
Computational Completeness

1 Definitions and examples

Let Σ = {f1, f2, . . . , fi, . . .} be a (finite or infinite) set of Boolean functions. Any of the functions
fi ∈ Σ can be a function of arbitrary number of arguments.

Definition 1 The set Σ is called computationally complete (or, simply, complete), if any
Boolean function can be expressed as a formula involving just the functions of the set Σ.

Example 1 The set Σ1 = {x̄1, x1 ∨ x2, x1 ∧ x2} is complete, because any Boolean function
can be represented in the SOP or in the POS form, and these representations involve just the
functions of Σ1.

Example 2 The set Σ2 = {x̄1, x1 ∧ x2} is complete, because x1 ∨ x2 = x̄1 ∧ x̄2. Therefore, the
completeness of Σ2 follows from the completeness of Σ1.

Example 3 The set Σ3 = {x1|x2}, where x1|x2 = x1 ∧ x2, is complete. Indeed,

x1|x1 = x̄1, (x1|x2)|(x1|x2) = x1 ∧ x2.

Thus, the question concerning the completeness of Σ3 is reduced to one of Σ2.

Example 4 The set Σ4 = {1, x1 ∧ x2, x1 ⊕ x2}, where x1 ⊕ x2 is the XOR function and 1 is
the constant function, is complete. Indeed, x1 ⊕ 1 = x̄. Hence, the completeness of Σ4 follows
from the completeness of Σ2.

Example 5 The set Σ5 = {1, x1 ∧ x2} is not complete, because any function that can be
expressed by a formula involving just the functions of Σ5 is either the constant function 1 or
the function of the form x1 ∧ x2 ∧ · · · ∧ xn for n = 2, 3, ....

Given a set Σ of Boolean functions, how to recognize if Σ is complete ? In order to present a
complete answer to this question we introduce 5 following classes of Boolean functions: T0, T1,
L, S, and M .

2 The class T0

Definition 2 The class T0 consists of all Boolean functions f (of any number of arguments)
defined as follows:

T0 = {f(x1, . . . , xn) | f(0, 0, . . . , 0) = 0}.
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Example 6 The following functions belong to the class T0: 0, x1 ∧ x2, x1 ∨ x2, x1 ⊕ x2.

Example 7 The functions 1 and x̄1 are not in T0.

The number of function in T0 which depend on n variables is 22n−1 = 1
2
· 22n .

3 The class T1

Definition 3 The class T1 consists of all Boolean functions f (of any number of arguments)
defined as follows:

T1 = {f(x1, . . . , xn) | f(1, 1, . . . , 1) = 1}.

Example 8 The following functions belong to the class T1: 1, x1 ∧ x2, x1 ∨ x2.

Example 9 The functions x1 ⊕ x2 and x̄1 are not in T1.

The number of function in T1 which depend on n variables also equals 22n−1 = 1
2
· 22n .

4 The class L of linear functions

Definition 4 The class L consists of functions (of any number of arguments) that can be
represented in the form

L = {f(x1, . . . , xn) | f = (a1 ∧ x1)⊕ (a2 ∧ x2)⊕ · · · ⊕ (an ∧ xn)⊕ b},

where a1, . . . , an, b ∈ {0, 1} are some fixed constants.

Example 10 Since x̄1 = x1 ⊕ 1, then x̄1 ∈ L.

Example 11 x1 ∨ x2 6∈ L. Indeed, assume the contrary, i.e. x1 ∨ x2 ∈ L. Then x1 ∨ x2 =
(a1 ∧ x1) ⊕ (a2 ∧ x2) ⊕ b for some constants a1, a2, b ∈ {0, 1}. Since x1 ∨ x2 significantly
depends on two variables (i.e. cannot be represented as a function of one or less variables),
then a1 = a2 = 1, because otherwise we would get a function depending on just one variable.
Hence, our representation should be of the form x1 ∨ x2 = x1 ⊕ x2 ⊕ b for some b ∈ {0, 1}.

Now if we assume b = 0, then x1 ∨ x2 = x1 ⊕ x2, which is a contradiction. Otherwise, if b = 1,
then x1 ∨ x2 = x1 ⊕ x2 ⊕ 1 = x1 ⊕ x2, which is a contradiction too. The only way to avoid a
contradiction is to accept x1 ∨ x2 6∈ L.

Similarly x1 ∧ x2 6∈ L.

The number of functions in L which depend of n variables is 2n+1, because any such a function
can be encoded by the binary vector (a1, a2, . . . , an, b) consisting of n+ 1 entries.
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5 The class S of self-dual functions

Definition 5 A Boolean function is called self-dual if

f(x1, . . . , xn) = f̄(x̄1, . . . , x̄n)

for any x1, . . . , xn ∈ {0, 1}.

The class S consists of all self-dual Boolean functions (of any number of variables).

Example 12 Obviously, x̄1 ∈ S. A more complicated example is the majority function

f(x1, x2, x3) = x1x2 ∨ x1x3 ∨ x2x3.

Indeed, using the DeMorgan’s theorem

f̄(x̄1, x̄2, x̄3) = x̄1x̄2 ∨ x̄1x̄3 ∨ x̄2x̄3

= x̄1x̄2 ∨ x̄1x̄3 ∨ x̄2x̄3

= (x1 ∨ x2)(x1 ∨ x3)(x2 ∨ x3)

= x1x2 ∨ x1x3 ∨ x2x3

= f(x1, x2, x3).

