Computational Completeness

1 Definitions and examples

Let $\Sigma=\left\{f_{1}, f_{2}, \ldots, f_{i}, \ldots\right\}$ be a (finite or infinite) set of Boolean functions. Any of the functions $f_{i} \in \Sigma$ can be a function of arbitrary number of arguments.

Definition 1 The set Σ is called computationally complete (or, simply, complete), if any Boolean function can be expressed as a formula involving just the functions of the set Σ.

Example 1 The set $\Sigma_{1}=\left\{\bar{x}_{1}, x_{1} \vee x_{2}, x_{1} \wedge x_{2}\right\}$ is complete, because any Boolean function can be represented in the SOP or in the POS form, and these representations involve just the functions of Σ_{1}.

Example 2 The set $\Sigma_{2}=\left\{\bar{x}_{1}, x_{1} \wedge x_{2}\right\}$ is complete, because $x_{1} \vee x_{2}=\overline{x_{1} \wedge \bar{x}_{2}}$. Therefore, the completeness of Σ_{2} follows from the completeness of Σ_{1}.

Example 3 The set $\Sigma_{3}=\left\{x_{1} \mid x_{2}\right\}$, where $x_{1} \mid x_{2}=\overline{x_{1} \wedge x_{2}}$, is complete. Indeed,

$$
x_{1}\left|x_{1}=\bar{x}_{1}, \quad\left(x_{1} \mid x_{2}\right)\right|\left(x_{1} \mid x_{2}\right)=x_{1} \wedge x_{2} .
$$

Thus, the question concerning the completeness of Σ_{3} is reduced to one of Σ_{2}.

Example 4 The set $\Sigma_{4}=\left\{1, x_{1} \wedge x_{2}, x_{1} \oplus x_{2}\right\}$, where $x_{1} \oplus x_{2}$ is the XOR function and 1 is the constant function, is complete. Indeed, $x_{1} \oplus 1=\bar{x}$. Hence, the completeness of Σ_{4} follows from the completeness of Σ_{2}.

Example 5 The set $\Sigma_{5}=\left\{1, x_{1} \wedge x_{2}\right\}$ is not complete, because any function that can be expressed by a formula involving just the functions of Σ_{5} is either the constant function 1 or the function of the form $x_{1} \wedge x_{2} \wedge \cdots \wedge x_{n}$ for $n=2,3, \ldots$.

Given a set Σ of Boolean functions, how to recognize if Σ is complete? In order to present a complete answer to this question we introduce 5 following classes of Boolean functions: T_{0}, T_{1}, L, S, and M.

2 The class T_{0}

Definition 2 The class T_{0} consists of all Boolean functions f (of any number of arguments) defined as follows:

$$
T_{0}=\left\{f\left(x_{1}, \ldots, x_{n}\right) \mid f(0,0, \ldots, 0)=0\right\} .
$$

Example 6 The following functions belong to the class T_{0} : $0, x_{1} \wedge x_{2}, x_{1} \vee x_{2}, x_{1} \oplus x_{2}$.
Example 7 The functions 1 and \bar{x}_{1} are not in T_{0}.
The number of function in T_{0} which depend on n variables is $2^{2^{n}-1}=\frac{1}{2} \cdot 2^{2^{n}}$.

3 The class T_{1}

Definition 3 The class T_{1} consists of all Boolean functions f (of any number of arguments) defined as follows:

$$
T_{1}=\left\{f\left(x_{1}, \ldots, x_{n}\right) \mid f(1,1, \ldots, 1)=1\right\} .
$$

Example 8 The following functions belong to the class $T_{1}: 1, x_{1} \wedge x_{2}, x_{1} \vee x_{2}$.
Example 9 The functions $x_{1} \oplus x_{2}$ and \bar{x}_{1} are not in T_{1}.
The number of function in T_{1} which depend on n variables also equals $2^{2^{n}-1}=\frac{1}{2} \cdot 2^{2^{n}}$.

4 The class L of linear functions

Definition 4 The class L consists of functions (of any number of arguments) that can be represented in the form

$$
L=\left\{f\left(x_{1}, \ldots, x_{n}\right) \mid f=\left(a_{1} \wedge x_{1}\right) \oplus\left(a_{2} \wedge x_{2}\right) \oplus \cdots \oplus\left(a_{n} \wedge x_{n}\right) \oplus b\right\}
$$

