To prove this, assume that there are n homeworks assigned and that $h w_{1}, h w_{2}, \ldots, h w_{n}$ are the scores for these assignments. Without loss of generality we can assume that

$$
\begin{equation*}
h w_{1} \leq h w_{2} \leq \cdots \leq h w_{n} \tag{1}
\end{equation*}
$$

The average homework score is $\frac{h w_{1}+h w_{2}+\cdots+h w_{n}}{n}$. The average homework score after dropping the smallest score (this score is $h w_{1}$ under our assumptions) is $\frac{h w_{2}+h w_{3} \cdots+h w_{n}}{n-1}$.
The above statement will follow from the next theorem.

Theorem 1

$$
\begin{equation*}
\frac{h w_{1}+h w_{2}+\cdots+h w_{n}}{n} \leq \frac{h w_{2}+h w_{3} \cdots+h w_{n}}{n-1} \tag{2}
\end{equation*}
$$

Proof:
Multiplying the left-hand side of (2) by $n-1$ and the right-hand side by n, we get that the inequality (2) is equivalent to

$$
\begin{equation*}
h w_{1} \cdot(n-1)+h w_{2} \cdot(n-1)+\cdots+h w_{n} \cdot(n-1) \leq h w_{2} \cdot n+h w_{3} \cdot n+\cdots+h w_{n} \cdot n \tag{3}
\end{equation*}
$$

Moving the terms $h w_{2} \cdot(n-1)+\cdots+h w_{n} \cdot(n-1)$ to the right-hand side of (3) results in

$$
h w_{1} \cdot(n-1) \leq h w_{2} \cdot n+h w_{3} \cdot n+\cdots+h w_{n} \cdot n-\left(h w_{2} \cdot(n-1)+\cdots+h w_{n} \cdot(n-1)\right),
$$

or, after grouping the terms,

$$
\begin{equation*}
h w_{1} \cdot(n-1) \leq h w_{2} \cdot(n-(n-1))+h w_{3} \cdot(n-(n-1))+\cdots+h w_{n} \cdot(n-(n-1)) . \tag{4}
\end{equation*}
$$

Simplifying (4) we get that to prove (2) is equivalent to prove

$$
\begin{equation*}
h w_{1} \cdot(n-1) \leq h w_{2}+h w_{3}+\cdots+h w_{n} . \tag{5}
\end{equation*}
$$

Now, (5) can be rewritten as

$$
\begin{equation*}
\underbrace{h w_{1}+h w_{1}+\cdots+h w_{1}}_{n-1} \leq h w_{2}+h w_{3}+\cdots+h w_{n} . \tag{6}
\end{equation*}
$$

Moving all terms from the left-hand side of (6) to the right-hand side, we get that (6) is equivalent to

$$
\begin{equation*}
0 \leq\left(h w_{2}-h w_{1}\right)+\left(h w_{3}-h w_{1}\right)+\cdots+\left(h w_{n}-h w_{1}\right) . \tag{7}
\end{equation*}
$$

Remember (1) that $h w_{1}$ is the minimum score, so $h w_{i}-h w_{1} \geq 0$ for $i=2,3, \ldots, n$. Therefore, every term in (7) is non-negative. Hence, the entire sum of non-negative terms is also nonnegative, and (7) is established.

Since (7) is equivalent to (2) the Theorem is proved.

