
Repairing LitterMaid Self-Cleaning Litter Box

Sergei Bezrukov
sergeilb@yahoo.com

Abstract

This repair project involves replacing malfunctioning microcontroller chip in
LitterMaid Mega self-cleaning litter box with a Microchip PIC microcontroller and
redesigning its firmware. It is shown how to embed a new microcontroller onto the
original board and a detailed description of the new firmware algorithm is presented.

During the past several years we were using for our cat a self-cleaning litter box manu-
factured by LitterMaid. Although this device does not provide a perfect cleaning of the
box so that you do not need to touch it any more for a manual cleanup, it made our
life somewhat simpler. However, one day it stopped working for an unknown reason: the
power LED was steady on but the rake refused to move.

Figure 1: My LitterMaid Mega older model

1

My litter box model (see Fig. 1) is pretty old and is probably not manufactured any
more. The modern ones come with more features like real-time clock which allows you
to disable automatic cleaning at some times (e.g., nights), and air ionizer for reducing
the smell. Therefore, the technique described here might not be directly applicable to
newer models. I have never opened newer models yet and am not aware of what is inside.
However, I hope that my experience could be applicable anyway.

The device is assembled on a single printed circuit board (PCB) shown in Fig. 2. After
careful examination of all components I figured out that two transistors TR6 and TR7 of
type 2N3904 were burned out and the microcontroller IC3 showed no reaction to signals
applied to its pins. These components are are circled in Fig. 2.

Figure 2: Damaged components: two transistors and microcontroller IC

Note that in other cases the set of damaged components can be different. In my case
replacing transistors was not a problem, but the device still did not work after this, so a
microcontroller replacement was needed. The problem was that I could not identify the
microcontroller (MCU). But even if I could, it won’t help me much, since any MCU must
be programmed with firmware and I have no development tools for this MCU. Moreover,
the manufacturer does not provide any firmware for download. So, I decided to replace
the original MCU with another one that I can handle (Microchip PIC16F684) and develop
a new firmware for it by myself.

Original Circuit Description

By examining the PCB I came up with the schematic shown in Fig. 3. The numbering
of components on the schematic matches the one on the PCB.

2

Figure 3: Original schematic

3

As you probably know the device is equipped with a rake that moves from the back side
of the box towards the front side (from left to right in Fig. 1). The litter grabbed by the
rake is dropped into a plastic container located under the bluish cover at the front. The
rake is activated (starts to move) after about 10 minutes as the pet leaves the box.

Checking for pet presence in the box is accomplished by an infrared emitting diode LED1
and IR receiving diode RX. The transmitter is switched by transistor TR1, whose base
is driven by a square-shape waveform from pin 7 of MCU IC3. The frequency and duty
cycle of this signal is about 10 kHz and 50%, respectively. The receiver’s output signal is
pretty weak and needs to be amplified, for which transistors TR3 - TR5 are used. The
amplified signal is forwarded to the peak level detector on components D6, R19, and C9.
In case of no blocking obstacle between IR transmitter and receiver (no pet in the box)
the voltage at the peak detector output is about 4.5V. It drops down to 0V by blocking
the IR ray.

Transistors TR8 - TR11 form an H-bridge that controls the direction rotation of motor
M. Transistors TR6 and TR7 amplify current for driving the H-bridge. When the rake is
steady the voltage at MCU pins 13 and 14 is close to 0 and all transistors TR6 - TR11
are closed. To move the rake forwards (for cleaning) pin 13 of MCU turns into a high-
impedance state, resulting in opening of TR6 which in turn opens TR9 and TR10. For
moving the rake back MCU outputs 0 at pin 13 and drives pin 14 into a high-impedance
state. This results in opening of TR7 and as a consequence of TR8 and TR11. The
voltage polarity applied to the motor changes to the inverse one resulting in reversing its
rotation direction.

The final position of the rake as it moves forwards is registered by a pair of buttons End
(see Fig. 3) located inside the device side panels. At the final position the buttons get
open and the voltage at MCU pin 4 raises up from 0 to 5V. Similarly, the home position
of the rake is registered with another pair of buttons Home. As the rake reaches its home
position these buttons get close resulting in dropping the voltage at pin 5 from 4.4V down
to 0.