where $a_{1}, \ldots, a_{n}, b \in\{0,1\}$ are some fixed constants.
Example 10 Since $\bar{x}_{1}=x_{1} \oplus 1$, then $\bar{x}_{1} \in L$.
Example $11 x_{1} \vee x_{2} \notin L$. Indeed, assume the contrary, i.e. $x_{1} \vee x_{2} \in L$. Then $x_{1} \vee x_{2}=$ $\left(a_{1} \wedge x_{1}\right) \oplus\left(a_{2} \wedge x_{2}\right) \oplus b$ for some constants $a_{1}, a_{2}, b \in\{0,1\}$. Since $x_{1} \vee x_{2}$ significantly depends on two variables (i.e. cannot be represented as a function of one or less variables), then $a_{1}=a_{2}=1$, because otherwise we would get a function depending on just one variable. Hence, our representation should be of the form $x_{1} \vee x_{2}=x_{1} \oplus x_{2} \oplus b$ for some $b \in\{0,1\}$.
Now if we assume $b=0$, then $x_{1} \vee x_{2}=x_{1} \oplus x_{2}$, which is a contradiction. Otherwise, if $b=1$, then $x_{1} \vee x_{2}=x_{1} \oplus x_{2} \oplus 1=\overline{x_{1} \oplus x_{2}}$, which is a contradiction too. The only way to avoid a contradiction is to accept $x_{1} \vee x_{2} \notin L$.
Similarly $x_{1} \wedge x_{2} \notin L$.
The number of functions in L which depend of n variables is 2^{n+1}, because any such a function can be encoded by the binary vector $\left(a_{1}, a_{2}, \ldots, a_{n}, b\right)$ consisting of $n+1$ entries.

5 The class S of self-dual functions

Definition 5 A Boolean function is called self-dual if

$$
f\left(x_{1}, \ldots, x_{n}\right)=\bar{f}\left(\bar{x}_{1}, \ldots, \bar{x}_{n}\right)
$$

for any $x_{1}, \ldots, x_{n} \in\{0,1\}$.

The class S consists of all self-dual Boolean functions (of any number of variables).

Example 12 Obviously, $\bar{x}_{1} \in S$. A more complicated example is the majority function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} \vee x_{1} x_{3} \vee x_{2} x_{3} .
$$

Indeed, using the DeMorgan's theorem

$$
\begin{aligned}
\bar{f}\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right) & =\overline{\bar{x}}_{1} \bar{x}_{2} \vee \bar{x}_{1} \bar{x}_{3} \vee \bar{x}_{2} \bar{x}_{3} \\
& =\bar{x}_{1} \bar{x}_{2} \vee \bar{x}_{1} \bar{x}_{3} \vee \overline{\bar{x}}_{2} \bar{x}_{3} \\
& =\left(x_{1} \vee x_{2}\right)\left(x_{1} \vee x_{3}\right)\left(x_{2} \vee x_{3}\right) \\
& =x_{1} x_{2} \vee x_{1} x_{3} \vee x_{2} x_{3} \\
& =f\left(x_{1}, x_{2}, x_{3}\right) .
\end{aligned}
$$

Example 13 The functions $f_{1}\left(x_{1}, x_{2}\right)=x_{1} \wedge x_{2}$ and $f_{2}\left(x_{1}, x_{2}\right)=x_{1} \vee x_{2}$ do not belong to S. Indeed, $f_{1}(0,1)=f_{1}(1,0)$ and $f_{2}(0,1)=f_{2}(1,0)$.

What is the number of the self-dual functions depending on n variables ? To compute this number, represent the function $f\left(x_{1}, \ldots, x_{n}\right) \in S$ by the logical table with 2^{n} rows, which we split into two equal parts, consisting of 2^{n-1} rows each:

$x_{1} x_{2}$	\cdots	x_{n}	$f\left(x_{1}, \ldots, x_{n}\right)$	
00	\cdots	0	0	α
0	0	\cdots	0	1
0	\cdots	\cdots	1	
10	\cdots	1	0	
10	\cdots	0	1	
\cdots	\cdots			
1	1	\cdots	1	1

Note that the $i^{\text {th }}$ row of the left part of the table is the negation of the $\left(2^{n}-i\right)^{\text {th }}$ row. If $f\left(x_{1}, \ldots, x_{n}\right) \in S$ then the value of f in these rows are different. Therefore, f is completely determined by the values it takes on just in the upper (or just lower) part of the table. In other words, the number of the self-dual functions in question equals the number of binary strings of length 2^{n-1}, i.e. $2^{2^{n-1}}=\sqrt{2^{2}}$.

6 The class M of monotone functions

Definition 6 Let $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ be two binary vectors of the same dimension. We write $\left(x_{1}, \ldots, x_{n}\right) \leq\left(y_{1}, \ldots, y_{n}\right)$ if $x_{i} \leq y_{i}$ for $i=1,2, \ldots, n$.

If $\left(x_{1}, \ldots, x_{n}\right) \not 又\left(y_{1}, \ldots, y_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right) \not \leq\left(x_{1}, \ldots, x_{n}\right)$ then we say that these vectors are incompatible.

Example 14 It holds: $(0,1,0) \leq(1,1,0)$, and $(0,0, \ldots, 0) \leq(1,1, \ldots, 1)$.

Example 15 The vectors $(0,1,0)$ and $(1,0,0)$ are incompatible. In general, a vector and its binary coordinatewise negation are incompatible, cf. e.g. $(0,1,0)$ and $(1,0,1)$.

Definition 7 We call a function $f\left(x_{1}, \ldots, x_{n}\right)$ monotone if $f\left(x_{1}, \ldots, x_{n}\right) \leq f\left(y_{1}, \ldots, y_{n}\right)$ whenever $\left(x_{1}, \ldots, x_{n}\right) \leq\left(y_{1}, \ldots, y_{n}\right)$.

