ(1) = δϕ(p− 1), then (9) implies that the function ϕn depends
on the size of the downset only, thus theorem is true. Otherwise, if δϕ(0) < δϕ(1) = δϕ(p− 1),
then the proof of optimality of the order I for ϕn can be done quite similar to the case δϕ(0) = 0
and δϕ(1) = · · · = δϕ(p− 1) = 1 (cf. the proof of Theorem 2.6 in [1] or [32]). 2

Note that in the binary case p = 2 the order I is the lexicographic order. Counterexamples
show that in this case it is not true, that if I is optimal for ϕ2, then it is optimal for ϕn for
any n ≥ 3.

Now let us switch to the simplex order H which provides a solution to the vertex isoperimetric
problem (cf. [14, 38]). For a vector x = (x1, . . . , xn) ∈ [p]×· · ·× [p] denote ‖x‖ = x1 + · · ·+xn.
We say x >H y iff

a. ‖x‖ > ‖y‖, or
b. ‖x‖ = ‖y‖ and x <L y, where L is the lexicographic order.

Theorem 3.6 (Ahlswede, Bezrukov [2])
Let the order H be optimal for ϕ2 and p ≥ 2. Then H is optimal for ϕn for any n ≥ 3.

Proof.
Again due to Proposition 3.1 we consider the downsets only. First we show that if ϕ is optimal
for ϕ2, then

δϕ(0) ≥ δϕ(1) ≥ δϕ(2) · · · ≥ δϕ(p− 1), (10)

δϕ(a) + δϕ(b) = δϕ(c) + δϕ(d) for a + b = c + d. (11)
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Indeed, consider the ball Bn
i of radius i centered in the origin

Bn
i = {(x1, . . . , xn) ∈ [p]× · · · × [p] | x1 + · · ·+ xn ≤ i}.

Assuming 1 ≤ i < p− 1 denote

Qi = (B2
i \ {(0, i)}) ∪ {(i + 1, 0)}

and note that Qi is a downset. Since H is optimal for ϕ2, then ϕ2(B2
i ) ≥ ϕ2(Qi), which with

(8) implies δϕ(i) ≥ δϕ(i + 1) for i ≥ 1. In order to prove δϕ(0) ≥ δϕ(1) consider instead of Qi

the set
Qp−1 = (B2

p−1 \ {(0, p− 1)}) ∪ {(p− 1, 1)}.

Then Qp−1 is a downset and ϕ(B2
p−1) ≥ ϕ(Qp−1) completes the proof of (10).

In order to prove (11), denote for (x, y) ∈ [p]× [p]

[x, y]H = {(a, b) ∈ [p]× [p] | (a, b) ≤H (x, y)},

i.e. an initial segment of the order H. For i ≥ 1 and i > j ≥ 0 consider the set

T j
i = [j, i− j]H \ {(j + 1, i− j − 1)}.

Since H is optimal for ϕ2, then ϕ2(T j
i ) ≤ ϕ2([j + 1, i− j − 1]H), which with (8) implies

δϕ(j) + δϕ(i− j) ≤ δϕ(j + 1) + δϕ(i− j − 1). (12)

Applying (12) for j = 0, . . . , i− 1 one has

δϕ(0) + δϕ(i) ≤ δϕ(1) + δϕ(i− 1) ≤ δϕ(2) + δϕ(i− 2) ≤ · · · ≤ δϕ(i) + δϕ(0).

Thus, the above mentioned equalities are valid, which implies (11).

Now we extend (11) for the case of n > 2 summands, showing that for (x1, . . . , xn) ∈ [p]×· · ·×[p]
the magnitude δϕ(x) = δϕ(x1) + · · ·+ δϕ(xn) is a function of i = ‖x‖, i.e. that

δϕ(x) = δϕ(y), if ‖x‖ = ‖y‖. (13)

To show this, represent i in the form i = (p−1)s+r with 0 ≤ r < p−1 and consider the vector

li = (0, . . . , 0, r, p− 1, . . . , p− 1︸ ︷︷ ︸
s

).

We will show that δϕ(x) = δϕ(li). For this assume that x 6= li, so there exist some i, j such
that x1 = · · · = xi−1 = 0 with xi > 0 and xj+1 = · · · = xn = p − 1 with xj < p − 1. Consider
the vector

z = (x1, . . . , xi−1, xi − 1, xi+1, . . . , xj−1, xj + 1, xj+1, . . . , xn).