The motor moving the rake is equipped with a gearbox, resulting in a pretty high torque
so I can barely stop the rake with my hands. Nevertheless, sometimes even this power
becomes insufficient for moving the litter out and the rake jams. If this happens, the
current through the motor and H-bridge noticeably increases. To protect them from
burning out the designers use voltage regulator LM317 (IC4). Since the adjustment
terminal of LM317 is grounded, the voltage at its output is close to the input one. As
the current drawing by the motor increases, the one through IC4 and R28 increases too.
IC4 limits the current at the level of approx. 1.5A thus protecting the H-bridge and the
motor.

At the same time, increasement of motor’s current is registered by comparator IC2a
which monitors the voltage drop on R29. As the current goes above 0.7A this voltage
drop exceeds 0.83V (determined by R21 and R24) the comparator output raises up from 0
to 5V. The low-pass filter R29 - C11 prevents the comparator from reporting short peaks
of drawing current (below ca. 70 msec) that can be caused by transporting heavy loads

4

by the rake or by reaching the terminal positions. Furthermore, triggering an overload is
also provided by a bumper located at the back of the rake. This way pets incidentally
appeared behind the rake moving to the home position get protected from smashing. The
bumper closes button S2 (mounted inside the rake), which triggers an overflow signal at
the output of IC2a only when the rake moves backwards. This is accomplished by diode
D7 which blocks button S2 when the rake is moving forwards.

The device can be powered from a wal-wart power supply or from batteries. The input
voltage is rectified by D1 - D5 and stabilized by IC1 of type 7805. The input voltage
is monitored by comparator IC2b. If the voltage drops below 8.5V (determined by R19
- R20 and R22 - R23) the output of IC2b raises up from 0 to 5V. This information is
used by MCU for controlling the rake. Turning the device on is performed by switch S1.
Its lower (on schematic) contacts break the input voltage, while the upper ones probably
serve for resetting the MCU.

Modifications in the original schematic

As it is mentioned above I replaced the original MCU with PIC16F684. This part has
only 14 pins vs. 16 in the original one and has incompatible pinout. To resolve the last
problem I mounted the new MCU on a small home-made PCB shown in Fig. 4.

Figure 4: Auxiliary board carrying PIC16F684

The right image in Fig. 4 is a detailed view of the PCB traces which are located on its
bottom side. The blue jumper connects the filled (ground) areas on PCB.

The board size is about 2×3 cm. It has 16 pads corresponding to the ones of the original
MCU. The auxiliary PCB pads are connected by short wires with the corresponding MCU
pads on the original PCB (the original MCU has to be removed from PCB, of course).
This way the auxiliary PCB is assembled about 1 cm above the main PCB and the
constructions is pretty stable. Fig. 5 and Fig. 6 show the original MCU on PCB and its
replacement, respectively.

5

Figure 5: Original microcontroller on PCB

Figure 6: Replacement for the original microcontroller

6

Figure 7: Modified schematic

7

The 5-pin connector on the auxiliary PCB is intended for in-circuit programming of
PIC16F684. This was very handy, since the firmware was reloaded into it many times
during debugging. By the way, it turns out that my PIC programmer was unable to
power the entire circuit during the MCU programming process. I resolved this problem
by powering the device from its own power supply during programming. This way the
modified schematic becomes as it is shown in Fig. 7.

Since PIC16F684 has pretty stable internal clock oscillator, the elements Q1, C6, C7, and
R6 (that served for clocking the original MCU) are not needed and they are not connected
to my board. I also did not use the reset circuitry R1 - C5, relying on the one built in
PIC16F684. The broken connections are indicated by crosses (×) in Fig. 7.

The last modification concerns resistor R7. It was disconnected from the base of TR1
by cutting off the corresponding trace on the PCB. Instead of it a new current-limiting
resistor (R0 in Fig. 7) is added. For this the PCB trace connecting the base of TR1 with
MCU was cut off and a small SMD resistor in package 0603 (not shown on photos) was
mounted over the cut. It is possible to use a regular resistor with axial leads.

Firmware design

Since I do not have a detailed description of the original algorithm, I cannot guarantee
that my one exactly matches it. Anyway, by designing my firmware I tried to mimic the
functionality of the original device as much as I remembered it.