Example 16 The functions $x_{1} \wedge x_{2}$ and $x_{2} \vee x_{2}$ are monotone, however the functions $\overline{x_{1}}$ and $x_{1} \oplus x_{2}$ are not.

Denote by M_{n} the number of monotone Boolean functions of n variables. The problem of computing M_{n} was posed by Dedekind in 1897 (!) and is still unsolved up to now. It is known that

n	M_{n}
0	2
1	3
2	6
3	20
4	168
5	7581
6	7828354

Many mathematicians contributed to this problem. The most recent to our knowledge result (cf. [1, 4]) is the asymptotic formula for M_{n} as $n \rightarrow \infty$:

$$
M_{n} \sim \begin{cases}2^{\binom{n}{n / 2} \exp \left\{\binom{n}{n / 2-1}\left(2^{-n / 2}+n^{2} \cdot 2^{-n-5}-n \cdot 2^{-n-4}\right)\right\},} \begin{array}{l}
\text { if } n \text { is even } \\
2 \cdot 2^{\left((\begin{array} { c }
{ n } \\
{ n - 1) / 2 }
\end{array}) \operatorname { e x p } \left\{\binom{n}{(n+1) / 2}\left(2^{-(n+1) / 2}+n^{2} \cdot 2^{-n-4}\right)+\right.\right.} \\
\left.+\binom{n}{(n-3) / 2}\left(2^{-(n+3) / 2}-n^{2} \cdot 2^{-n-6}-n \cdot 2^{-n-3}\right)\right\},
\end{array} \quad \text { if } n \text { is odd. }\end{cases}
$$

7 The criterion for completeness

Let $\Sigma=\left\{f_{1}, f_{2}, \ldots, f_{i}, \ldots\right\}$ be a set of Boolean functions.

Theorem 1 (E. Post [2, 3])
The set Σ is complete if and only if for any of the classes T_{0}, T_{1}, L, S, M there exists a function of Σ which is not in this class.

In order to apply this theorem to the set Σ we construct the following table:

	T_{0}	T_{1}	L	S	M
f_{1}					
f_{2}					
\cdots					
f_{i}					
\cdots					

with entries of the set $\{+,-\}$. The entry " + " in the $i^{\text {th }}$ row means that the function f_{i} belongs to the corresponding class. Then, by the theorem of Post, the set Σ is complete if and only if each column of this table contains at least one "-".

Example 17 Consider the system $\Sigma_{1}=\left\{\bar{x}_{1}, x_{1} \vee x_{2}, x_{1} \wedge x_{2}\right\}$. One has:

$$
\begin{array}{l|c|c|c|c|c}
& T_{0} & T_{1} & L & S & M \\
\hline \bar{x}_{1} & - & - & + & + & - \\
x_{1} \vee x_{2} & + & + & - & - & + \\
x_{1} \wedge x_{2} & + & + & - & - & +
\end{array}
$$

Thus, by the theorem of Post the set Σ is complete.
Moreover, one of the last two functions (but not both) can be deleted from Σ without the lost of the completeness of the remaining set. In such a way the complete system Σ_{2} of Example 2 can be obtained.

Example 18 Consider the following set Σ :

$$
f_{1}=x_{1} x_{2}, f_{2}=0, f_{3}=1, f_{4}=x_{1} \oplus x_{2} \oplus x_{3}
$$

One has

$$
\begin{array}{c|c|c|c|c|c}
& T_{0} & T_{1} & L & S & M \\
\hline f_{1} & + & + & - & - & + \\
f_{2} & + & - & + & - & + \\
f_{3} & - & + & + & - & + \\
f_{4} & + & + & + & + & -
\end{array}
$$

Thus, Σ is complete. However, deleting of any function from σ makes the remaining set incomplete because

$$
\begin{array}{ll}
\left\{f_{2}, f_{3}, f_{4}\right\} \subset L & \left\{f_{1}, f_{3}, f_{4}\right\} \subset T_{1} \\
\left\{f_{1}, f_{2}, f_{4}\right\} \subset T_{0} & \left\{f_{1}, f_{2}, f_{3}\right\} \subset M
\end{array}
$$

Corollary 1 Any complete set Σ of functions contains a complete subset consisting of at most 5 functions of Σ.

In fact a more strong result holds: any complete set can be reduced to a complete subset consisting of at most 4 functions. As Example 18 shows, this proposition cannot be further improved in general.

References

[1] A.D. Korshunov On the number of monotone Boolean functions, (in Russian), Problemy Kibernetiki, vol. 38 (1981), 5-108.
[2] E. Post Introduction to a general theory of elementary propositions, Amer. J. Math., vol. 24 (1935), 163-185.
[3] E. Post Two-valued iterative systems of mathematical logic, Annals of Math. Studies, vol. 5, Princeton Univ. Press, 1941.
[4] A.A. Sapozhenko On the number of antichains in multileveled ranked sets, (in Russian), Diskretnaya Matematika, vol. 1 (1989), No. 2, 110-128.