Applying (11), one has δϕ(x) = δϕ(z), and clearly after a finite number of such replacements
one has x = li and y = li and (13) follows.
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Finally, let us show that
δϕ(x) ≤ δϕ(y), if ‖x‖ ≥ ‖y‖. (14)

Indeed, (14) follows from (13) in the case ‖x‖ = ‖y‖. Otherwise, (14) is a consequence of (13)
and δϕ(li) ≤ δϕ(li+1), where the last inequality is implied by (10).

Now we are ready to prove the theorem. Assume that a downset A ⊆ [p] × · · · × [p] is not
an initial segment of order H. Denote by x the largest vector of A in order H and by y the
smallest vector in this order which is not in A. Clearly, x >H y, and ‖x‖ ≥ ‖y‖.

Consider the downset B = (A \ {x}) ∪ {y}. Applying (8), the inequality ϕn(A) ≤ ϕn(B)
is equivalent to δϕ(x) ≤ δϕ(y), which is true due to (14). After a finite number of such
replacements one can transform A into an initial segment of order H without decreasing of ϕn,
and the theorem follows. 2

Counterexamples show that in the binary case p = 2 Theorem 3.6 is not true in general.

Let us refer again to the edge isoperimetric problem in the form of maximization on the function
I on cartesian products of a connected graph G. One has δI(0) = 0 and δI(1) = 1. By Theorem
3.5, if the order I is optimal for I on Gn, then δI(1) = · · · = δI(|VG| − 1). It is easily shown
that if the function I satisfies this property, then G contains no cycles and is connected, i.e.
G is a tree. Thus, using Theorem 3.2, the order I only works for cartesian products of trees
(and for no other graphs !). Since δI(m) ≥ 0 for all m, there are no graphs at all for cartesian
products of which the oder H would be optimal with respect to the function I.

4 Applications

Each of the three topics considered below is quite broad and requires separate consideration.
We do not give a complete survey on these topics, just showing how the isoperimetric methods
are applicable.

4.1 The wirelength problem

One of the first needs of edge isoperimetric problems was discovered by Harper in [63]. Suppose
we have to send the numbers 0, 1, . . . , 2n−1 through a binary channel and we have to assign the
numbers to vertices of the n-cube Qn. For example, we may assume that these numbers were
taken from the output of an analogue to code digital converter. It is assumed that only single
errors are likely in a transmitted word and all n positions may be disturbed with probability
p. If the n-tuple assigned to i was transmitted and the n-tuple assigned to j was received,
then |i − j| is the absolute value of the error. The goal is to find an assignment so that the
average absolute error in transmission is minimized under the condition that the choice of the
2n numbers is equally probable. Thus one comes to the problem of constructing a bijective
mapping ϕ : VQn 7→ {0, . . . , 2n − 1} so that the sum

∑
(u,v)∈EQn |ϕ(u)− ϕ(v)| is minimized.

Such type problems can be formulated for an arbitrary connected graph G and the sum above
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may be referred to the total wirelength in a linear layout of the graph G. The usefulness of the
edge isoperimetric problem for the wirelength problem follows from the key identity proved in
[63]. Let Sϕ(m) denote the set of vertices of G labeled by ϕ with 0, . . . ,m− 1. Then

min
ϕ

∑
(u,v)∈EG

|ϕ(u)− ϕ(v)| = min
ϕ

2n∑
m=0

θG(Sϕ(m)) ≥
2n∑

m=0

θG(m). (15)

Therefore, if the problem of minimization of θG has the nested structure of solutions, then the
corresponding ordering provides equality in (15) and so a solution for the wirelength problem.

This approach was used in [63] to show that in the wirelength problem for Qn the lexicographic
order provides a (essentially unique) solution and that the wirelength equals 2n−1(2n − 1). In
[13] it was shown that the above coding works for any mapping ϕ : VQn 7→ {a0, . . . , a2n−1}
with 0 ≤ a0 ≤ · · · ≤ a2n−1 if the probability p is small enough. Here, the number ai should
be assigned with the vertex corresponding to the binary expansion of i. In [15] the case was
considered where some t, 0 < t < n, positions in all codewords are error-free. If these t positions
are the first ones, then it can be shown (cf. [15]) that the lexicographic order works as well and
is essentially unique (up to isomorphism).