The firmware is implemented as a finite state machine (FSM) with 5 states. One of
those states in the initial one which the device enters right after powering up. The other
state is the terminating one, which is used to indicate problems preventing the device
from functioning. Examples of such problems are unavoidable obstacles hit by the rake or
dropping of input voltage below 8.5V (when being powered from batteries). Exit from the
terminating state is only possible by manually turning the device off and then on again.
The remaining three states correspond to waiting for pet, moving the rake forwards for
cleaning, and moving it back to the home position.

In general, the functionality of the device mostly consists of waiting for pet and activating
the rake (moving it forwards) 10 minutes after the pet leaves the litter box. The rake
gets 3 attempts for cleaning the box. After every unsuccessful attempt (rake is stuck by
moving forwards) the rake is returned back to the home position and the next attempt is
performed after a delay of 1 sec. The delay allows the litter to reconfigure after moving
it, which could help to remove it. After 3 failures the rake gives up and stops, and the
devices enters the terminating state. In this state the power LED starts blinking indicating
a problem (normally this LED is steady on). If an unavoidable obstacle is experienced by
moving the rake to the home position (which should normally never happen), the device
gives up right away. In each state monitoring of the power supply voltage is performed.
If it drops down below 8.5V threshold, the device enters the terminating state. Below I
describe each of the states and inter-state transitions in detail.

8

State 0: Device initialization.
This is a starting state which the device enters right upon turning it on. In this state
we initialize the MCU registers, set up timer TMR1 (used for triggering timeout inter-
rupts), and tuning the PWM module (pulse-width modulation) to generate a waveform
of frequency 10 kHz with duty cycle 50% for driving the IR emitting LED. After that the
program enters state 2, in which it starts test cleaning of the litter box. This way the
device functionality can be verified operatively.

State 1: Waiting for pet to enter the litter box.
Experiments with our neighbor’s original working LitterMaid litter box showed that the
MCU drives infrared LED permanently. This way the voltage stabilizer IC1 dissipates
about 0.45W of heat. As no heatsink is mounted on it, the IC becomes so hot that I can
barely touch it. I took it as a design flaw and decided to improve the situation by checking
for pet only once every two seconds and for a very short time. This is accomplished by
driving TR1 from the PWM module of the MCU. The PWM period of 10 kHz is provided
by timer TMR2, while 2-second intervals are generated by timer TMR1. Every 2 seconds
it requests an interrupt and the corresponding Interrupt Service Routine (ISR) enables
PWM at pin 5 of MCU for a duration of 1 msec. This way the IR emitting LED becomes
active for a very short time and this completely eliminates useless heating of IC1 and
drops the total power consumption in a factor or 5.

During the PWM enabling interval the ISR also checks for a signal at pin 8 of MCU. Once
this signal drops down to 0, the pet is detected. Then the program waits for 10 seconds
and checks for pet again. If the pet presence is not confirmed, the program invalidates the
first checking and returns back to the waiting mode. This is done in order to ignore short
IR ray interruptions caused, for example, by manual cleaning of the box. Otherwise, if the
pet is still there, the program waits for 10 minutes letting pet complete its job and checks
for pet again after this timeout. If the pet is still there, the program makes periodic checks
every minute until the pet leaves the litter box. As this finally happened the cleaning
starts right away. The counter of cleaning attempts is reset to 0 and the program enters
state 2.

State 2: Cleaning the litter box by moving the rake forwards.
In this state the interrupts are disabled, so the IR sensor does not affect the functionality.
Once the rake starts to move forwards, the counter of cleaning attempts increments on
1. While rake is moving, the program polls the state of buttons End and outputs of both
comparators of IC2 with a period of about 30 µsec. If the low battery voltage event is
detected, the program enters the terminating state 4. If the rake is stuck the program
enters state 3 to return rake back home after a 1-second delay. As one of the buttons End
gets open (cleaning completed), the counter of successful events is reset to 0 and after a
3-seconds delay the program enters state 3. The delay is needed for letting the litter drop
into the plastic container.

The tests showed that sometimes the cleaning process was interrupted with rake located
somewhere in the middle of its path even if no obstacle is detected. This probably happens
because of vibrations caused by moving rake leading to short malfunctioning of buttons

9

(my unit is too old). To resolve this problem, debouncing of switches was added, so the
now rake does not take the button states into account before they are confirmed for 128
times.

