Computational Completeness

1 Definitions and examples

Let ¥ = {f1, fo,---, fi, ..} be a (finite or infinite) set of Boolean functions. Any of the functions
fi € X can be a function of arbitrary number of arguments.

Definition 1 The set 3 is called computationally complete (or, simply, complete), if any
Boolean function can be expressed as a formula involving just the functions of the set 3.

Example 1 The set 1 = {Z1, x1 V x9, x1 A 22} is complete, because any Boolean function
can be represented in the SOP or in the POS form, and these representations involve just the
functions of %.

Example 2 The set Yo = {Z1, x1 A x2} is complete, because x1V xo = Ty N To. Therefore, the
completeness of 2o follows from the completeness of ;.

Example 3 The set Y3 = {x1|z2}, where x1|xy = 1 AN xg, is complete. Indeed,
.T1|I'1 = .f’l, <I1|JI2>|(JJ1|I2) = T A To.
Thus, the question concerning the completeness of %3 is reduced to one of 3.
Example 4 The set ¥4y = {1, x1 A xa, 11 ® x2}, where x1 O x5 is the XOR function and 1 is

the constant function, is complete. Indeed, x1 & 1 = T. Hence, the completeness of ¥4 follows
from the completeness of Y.

Example 5 The set X5 = {1, x1 A xa} is not complete, because any function that can be
expressed by a formula involving just the functions of X5 is either the constant function 1 or
the function of the form x1 Nxo A--- Nz, forn=2,3,....

Given a set % of Boolean functions, how to recognize if ¥ is complete ? In order to present a
complete answer to this question we introduce 5 following classes of Boolean functions: Ty, 17,
L, S, and M.

2 The class T

Definition 2 The class Ty consists of all Boolean functions f (of any number of arguments)
defined as follows:

Toz{f(.’ﬂl,...,.flﬁn) ’ f(0,0,,O) :0}



Example 6 The following functions belong to the class Ty: 0, x1 A xo, 1V T, 1 D To.
Example 7 The functions 1 and T1 are not in T.

The number of function in Ty which depend on n variables is 22"~ = 7 . 22"

3 The class T}

Definition 3 The class T\ consists of all Boolean functions f (of any number of arguments)
defined as follows:

Ty ={f(z1,...,2,) | f(1,1,...,1) =1}
Example 8 The following functions belong to the class Ty: 1, x1 N\ xo, 1 V 3.
Example 9 The functions x1 @ x5 and T, are not in T}.

The number of function in 7} which depend on n variables also equals 22" 1 = £ . 22"

4 The class L of linear functions

Definition 4 The class L consists of functions (of any number of arguments) that can be
represented in the form

L={f(z1,-..,2n) | f=(a1 A1) ® (aa Ax2) ® - D (an A xp) D b},

where ay, ..., a,,b € {0,1} are some fized constants.
Example 10 Since 11 = x1 @ 1, then 1 € L.

Example 11 x, V 2y € L. Indeed, assume the contrary, i.e. x1V xo € L. Then x1V x9 =
(a1 A x1) @ (ag A x2) ® b for some constants ay,as,b € {0,1}. Since x1 V xo significantly
depends on two variables (i.e. cannot be represented as a function of one or less variables),
then ay = ay = 1, because otherwise we would get a function depending on just one variable.
Hence, our representation should be of the form x1 V x9 = x1 & x2 ® b for some b € {0,1}.

Now if we assume b =0, then x1V x5 = 11 ® x5, which is a contradiction. Otherwise, if b =1,
then x1V xo = x1 @ 22 @ 1 = 1 & x9, which is a contradiction too. The only way to avoid a
contradiction is to accept x1V w9 & L.

Similarly x1 N xy & L.

The number of functions in L which depend of n variables is 2"!, because any such a function
can be encoded by the binary vector (ay,as,...,a,,b) consisting of n + 1 entries.
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5 The class S of self-dual functions

Definition 5 A Boolean function is called self-dual if

f(Il,...,$n> = f_(i‘h-.-;jn)

for any xq,...,x, € {0,1}.
The class S consists of all self-dual Boolean functions (of any number of variables).