The result concerning the wirelength of the n-cube was extended in [97] for the Hamming
graph Hn(a, . . . , a), where it is shown that the wirelength equals (a + 1)an(an − 1)/6. Another
extension concerns minimization of σ2(G) =

∑
(u,v)(ϕ(u)− ϕ(v))2, where the sum runs over all

edges of G. For Qn (see [48]), it is shown that the lexicographic order provides a solution. The
proof is, however, much more complicated and is based on usage of Fourier transforms. For
general graphs with p vertices it is known [72] that σ2(G) ≥ λG(p2 − 1)p/6.

The ideas of compression and stabilization we presented here were started to be studied sys-
tematically by Harper in [66]. This led to a nice theory which he calls stabilization theory and
will be further developed in his forthcoming book [38] (it should be mentioned that he used
the term “stabilization” in a different sense). Shortly, Harper introduced a set of geometric
transformations in Euclidean space based on reflections, which do not increase the edge lengths
|ϕ(u) − ϕ(v)| and thus not the wirelength either. Application of these transformations with
respect to the edge isoperimetric problem or to the wirelength problem leads to a solution
represented by stable configurations, which significantly reduce the number of mapping to be
considered. With the help of his theory Harper solved the wirelength problems for the dodec-
ahedron, icosahedron and the 24-cell [66], for the 600-cell [11] and for the binary de-Bruijn
graph of dimension 4 [65]. In the last case the lower bound based on identity (15) is 74, and
the absence of a nested structure of solutions of the edge isoperimetric problem for this graph
led to increase this bound up to 76 (the wirelength for this graph has to be even), which is
provided by a corresponding numbering. However, for the higher-dimensional case new ideas
are required. By using (15) and Theorem 2.7 it is shown in [24] that the wirelength of the nth

power of the Petersen graph equals 37
82
· 100n + 72

82
· 18n−1 − 1

2
· 10n.

The wirelength problem for the 2-dimensional n × m grid (n ≤ m) [93] has an interesting
solution (see also [88] for square grids and [55]). Although the edge isoperimetric problem
does not have the nested solutions property, it was possible (using similar approach based on
compressions) to find the exact value of the wirelength. The optimal numbering is schematically
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shown in Fig. 5. The numbering starts with the left lower corner of the grid and consequently
fills the areas A1, A2, . . . , A7 (cf. Fig. 5a), where A1, A3 are a× a squares and A5, A7 are a′× a′

squares (a and a′ will be specified below).

The numbering of the areas is shown in Fig. 5b. First we number a square after a square filling
a row after a column until we fill the square A1 with the side length a. Then we proceed with
the area A2 numbering it consecutive rows from bottom to top and from left to right. After that
we number the a × a square A3 with the reversed order with respect to A1. Next we number
the columns of A4 from bottom to top and from left to right. The numbering is completed by
numbering of the areas A5 − A7 in the similar way.

a.

a a′

a a′

A1

A2

A3

A5

A6

A7

A4

c

c

c

c

c

c

c

c

c

c

c

c
c
c

c
c

. . .

b.

Figure 5: The wirelength numbering of a grid

It is shown in [93] that a and a′ can be chosen arbitrarily from the set

a, a′ ∈


n− 1

2
−
√

n2

2
− n

2
+

1

4

 ,

n +
1

2
−
√

n2

2
− n

2
+

1

4

 .

If (square root + 1/2) in this formula is an integer, then a and a′ can differ in 1 and it makes no
difference how to choose them. Otherwise they are defined uniquely. Moreover, the wirelength
of the grid equals

−2

3
a3 + 2na2 −

(
n2 + n− 2

3

)
a + m(n2 + n− 1)− n.

This result implies a formula for the wirelength of the n×m torus T (n,m) (i.e. the cartesian
product of two cycles with n and m vertices), since as it is easily shown, the wirelength of the
torus is twice larger the one of the n×m grid (see [64] for some results concerning continuous
approximation of the torus and its wirelength).

It is known how to solve the wirelength problem for the cartesian product of a cycle with a
chain (a 2-dimensional cylinder) [95] and for the complete p-partite graph [94]. In the last case
a nested structure of solutions in the edge isoperimetric problem (cf. Theorem 2.1) provides a
solution due to (15). In [72, 73] it is shown that the wirelength of a graph G with p vertices is
at least λG(p2 − 1)/6.
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For further information concerning the wirelength problem for other graphs we refer to the
surveys [40, 41, 72, 73, 96]. In [38] one can find formulation and some results on the wirelength
problem for ranked posets and in [71] the solution of this problem for the Boolean lattice.