State 3: Returning rake to the home position.
This state is similar to state 2. The motor direction is reversed and the program monitors
the state of buttons Home and the outputs of both comparators of IC2. If one of them
goes up (low battery voltage or unavoidable obstacle), the program enters the terminating
state 4. As one of buttons Home gets close the program checks the value of the cleaning
attempts counter. If this value is non-zero, then the cleaning is not completed and the
rake was returned back because of an obstacle. In this case if the counter value does not
exceed 3 the program is moved to state 2 again without cleaning the counter and the
cleaning process repeats. If the counter value is 3, the rake gives up to move an obstacle
and the program enters terminating state 4. Finally, if the counter value is 0 (cleaning is
completed successfully), the program enters state 1 for waiting of a new pet visit.

State 4: Terminating state.
This state is used to indicate a problem by blinking the power LED (normally it is steady
on). Exit form this state is only possible by a manual reset of the unit by turning the
power switch off. Possible reasons for entering this state are restricted to the presence
of an unavoidable obstacle in the litter box and low power voltage. It is impossible to
distinguish between them just by observing the power LED. However, presence of an
obstacle in the litter box is usually easy to detect visually (I have never had problems
with it).

Concerning the low input voltage, if the litter box is powered from batteries, the device
will most likely detect low battery voltage again right upon reset, so the reason of LED
blinking becomes obvious. In case of power outage the program will be restarted from
state 0 and perform cleaning as soon as power becomes available.

The program is written in assembly language and intended for compilation with MPLAB
IDE, which can be downloaded from microchip.com website. The source code of the
embedded program is attached.

If I would do it again

My primary goal in this project was to reanimate the broken device as soon as possible
rather than to optimize it. Anyway, the first thing I would do is eliminate the pull-up
resistors R27 and R28 and insert current-limiting resistors of 2.2K between the bases of
TR6 and TR7 and pins 11 and 2 of MCU respectively (similarly as it is done with TR1
and pin 5 now). This way the MCU would not sink the current through R27 and R28
to keep the motor in the stop position. The motor is in this is the state for most of the
time, so currently 10 mA of current are sinking my MCU for nothing.

10

Next, I would reroute the auxiliary PCB so that the buttons and outputs of comparators
IC2 would be connected to pins of PORTA of MCU. This way one could use interrupts on
change on PORTA and the MCU could be put on sleep for most of the time. To enable
this feature, pin 4 should be pulled up to +5V via R31.

Also, the comparators do not need to be on all the time. The battery voltage monitoring
could be accomplished ones in a while as the device is in the pet waiting mode. This way
CPU can be kept on sleep and awaken for a short time to perform voltage checks, for
example every 2 seconds which the pet presence is checking.

Finally, I would power the amplifier on TR3 - TR5 from a CPU pin and turn it on only
when it is used (1 millisecond interval every 2 seconds). By implementing all this, the
power consumption could be dropped down in another factor of 5 as minimum. Well, this
would probably save you at most a couple of bucks on you electricity bill in a year, but
why not.

As I mentioned, the device is pretty old. Modern MCU are more beefy and many of them
contain built-in comparators. So, IC2 could be eliminated by using a bigger MCU. But
for this probably a new PCB must be designed.

11

Firmware source code

TITLE "Firmware for LitterMaid Mega, v 1.0"

LIST P=16F684, R=DEC

INCLUDE "p16f684.inc"