Example 13 The functions f1(x1, x2) = x1 ∧ x2 and f2(x1, x2) = x1 ∨ x2 do not belong to S.
Indeed, f1(0, 1) = f1(1, 0) and f2(0, 1) = f2(1, 0).

What is the number of the self-dual functions depending on n variables ? To compute this
number, represent the function f(x1, . . . , xn) ∈ S by the logical table with 2n rows, which we
split into two equal parts, consisting of 2n−1 rows each:

x1 x2 · · · xn f(x1, . . . , xn)
0 0 · · · 0 0 α
0 0 · · · 0 1
· · ·

0 1 · · · 1 1
1 0 · · · 0 0
1 0 · · · 0 1
· · ·

1 1 · · · 1 1 ᾱ

Note that the ith row of the left part of the table is the negation of the (2n − i)th row. If
f(x1, . . . , xn) ∈ S then the value of f in these rows are different. Therefore, f is completely
determined by the values it takes on just in the upper (or just lower) part of the table. In other
words, the number of the self-dual functions in question equals the number of binary strings of
length 2n−1, i.e. 22n−1

=
√

22n .
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6 The class M of monotone functions

Definition 6 Let (x1, . . . , xn) and (y1, . . . , yn) be two binary vectors of the same dimension.
We write (x1, . . . , xn) ≤ (y1, . . . , yn) if xi ≤ yi for i = 1, 2, . . . , n.

If (x1, . . . , xn) 6≤ (y1, . . . , yn) and (y1, . . . , yn) 6≤ (x1, . . . , xn) then we say that these vectors are
incompatible.

Example 14 It holds: (0, 1, 0) ≤ (1, 1, 0), and (0, 0, . . . , 0) ≤ (1, 1, . . . , 1).

Example 15 The vectors (0, 1, 0) and (1, 0, 0) are incompatible. In general, a vector and its
binary coordinatewise negation are incompatible, cf. e.g. (0, 1, 0) and (1, 0, 1).

Definition 7 We call a function f(x1, . . . , xn) monotone if f(x1, . . . , xn) ≤ f(y1, . . . , yn)
whenever (x1, . . . , xn) ≤ (y1, . . . , yn).

Example 16 The functions x1 ∧ x2 and x2 ∨ x2 are monotone, however the functions x̄1 and
x1 ⊕ x2 are not.

Denote by Mn the number of monotone Boolean functions of n variables. The problem of
computing Mn was posed by Dedekind in 1897 (!) and is still unsolved up to now. It is known
that

n Mn

0 2
1 3
2 6
3 20
4 168
5 7581
6 7828354

Many mathematicians contributed to this problem. The most recent to our knowledge result
(cf. [1, 4]) is the asymptotic formula for Mn as n→∞:

Mn ∼



2( n
n/2) exp

{(
n

n/2−1

) (
2−n/2 + n2 · 2−n−5 − n · 2−n−4

)}
, if n is even

2 · 2( n
(n−1)/2) exp

{(
n

(n+1)/2

) (
2−(n+1)/2 + n2 · 2−n−4

)
+

+
(

n
(n−3)/2

) (
2−(n+3)/2 − n2 · 2−n−6 − n · 2−n−3

)}
, if n is odd.

7 The criterion for completeness

Let Σ = {f1, f2, . . . , fi, . . .} be a set of Boolean functions.
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Theorem 1 (E. Post [2, 3])
The set Σ is complete if and only if for any of the classes T0, T1, L, S,M there exists a function
of Σ which is not in this class.

In order to apply this theorem to the set Σ we construct the following table:

T0 T1 L S M
f1

f2

· · ·
fi
· · ·

with entries of the set {+,−}. The entry “+” in the ith row means that the function fi belongs
to the corresponding class. Then, by the theorem of Post, the set Σ is complete if and only if
each column of this table contains at least one “–”.

Example 17 Consider the system Σ1 = {x̄1, x1 ∨ x2, x1 ∧ x2}. One has:

T0 T1 L S M
x̄1 − − + + −
x1 ∨ x2 + + − − +
x1 ∧ x2 + + − − +

Thus, by the theorem of Post the set Σ is complete.

Moreover, one of the last two functions (but not both) can be deleted from Σ without the lost
of the completeness of the remaining set. In such a way the complete system Σ2 of Example 2
can be obtained.

Example 18 Consider the following set Σ:

f1 = x1x2, f2 = 0, f3 = 1, f4 = x1 ⊕ x2 ⊕ x3.

One has
T0 T1 L S M

f1 + + − − +
f2 + − + − +
f3 − + + − +
f4 + + + + −

Thus, Σ is complete. However, deleting of any function from σ makes the remaining set in-
complete because

{f2, f3, f4} ⊂ L {f1, f3, f4} ⊂ T1

{f1, f2, f4} ⊂ T0 {f1, f2, f3} ⊂M

Corollary 1 Any complete set Σ of functions contains a complete subset consisting of at most
5 functions of Σ.
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In fact a more strong result holds: any complete set can be reduced to a complete subset
consisting of at most 4 functions. As Example 18 shows, this proposition cannot be further
improved in general.
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