Example 12 Obviously, T, € S. A more complicated example is the majority function
f(l’l, 9, ZE3) = T1T2 V 13 V Tol3.
Indeed, using the DeMorgan’s theorem

f(Z1,T2,T3) = T1Z2 VZ1T3 V T2T3

- Elfg V {ili’g V .f'Q.f’g
(IL’l V ZL’Q)(ZEl V ZL‘3)(I2 V ZE3)
T1T9 V T1T3 V T3

= f($1,$2,903)-

Example 13 The functions fi(x1,22) = 21 A 29 and fo(x1,29) = 21 V 29 do not belong to S.
Indeed; f1(07 1) = fl(]-ao) and f?(ov 1) = f2(170)

What is the number of the self-dual functions depending on n variables ? To compute this
number, represent the function f(xy,...,2,) € S by the logical table with 2" rows, which we
split into two equal parts, consisting of 2"~! rows each:

Ty Ty o Ty | [T, 2)
00---00 |«
00---01

O1---11

10---00

10---01

11---11 | &

Note that the i'® row of the left part of the table is the negation of the (2" — i) row. If
f(xy,...,x,) € S then the value of f in these rows are different. Therefore, f is completely
determined by the values it takes on just in the upper (or just lower) part of the table. In other
words, the number of the self-dual functions in question equals the number of binary strings of

length 271, fe. 227" = /22"



6 The class M of monotone functions

Definition 6 Let (z1,...,2,) and (y1,...,yn) be two binary vectors of the same dimension.
We write (x1,...,2,) < (Y1, Yn) if s <y; fori=1,2,... n.

If (1, ...;20) L (Y1, ooy Un) and (Y1, -+, Yn) L (21,...,2,) then we say that these vectors are
incompatible.

Example 14 Tt holds: (0,1,0) < (1,1,0), and (0,0,...,0) < (1,1,...,1).

Example 15 The vectors (0,1,0) and (1,0,0) are incompatible. In general, a vector and its
binary coordinatewise negation are incompatible, cf. e.g. (0,1,0) and (1,0,1).

Definition 7 We call a function f(xq,...,x,) monotone if f(xy,...,x,) < f(y1,..-,Yn)
whenever (1, ..., 2n) < (Y1, -+, Yn)-

Example 16 The functions x1 A xo and xo V x9 are monotone, however the functions 27 and
x1 P xoy are not.

Denote by M, the number of monotone Boolean functions of n variables. The problem of
computing M, was posed by Dedekind in 1897 (!) and is still unsolved up to now. It is known
that
M,
2
3
6
20
168
7581
7828354

@OT%C«O[\DHO‘ﬁ

Many mathematicians contributed to this problem. The most recent to our knowledge result
(cf. [1, 4]) is the asymptotic formula for M,, as n — oo:

o e () (25 2] i

M, ~ 9.9 1)2) eXP{((nﬁ)/z) (2—(n+1)/2 2. 2_n_4> N
(s 0) (27092 =2 27n=6 —pgn=3)h 0 if s odd.

7 The criterion for completeness

Let ¥ ={f1, fay---, fi,.-.} be a set of Boolean functions.
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Theorem 1 (E. Post [2, 3])
The set 33 is complete if and only if for any of the classes Ty, Ty, L, S, M there exists a function
of ¥ which is not in this class.

In order to apply this theorem to the set ¥ we construct the following table:

To|Ty | L|S|M

S
2

fi
with entries of the set {+, —}. The entry “+” in the i row means that the function f; belongs

to the corresponding class. Then, by the theorem of Post, the set ¥ is complete if and only if
each column of this table contains at least one “-”.

Example 17 Consider the system %1 = {Z1, x1 V 2, 1 Axo}. One has:
T | T | L|S|M

7 - =T++]-
iV |+ |+ |—|— |+
T Az |+ |+ |- — |+

Thus, by the theorem of Post the set X is complete.

Moreover, one of the last two functions (but not both) can be deleted from 3 without the lost
of the completeness of the remaining set. In such a way the complete system Y9 of FExample 2
can be obtained.

Example 18 Consider the following set X:

fi=zxg, fo=0, fs=1, fa =21 O x2 D xs.

One has
To| Ty | L|S|M
fil ]+ =]+
fol + | =+ |- |+
fsl—|+|+|—-]+
o+ |+ |+ |+ -

Thus, ¥ is complete. However, deleting of any function from o makes the remaining set in-
complete because

{f2, f3, fa} C L {fi, f3, fu} C T

{fifo, fuy €Ty {fi,fo, fa} C M

Corollary 1 Any complete set 3 of functions contains a complete subset consisting of at most
5 functions of X.



In fact a more strong result holds: any complete set can be reduced to a complete subset

consisting of at most 4 functions. As Example 18 shows, this proposition cannot be further
improved in general.
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