ERRORLEVEL -302 ; no bank warnings

__CONFIG _FCMEN_OFF & _IESO_OFF & _BOD_OFF & _CPD_OFF & _CP_OFF &

_MCLRE_OFF & _PWRTE_ON & _WDT_OFF & _INTRC_OSC_NOCLKOUT

#define END_sw PORTA,4 ; the END switch

#define HOME_sw PORTC,4 ; the HOME switch

#define LED 3 ; the status LED

#define IR_sens PORTC,2 ; infrared sensor input

#define FORW 2 ; motor forwards pin @ PORTA

#define REW 5 ; motor reverse pin @ PORTA

#define STUCK PORTC,0 ; rake jam sensor

#define BATT PORTC,1 ; low battery sensor

#define ATTEMPT 3 ; # of attempts to clean the litter box

TIMEOUT EQU 10*60/2 ; 10-minutes timeout

CBLOCK 0xF0 ; data segment in common area

w_save, stat_save, del:2

petIn ; pet presence indicator

counter:2 ; time interval counter

attempts ; attempts counter

debounce ; for buttons debouncing

ENDC

ORG 0 ; code segment

goto main

ORG 4 ; TMR1 ISR routine

movwf w_save ; save Wreg

swapf STATUS, w ; save stat reg without

movwf stat_save ; changing flags

call check4Pet ; check for pet

incf counter, f ; increment waiting counter

btfsc STATUS, Z ; (16-bit walue)

incf counter+1, f

ISR_end

bcf PIR1, TMR1IF ; clear TMR1 interrupt flag

12

swapf stat_save, w ; get original flags in STATUS

movwf STATUS

swapf w_save, f ; restore Wreg

swapf w_save, w

retfie

main

;################# STATE 0: initial state after power-up

clrf PORTA ; when the PORTA will be set up

clrf PORTC

movlw 0x07

movwf CMCON0 ; comparators OFF

bsf STATUS, RP0 ; switch to BANK 1

clrf ANSEL ^ 0x80 ; all inputs digital

movlw b’011000’ ; motors off

movwf TRISA ^ 0x80 ; configure PORTA for input

movlw b’011111’ ; enable IR lED

movwf TRISC ^ 0x80 ; enable RC5 for intput

movlw b’01000001’

movwf OSCCON ^ 0x80 ; oscillator freq = 1 MHZ

clrf ADCON1 ^ 0x80 ; ADC clock = FOSC/2

movlw 24

movwf PR2 ^ 0x80 ; PWM period 10KHz

bsf PIE1, TMR1IE ; enable TMR1 interrupt

bcf STATUS, RP0 ; back to BANK 0

clrf INTCON ; enable periferal interrupts

bsf INTCON, PEIE ; (needed for TMR1)

movlw b’00110101’ ; enable TMR1 with 1:8 prescaler

movwf T1CON ; it takes 2 sec for TMR1 to overload

movlw b’10001000’ ; ADC setup: right justify,

movwf ADCON0 ; Vref=Vdd, AN2, On

movlw 4 ; enable Timer 2 with 1:1 prescaler

movwf T2CON

movlw 0x20 ; disable single output PWM

movwf CCP1CON ; set 2 lower order bits of duty cycle

movlw 0x0C

movwf CCPR1L ; setup PWM duty period 50%

movlw 0x85 ; load PORTA address

movwf FSR

13

clrf attempts

goto moveForwards

;################# STATE 1: waiting for pet

wait4Pet ; waiting for pet

clrf petIn

bcf PIR1, TMR1IF ; clear TMR1 interrupt flag

bsf INTCON, GIE ; enable interrupts globally

waitLoop

btfsc BATT ; check for battery voltage

goto malfunction

movf petIn, w ; is pet in?

btfsc STATUS, Z

goto waitLoop ; NO - keep waiting

clrf counter ; wait for 10 seconds to check for pet

clrf counter+1 ; presence again

movlw 5 ; this eliminates short ray interrupts

subwf counter, w ; caused by whatever reasons

btfss STATUS, Z

goto $-3

movf petIn, w ; is pet still in?

btfsc STATUS, Z

goto waitLoop ; No - ignore check and keep waiting

clrf counter ; YES - wait for TIMEOUT letting the

clrf counter+1 ; pet do its job

wait4Timeout

btfsc BATT ; check for battery voltage

goto malfunction

movlw LOW TIMEOUT

subwf counter, w

btfss STATUS, Z

goto wait4Timeout

movlw HIGH TIMEOUT

subwf counter+1, w

btfss STATUS, Z

goto wait4Timeout

wait4Leave

movf petIn, w

btfsc STATUS, Z ; is pet still in?

