Computational Completeness

1 Definitions and examples

Let $\Sigma = \{f_1, f_2, \dots, f_i, \dots\}$ be a (finite or infinite) set of Boolean functions. Any of the functions $f_i \in \Sigma$ can be a function of arbitrary number of arguments.

Definition 1 The set Σ is called **computationally complete** (or, simply, complete), if any Boolean function can be expressed as a formula involving just the functions of the set Σ .

Example 1 The set $\Sigma_1 = {\bar{x}_1, x_1 \lor x_2, x_1 \land x_2}$ is complete, because any Boolean function can be represented in the SOP or in the POS form, and these representations involve just the functions of Σ_1 .

Example 2 The set $\Sigma_2 = \{\bar{x}_1, x_1 \land x_2\}$ is complete, because $x_1 \lor x_2 = \bar{x}_1 \land \bar{x}_2$. Therefore, the completeness of Σ_2 follows from the completeness of Σ_1 .

Example 3 The set $\Sigma_3 = \{x_1 | x_2\}$, where $x_1 | x_2 = \overline{x_1 \wedge x_2}$, is complete. Indeed,

 $x_1|x_1 = \bar{x}_1, \quad (x_1|x_2)|(x_1|x_2) = x_1 \wedge x_2.$

Thus, the question concerning the completeness of Σ_3 is reduced to one of Σ_2 .

Example 4 The set $\Sigma_4 = \{1, x_1 \land x_2, x_1 \oplus x_2\}$, where $x_1 \oplus x_2$ is the XOR function and 1 is the constant function, is complete. Indeed, $x_1 \oplus 1 = \bar{x}$. Hence, the completeness of Σ_4 follows from the completeness of Σ_2 .

Example 5 The set $\Sigma_5 = \{1, x_1 \land x_2\}$ is not complete, because any function that can be expressed by a formula involving just the functions of Σ_5 is either the constant function 1 or the function of the form $x_1 \land x_2 \land \cdots \land x_n$ for n = 2, 3, ...

Given a set Σ of Boolean functions, how to recognize if Σ is complete? In order to present a complete answer to this question we introduce 5 following classes of Boolean functions: T_0 , T_1 , L, S, and M.

2 The class T_0

Definition 2 The class T_0 consists of all Boolean functions f (of any number of arguments) defined as follows:

$$T_0 = \{ f(x_1, \dots, x_n) \mid f(0, 0, \dots, 0) = 0 \}.$$

Example 6 The following functions belong to the class $T_0: 0, x_1 \wedge x_2, x_1 \vee x_2, x_1 \oplus x_2$.

Example 7 The functions 1 and \bar{x}_1 are not in T_0 .

The number of function in T_0 which depend on *n* variables is $2^{2^n-1} = \frac{1}{2} \cdot 2^{2^n}$.

3 The class T_1

Definition 3 The class T_1 consists of all Boolean functions f (of any number of arguments) defined as follows:

$$T_1 = \{f(x_1, \dots, x_n) \mid f(1, 1, \dots, 1) = 1\}$$

Example 8 The following functions belong to the class T_1 : 1, $x_1 \wedge x_2$, $x_1 \vee x_2$.

Example 9 The functions $x_1 \oplus x_2$ and \bar{x}_1 are not in T_1 .

The number of function in T_1 which depend on *n* variables also equals $2^{2^n-1} = \frac{1}{2} \cdot 2^{2^n}$.

4 The class *L* of linear functions

Definition 4 The class L consists of functions (of any number of arguments) that can be represented in the form

 $L = \{ f(x_1, \dots, x_n) \mid f = (a_1 \land x_1) \oplus (a_2 \land x_2) \oplus \dots \oplus (a_n \land x_n) \oplus b \},\$

where $a_1, \ldots, a_n, b \in \{0, 1\}$ are some fixed constants.

Example 10 Since $\bar{x}_1 = x_1 \oplus 1$, then $\bar{x}_1 \in L$.

Example 11 $x_1 \vee x_2 \notin L$. Indeed, assume the contrary, i.e. $x_1 \vee x_2 \in L$. Then $x_1 \vee x_2 = (a_1 \wedge x_1) \oplus (a_2 \wedge x_2) \oplus b$ for some constants $a_1, a_2, b \in \{0, 1\}$. Since $x_1 \vee x_2$ significantly depends on two variables (i.e. cannot be represented as a function of one or less variables), then $a_1 = a_2 = 1$, because otherwise we would get a function depending on just one variable. Hence, our representation should be of the form $x_1 \vee x_2 = x_1 \oplus x_2 \oplus b$ for some $b \in \{0, 1\}$.