4.2 The bisection width and edge congestion

Edge isoperimetric problems often and naturally arise in various problems on networks. For
estimating the communication complexity or the layout (cf [80]), for example, it is important
to know what is the least number of edges one has to cut in order to split a given graph into
2 parts with equal number of vertices. This parameter is known as the bisection width of G
(denotation bw(G)).

As another example let G and H be graphs and consider all injective mappings ϕ : VG 7→ VH ,
which we call embeddings of G into H. We assume that an embedding is equipped with a
routing scheme R, which maps edges of G into paths of H. For an edge e ∈ EH denote by
econϕ,R(e) the number of paths in the routing scheme R passing through the edge e and let

econ(G, H) = min
ϕ,R

max
e∈EH

econϕ,R(e).

This parameter is called edge congestion and is well studied if H is a path with |VG| vertices.
In this case it is simply called cutwidth of G (denotation cw(G)). One has

bw(G) = θG(b|VG|/2c),
cw(G) ≥ max

m
θG(m). (16)

The isoperimetric sets providing the values of the bisection width and cutwidth for the n-cube
and the Hamming graph follow from Theorems 2.2 and 2.3 respectively. However, computation
of these values makes some difficulties (see [10, 62, 97]):

bw(Gn(p, . . . , p)) =

{
pn−1, p even
(pn − 1)/(p− 1), p odd.

bw(Hn(p, . . . , p)) =

{
pn+1/4, p even
(p + 1)(pn − 1)/4, p odd.

(pn − 1)/(p− 1) ≥ cw(Gn(p, . . . , p)) ≥


(p + 2)(pn − 1)/(p2 + p), p even, n even
((p + 2)pn−1 − 1)/(p + 1), p even, n odd
(pn − 1)/(p− 1), p odd.

cw(Hn(p, . . . , p)) =


p(p + 2)(pn − 1)/(4p + 4), p even, n even
p2((p + 2)pn−1 − 1)/(4p + 4), p even, n odd
(p + 1)(pn − 1)/4, p odd.

Let us also mention the results of [24] and [102] concerning the powers P n of the Petersen graph
and the 2-dimensional torus T (n, m) respectively, where it is shown that the lower bound (16)
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is strict is these cases and

cw(P n) =

{
(6.25) · 10n−1 + (2n−1 − 4)/12, n odd
(6.25) · 10n−1 + (2n−1 − 8)/12, n even,

cw(T (n,m)) = min{2n + 2, 2m + 2}. (17)

For r-regular graphs with |VG| = p an alternative lower bound is proposed in [19]

bw(G) ≥ p ·
r(r + λG − 1)− r

√
(r − 1)(2λG + r − 1)

2λG

. (18)

This bound is better than the lower bound provided by Theorem 2.12 if λG is small. In
particular, for a family of r-regular graphs {Gp} with r = r(p) and λGp/r → 0 as p → ∞ the
right hand side of (18) asymptotically equals p

4
· r

r−1
.

In general, some other approaches for estimating the bisection width and cutwidth of graphs
are known (see e.g. [80] and [107] for application of spectral methods). Further information on
this topic can be found in the surveys [40, 41].

If the graph H is not a path, just a few exact results on estimating the edge congestion are
known. A general lower bound is due to the isoperimetric approach [20]:

econ(G, H) ≥ max
m

θG(m)

θH(m)
. (19)

Let C(k) denote a cycle with k vertices and consider an embedding of a graph G into C(|VG|).
We introduce the cyclic cutwidth and cyclic wirelength of G as

ccw(G) = econ(G, C(|VG|)),
cwl(G) = min

ϕ,R

∑
e∈C(|VG|)

econϕ,R(e).