14

goto startCleaning ; NO - start cleanup

movlw LOW 60000

movwf del ; YES - wait another minute for pet

movlw HIGH 60000 ; to leave and check again

movwf del+1

call delay

goto wait4Leave

startCleaning

clrf attempts ; clear the attempts counter

goto moveForwards ; at the beginning of cleaning

;################# STATE 2: move rake forwards to clean the litter box

moveForwards ; move rake towards the litter can

bcf INTCON, GIE ; disable interrupts globally

incf attempts, f ; increment attempts counter

btfsc END_sw ; is rake at its end position?

goto moveBackwards ; YES - move backwards

bcf INDF, REW ; stop rake

bsf INDF, FORW ; move rake forwards

clrf debounce

decf debounce, f ; Z=0 is guaranteed

bcf debounce, 7

forwLoop

btfsc END_sw ; check if the end position is reached

decf debounce, f

btfsc STATUS, Z

goto rakeAtEnd

btfsc BATT ; check for battery voltage

goto malfunction

btfss STUCK ; check if rake is stuck

goto forwLoop ; all OK - keep going

bcf INDF, FORW ; stop the rake

call checkAttempt ; it was not the last one

movlw LOW 1000 ; make another attempt after 1 sec

movwf del

movlw HIGH 1000

movwf del+1

call delay

goto moveBackwards

rakeAtEnd

bcf INDF, FORW ; stop the rake

movlw LOW 3000 ; delay at the rake end position

15

movwf del ; to let the stuff drop into the cab

movlw HIGH 3000

movwf del+1

call delay

clrf attempts ; no more attempts are needed

goto moveBackwards ; move the rake back home

;################# STATE 3: move rake to home position

moveBackwards ; return rake to home position

bcf INTCON, GIE ; disable interrupts globally

bcf INDF, FORW ; stop rake

bsf INDF, REW ; move rake home

clrf debounce

decf debounce, f ; Z=0 is guaranteed

bcf debounce, 7

backLoop

btfsc HOME_sw ; chek if home position is reached

decf debounce, f

btfsc STATUS, Z

goto rakeAtHome

btfsc BATT ; check for battery voltage

goto malfunction

btfss STUCK ; check if rake is stuck

goto backLoop ; all OK - keep going

goto malfunction ; stop service if rake is stuck

rakeAtHome

bcf INDF, REW ; stop the rake

movf attempts, w ; counter is non-zero if rake is stuck

btfsc STATUS, Z ; we give it another chance

goto wait4Pet

movlw LOW 1000 ; make another attempt after 1 sec

movwf del

movlw HIGH 1000

movwf del+1

call delay

goto moveForwards

;################# STATE 4: termina state - blink the LED

malfunction

bcf INTCON, GIE ; disable interrupts globally

bcf INDF, REW ; stop the rake

bcf INDF, FORW

movlw 0x87 ; setup for blinking the LED

16

movwf FSR ; FSR points to TRISC

movlw 1 << LED

xorwf INDF, f ; start blinking LED

movlw LOW 500

movwf del ; THIS IS A FINAL STATE

movlw HIGH 500 ; EXIT FORM IT IS ONLY POSSIBLE

movwf del+1 ; BY RESETTING THE DEVICE

call delay ; BY TURNING IT OFF AND ON

goto $-7

;;;;;;;;;;;;;;;;;;;PROCEDURES

check4Pet ; check for pet presence

movlw 0x0C

iorwf CCP1CON, f ; enable IR transmitter

movlw 1 ; timeout in milliseconds

movwf del

clrf del+1

call delay ; short delay

clrf petIn ; petIn = 1 if pet is in

btfss IR_sens ; and 0 otherwise

incf petIn, f

movlw 0xF0

andwf CCP1CON, f ; disable IR transmitter

return

checkAttempt ; check if the current attempt

movf attempts, w ; number exceeds

sublw ATTEMPT ; the max number of attempts

btfss STATUS, C ; if not, the function returns

goto malfunction ; otherwise, the device enters

return ; the final state

delay ; a delay for del milliseconds

movlw 50 ; delay duration is passed in del

sublw 1 ; this loop takes 20us*50 = 1ms

sublw 0 ; for PIC @ 1 Mhz

btfss STATUS, Z

goto $-3

movf del, w ; decrement delay counter

btfsc STATUS, Z

17

decf del+1, f

decf del, f

movf del, w ; del=0?

iorwf del+1, w

btfss STATUS, Z

goto delay

return

END

18