Now if we assume b = 0, then $x_1 \vee x_2 = x_1 \oplus x_2$, which is a contradiction. Otherwise, if b = 1, then $x_1 \vee x_2 = x_1 \oplus x_2 \oplus 1 = \overline{x_1 \oplus x_2}$, which is a contradiction too. The only way to avoid a contradiction is to accept $x_1 \vee x_2 \notin L$.

Similarly $x_1 \wedge x_2 \notin L$.

The number of functions in L which depend of n variables is 2^{n+1} , because any such a function can be encoded by the binary vector $(a_1, a_2, \ldots, a_n, b)$ consisting of n + 1 entries.

5 The class S of self-dual functions

Definition 5 A Boolean function is called self-dual if

$$f(x_1,\ldots,x_n)=\bar{f}(\bar{x}_1,\ldots,\bar{x}_n)$$

for any $x_1, \ldots, x_n \in \{0, 1\}$.

The class S consists of all self-dual Boolean functions (of any number of variables).

Example 12 Obviously, $\bar{x}_1 \in S$. A more complicated example is the majority function

 $f(x_1, x_2, x_3) = x_1 x_2 \lor x_1 x_3 \lor x_2 x_3.$

Indeed, using the DeMorgan's theorem

$$\bar{f}(\bar{x}_1, \bar{x}_2, \bar{x}_3) = \overline{x_1 \bar{x}_2 \vee \bar{x}_1 \bar{x}_3 \vee \bar{x}_2 \bar{x}_3} \\
= \overline{x_1 \bar{x}_2} \vee \overline{x_1 \bar{x}_3} \vee \overline{x_2 \bar{x}_3} \\
= (x_1 \vee x_2)(x_1 \vee x_3)(x_2 \vee x_3) \\
= x_1 x_2 \vee x_1 x_3 \vee x_2 x_3 \\
= f(x_1, x_2, x_3).$$

Example 13 The functions $f_1(x_1, x_2) = x_1 \wedge x_2$ and $f_2(x_1, x_2) = x_1 \vee x_2$ do not belong to S. Indeed, $f_1(0, 1) = f_1(1, 0)$ and $f_2(0, 1) = f_2(1, 0)$.

What is the number of the self-dual functions depending on n variables? To compute this number, represent the function $f(x_1, \ldots, x_n) \in S$ by the logical table with 2^n rows, which we split into two equal parts, consisting of 2^{n-1} rows each:

$x_1 x_2 \cdots x_n$	$f(x_1,\ldots,x_n)$
$0 \ 0 \cdots 0 \ 0$	α
$0 \ 0 \ \cdots \ 0 \ 1$	
• • •	
$0 \ 1 \cdots 1 \ 1$	
$1 \ 0 \ \cdots \ 0 \ 0$	
$1 \ 0 \ \cdots \ 0 \ 1$	
• • •	
$1 \ 1 \ \cdots \ 1 \ 1$	\bar{lpha}

Note that the i^{th} row of the left part of the table is the negation of the $(2^n - i)^{th}$ row. If $f(x_1, \ldots, x_n) \in S$ then the value of f in these rows are different. Therefore, f is completely determined by the values it takes on just in the upper (or just lower) part of the table. In other words, the number of the self-dual functions in question equals the number of binary strings of length 2^{n-1} , i.e. $2^{2^{n-1}} = \sqrt{2^{2^n}}$.

6 The class M of monotone functions

Definition 6 Let (x_1, \ldots, x_n) and (y_1, \ldots, y_n) be two binary vectors of the same dimension. We write $(x_1, \ldots, x_n) \leq (y_1, \ldots, y_n)$ if $x_i \leq y_i$ for $i = 1, 2, \ldots, n$.

If $(x_1, \ldots, x_n) \not\leq (y_1, \ldots, y_n)$ and $(y_1, \ldots, y_n) \not\leq (x_1, \ldots, x_n)$ then we say that these vectors are incompatible.

Example 14 It holds: $(0,1,0) \le (1,1,0)$, and $(0,0,\ldots,0) \le (1,1,\ldots,1)$.

Example 15 The vectors (0,1,0) and (1,0,0) are incompatible. In general, a vector and its binary coordinatewise negation are incompatible, cf. e.g. (0,1,0) and (1,0,1).