Now let T (m, n) = C(m) × C(n) be a two-dimensional torus with m ≥ n. For embedding of
T (m, n) into C(mn) the lower bound (19) (with usage of (17)) is not strict, since

ccw(T (m,n)) = min{m + 2, n + 2}

as it is shown in [102] with nice techniques based on consideration of all minimal cuts of the
torus. A more difficult problem is to compute the cyclic cutwidth of grids. Recently it is proved
in [104] that for an m× n grid with m ≥ n ≥ 3

ccw(Pm × Pn) =


n− 1, if m = n is even,
n, if n is odd or m = n + 2 is even,
n + 1, otherwise

Thus, the lower bound (19) is not strict for grids too. It would be of interest to compute the
cyclic wirelength of grids and tori. Another interesting problem is to embed Qn into C(2n). In
[10] it is shown that

ccw(Qn) ≤ (5 · 2n−2 − 2 + (n mod 2))/3.

26



The construction consists of isomorphic embedding four copies of Qn−2 into four segments of the
cycle using the wirelength embedding into the line and connecting the corresponding vertices
of Qn−2’s by 4-cycles. It is conjectured that this embedding is optimal and so the bound (19)
is not strict. The same construction provides the upper bound in

1

3
≤ lim

n→∞

cwl(Qn)

4n
≤ 3

8
.

The lower bound follows from isoperimetric arguments. Recently it is proved in [59] that the
construction above (and, thus, the upper bound) provides an exact answer.

For some graph classes, however, the cutwidth and the cyclic cutwidth are the same. For
example, it is the case for trees [39, 82]. In [26] it is shown that also the wirelength and the
cyclic wirelength of any tree are equal. More about embeddings into cycle one can find in
[58, 70, 81, 82, 112].

Embedding of Qn into grids was studied in a number of papers (cf. [41, 113]), where the order
of the edge congestion was determined. Its exact value is found in [20]:

econ(Qn, Gd(2n1 , . . . , 2nd)) =

{
(2nd+1 − 1)/3, nd odd
(2nd+1 − 2)/3, nd even,

where n1 ≤ · · · ≤ nd and n1 + · · · + nd = n. Therefore, in this case the lower bound (19) is
strict.

4.3 Graph partitioning problems

Let an edge cut partition the vertex set of a graph G into k parts A1, . . . , Ak with

b|VG|/kc ≤ |Ai| ≤ d|VG|/ke. (20)

Denote ∇(G, k) = min
∣∣∣⋃k

i=1 θG(Ai)
∣∣∣, where the minimum runs over all partitions of VG satis-

fying (20). Such problems arise, for example, in load balancing under distribution of tasks in
multiprocessor computing systems.

The edge isoperimetric problems are naturally applied to the k-partitioning due to the lower
bound

∇(G, k) ≥ k

2
min

{
θG

(⌊
|VG|
k

⌋)
, θG

(⌈
|VG|
k

⌉)}
. (21)

Paper [18] contains some bounds and asymptotic results concerning ∇(Qn, k). It is shown that
in some cases the lower bound (21) is strict and that for a > b ≥ 0:

lim
d→∞

∇(Qn, 2a + 2b)

2n
=

a2a−1 − b2b−1

2a − 2b
,

lim
d→∞

∇(Qn, 2a − 2b)

2n
=

a2a−1 − b2b−1 − 2b

2a − 2b
.
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It is interesting to notice that the function ∇(Qn, k) is not monotone with k. Theorems 2.3
and 2.4 allow to extend these results for partitioning the Hamming graphs and the graphs
F n(p, . . . , p) (cf. Section 2.1). For example, [23]

∇(Hn(p, . . . , p), pa + pb) ∼ apa−1 − bpb−1

pa − pb
(p− 1)pn

as a, b, p = const, d →∞ and d > a > b ≥ 0 and

∇(Hn(p, . . . , p), k) ∼ pn+1

2
· k − 1

k
,

∇(F n(p, . . . , p), k) ∼ pn+1

16
· k − 1

k
,

as p →∞ and n, k = const.

The lower bound (21) combined with continuous approximation of the grid is used in [25] to
show that

npn−1
(

n
√

k − 1
)
≤ ∇(Gn(p, . . . , p), k) ≤ npn−1

(
n
√

k + cn

)
with some constant cn depending on n only. Moreover, some heuristics are proposed in [25]
which provide better results for small values of k (see also [86]).

For partition of general connected graphs with p vertices it is proved in [51] that, in particular,

∇(G, k) ≥ p

2k

k∑
i=2

λi, (22)

where 0 < λ2 ≤ · · · ≤ λk are the eigenvalues of the Laplacian of G. Further application of
spectral approach to k-partitioning of weighted graphs and hypergraphs can be found in [28].

Another version of the graph partition problem claims to find a partition A1, . . . , Ak of the
vertex set of G with 2 ≤ k ≤ c such that Ai 6= ∅ and maxi |θ(Ai)| is minimized. We denote this
minimal value by B(G, c).

Such a problem arises in the pin limitation problem or in the I/O complexity problem [49].
Constructions of k-partitions considered above can be used for obtaining upper bounds for
B(G, k). Concerning the lower bounds, an interesting technique is proposed in [49] involving
the time required for sorting or permuting in networks. In particular, [49] contains an inequality
for the grid in the form

B(Gn(p, . . . , p), k) ≥ npn−1(k1/n − 1)/k.

For further information on results and techniques of k-partitioning of graphs we refer the reader
to the papers [49, 100].

5 Concluding remarks

We considered edge isoperimetric problems on graphs. In the sections above we presented some
known results for concrete graphs, described some standard and new tools and methods for
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their solution and listed some applications. We concentrated on cartesian products of graphs,
where many of deep and general results have been found in recent years. Restricted volume
of the paper did not allow to consider many other results and related problems. Here we just
mention them briefly and give the references.

A very interesting paper of Shahrokhi and Székely [105] is devoted to a technique for estimating
the isoperimetric number i1 of graphs which is based on concurrent flows. The lower bounds
presented there improve some results of Babai and Szegedy [9] on isoperimetric numbers of
edge-transitive graphs (see also [103]). The paper [74] of Karisch and Rendl provides a new
approach for getting lower bounds for the k-partitioning. This approach is based on a special
representation of the size of the cut as the trace of some related matrix. Now minimization
of the cut is reduced to minimization of a linear function (the trace) over a set of matrices
satisfying some restrictions, which is done by using semidefinite programming. It is also shown
how to reformulate into these terms some known eigenvalue bounds (e.g. (22)) and that the
new approach gets better lower bounds. In [68] the authors applied the projection technique
for deriving spectral lower bounds for the vertex separators and the wirelength. The obtained
bounds are complicated enough but provide better results for the wirelength than the spectral
bound from Section 4.2.

Concerning related problems, we did not touch a broad area of isoperimetric constants for
product Markov chains and probability measures. Many results and references on this subject
can be found in [44, 69, 103, 111] and the survey of Talagrand [110]. A kind of an isoperimetric
constant for special oriented graphs was studied by Plünnecke (cf. chapter 7 in [98]). He de-
rived some inequalities involving these constants which have powerful consequences in additive
number theory.

The isoperimetric approach provides a powerful tool to solution of many discrete extremal
problems. Among them is the problem of maximization of the function

min{distH(f(u), f(v)) | (u, v) ∈ EG}

over all one-to-one mappings f : VG 7→ VH [87]. Bollobás and Leader [33] used a combination
of this approach and Menger’s theorems for constructing edge-disjoint paths connecting the
vertices of two sets of Qn of the same cardinality. In a very recent paper Sýkora and Vrt’o [108]
found a lower bound on the bipartite crossing number of graphs, which involves the function
θ. (cf. e.g. [92]), where the eigenvalue technique is applied for

Let us mention some research directions:

1. Specify the graphs for whose cartesian products the lexicographic order provides a solution
of the edge isoperimetric problem;

2. For which further orders does the local-global principle hold ?

3. We have showed how the shadow minimization problem can be applied to the edge isoperi-
metric problems. The general question is: how could an edge isoperimetric problem on a
graph be used to solve the shadow minimization problem on the representing poset ?
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[109] Sýkora O., Vrt’o I. : Edge separators for graphs of bounded genus with applications, Lect.
Notes Computer Sci. 570, Springer Verlag, 1991, 159–168.

[110] Talagrand M. : Concentration of measure and isoperimetric inequalities in product spaces,
Publications Mathematiques, 81 (1995), 73–205.

[111] Tillich J.-P. : Edge isoperimetric inequalities for product graphs, Preprint, 1996.

[112] Yuan J.J. : Some Results about the Cyclic Bandwidth of Graphs, J. Xinjiang Univ. Natur.
Sci., 11 (1994), 16–18.

[113] Zienicke P. : Embedding hypercubes in 2-dimensional meshes, Humboldt-Universität zu
Berlin, Preprint.

36