Definition 7 We call a function $f(x_1, \ldots, x_n)$ monotone if $f(x_1, \ldots, x_n) \leq f(y_1, \ldots, y_n)$ whenever $(x_1, \ldots, x_n) \leq (y_1, \ldots, y_n)$.

Example 16 The functions $x_1 \wedge x_2$ and $x_2 \vee x_2$ are monotone, however the functions $\bar{x_1}$ and $x_1 \oplus x_2$ are not.

Denote by M_n the number of monotone Boolean functions of n variables. The problem of computing M_n was posed by Dedekind in 1897 (!) and is still unsolved up to now. It is known that

n	M_n
0	2
1	3
2	6
3	20
4	168
5	7581
6	7828354

Many mathematicians contributed to this problem. The most recent to our knowledge result (cf. [1, 4]) is the asymptotic formula for M_n as $n \to \infty$:

$$M_n \sim \begin{cases} 2^{\binom{n}{n/2}} \exp\left\{\binom{n}{n/2-1} \left(2^{-n/2} + n^2 \cdot 2^{-n-5} - n \cdot 2^{-n-4}\right)\right\}, & \text{if } n \text{ is even} \\ 2 \cdot 2^{\binom{n}{(n-1)/2}} \exp\left\{\binom{n}{(n+1)/2} \left(2^{-(n+1)/2} + n^2 \cdot 2^{-n-4}\right) + \\ +\binom{n}{(n-3)/2} \left(2^{-(n+3)/2} - n^2 \cdot 2^{-n-6} - n \cdot 2^{-n-3}\right)\right\}, & \text{if } n \text{ is odd.} \end{cases}$$

7 The criterion for completeness

Let $\Sigma = \{f_1, f_2, \dots, f_i, \dots\}$ be a set of Boolean functions.

Theorem 1 (E. Post [2, 3]) The set Σ is complete if and only if for any of the classes T_0, T_1, L, S, M there exists a function of Σ which is not in this class.

In order to apply this theorem to the set Σ we construct the following table:

with entries of the set $\{+, -\}$. The entry "+" in the *i*th row means that the function f_i belongs to the corresponding class. Then, by the theorem of Post, the set Σ is complete if and only if each column of this table contains at least one "-".

Example 17 Consider the system $\Sigma_1 = \{\bar{x}_1, x_1 \lor x_2, x_1 \land x_2\}$. One has:

	T_0	T_1	L	S	M
\bar{x}_1			+	+	—
$x_1 \lor x_2$	+	+	—	—	+
$x_1 \wedge x_2$	+	+	—	—	+

Thus, by the theorem of Post the set Σ is complete.

Moreover, one of the last two functions (but not both) can be deleted from Σ without the lost of the completeness of the remaining set. In such a way the complete system Σ_2 of Example 2 can be obtained.

Example 18 Consider the following set Σ :

$$f_1 = x_1 x_2, f_2 = 0, f_3 = 1, f_4 = x_1 \oplus x_2 \oplus x_3.$$

One has

_	T_0	T_1	L	S	M
f_1	+	+	—	—	+
f_2	+	—	+	—	+
f_3	—	+	+	—	+
f_4	+	+	+	+	—

Thus, Σ is complete. However, deleting of any function from σ makes the remaining set incomplete because

$$\{f_2, f_3, f_4\} \subset L \qquad \{f_1, f_3, f_4\} \subset T_1 \{f_1, f_2, f_4\} \subset T_0 \qquad \{f_1, f_2, f_3\} \subset M$$

Corollary 1 Any complete set Σ of functions contains a complete subset consisting of at most 5 functions of Σ .

In fact a more strong result holds: any complete set can be reduced to a complete subset consisting of at most 4 functions. As Example 18 shows, this proposition cannot be further improved in general.

References

- A.D. Korshunov On the number of monotone Boolean functions, (in Russian), Problemy Kibernetiki, vol. 38 (1981), 5–108.
- [2] E. Post Introduction to a general theory of elementary propositions, Amer. J. Math., vol. 24 (1935), 163–185.
- [3] E. Post Two-valued iterative systems of mathematical logic, Annals of Math. Studies, vol. 5, Princeton Univ. Press, 1941.
- [4] A.A. Sapozhenko On the number of antichains in multileveled ranked sets, (in Russian), Diskretnaya Matematika, vol. 1 (1989), No. 2, 110–128.