
Error Correcting Codes

1 Codes correcting a single symmetric error

In this section we consider the case when only a single bit can be corrupted during
transmission. In this case the bit value will be negated. We assume that the codewords
are binary sequences x1x2 . . . xn of length n for some fixed n. Let l be a number such that

2l−1 ≤ n < 2l.

In other words, l = blog nc+ 1. Any integer i from the interval [0, n) can be represented
in the binary system by using l bits. Denote by el(i) the binary word of length l which is
the representation of i.

Furthermore, for a binary word X = x1x2 . . . xn denote

H(X) =
n∑

i=1

xi el(i). (1)

Evidently, H(X) is a binary word of length l obtained by summing up component-wise
modulo 2 some binary words of length l that correspond to the 1’s in X. Consider the
code Hn defined by

Hn = {X = x1x2 . . . xn | H(X) = (00 . . . 0︸ ︷︷ ︸
l

)}.

Example 1 Let n = 6, X = 010101 and Y = 110100. Then l = 3, H(X) = 010⊕ 100⊕
110 = 000 and H(Y ) = 001⊕ 010⊕ 100 = 111. Hence, X ∈ Hn and Y 6∈ Hn.

For a binary word X = x1x2 . . . xn denote by N(X) the decimal number, whose binary
expansion is x1x2 . . . xn. For example, N(101) = 5. Assume that a codeword X ∈ Hn is
sent and a word Y (of the same length) is received. If the j-th symbol was corrupted,
Y = x1x2 . . . xj−1(xj ⊕ 1)xj+1 . . . xn. One has

H(Y ) =
n∑

i=1

xi el(i)⊕ el(j) = H(X) + el(j) = el(j),

since H(X) = 00 . . . 0. The sent word X can be restored by flipping the bit of Y with
index N(H(Y )) = N(el(j)) = j.
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Example 2 Let X = 010101 ∈ H6 is sent and Y = 010111 is received. Since H(Y ) =
010⊕ 100⊕ 101⊕ 110 = 101, the symbol with index 5 is corrupted.

The code Hn was designed by Hamming. For the number of codewords, one has |Hn| =
2n−l. Since l = blog nc+ 1 = dlog(n+ 1)e, one has

2n−1

n
≤ |Hn| = 2n−dlog(n+1)e ≤ 2n

n+ 1
.

In particular, |H6| = 8. The code H6 is presented in Table 1.

H6 W6 W6,12 N6

000000 000000 000000 000000
111000 100001 100011 001101
110011 010010 010101 011010
001011 001100 001110 100111
101101 110100 111001 110100
010101 001011 110110
011110 110011
100110 101101

011110
111111

Table 1: Some binary codes

Note that |Hn| = 2n

n+1
if and only if n is of the form 2k − 1 for some k > 1. In this case

the set of all binary words can be partitioned into balls of radius 1 around the codewords
of Hn.

2 Codes correcting a single substitution error

Assume that only a single zero in the transmitted word can be substituted with 1 during
the transmission. For a binary word X = x1x2 . . . xn denote

W (X) =
n∑

i=1

xi · i.

Obviously, W (X) is the sum of indices of non-zero bits of X. For a given k define the
code Wn,k as

Wn,k = {X = x1x2 . . . xn | W (X) ≡ 0 (mod k)}, (2)

and put Wn = Wn,n+1.

Example 3 Let n = 6, X = 110100 and Y = 010101. Then W (X) = 1 + 2 + 4 = 7,
W (Y ) = 2 + 4 + 6 = 12. Hence, X ∈ W6 and Y 6∈ W6.
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We show that the code Wn,k for k ≥ n+1 (in particular, the code W6) is a code correcting a
single error of the type 0→ 1. Assume that a codeword X was sent, a word Y is received,
and at most one error occurred during the transmission. Clearly, W (Y ) = W (X) in
case of no error, and W (Y ) = W (X) + j if the j-th bit is corrupted. Since W (X) ≡ 0
(mod k), in the last case one has W (Y ) ≡ j (mod k). This allows to figure out the
index of the corrupted bit.

Example 4 Let X = 110100 ∈ W6 was sent and Y = 110101 is received. Since W (Y ) =
1 + 2 + 4 + 6 = 13 and 13 ≡ 6 (mod 7), the bit number 6 is corrupted.

The code Wn is constructed by Varshamov and Tennenholz. One can show that

|Wn| =
1

2(n+ 1)

∑
d|n+1
d is odd

φ(d) · 2(n+1)/d

where φ(d) is the number of numbers i in the interval [0, d] that are relatively prime with
d, that is, gcd(i, d) = 1 (Euler function). In particular, |W6| = 27+6·2

14
= 10. The code W6

is shown in Table 1.

3 Codes correcting a single deletion or insertion

Here we assume that at most one bit can be dropped from a codeword during the trans-
mission. We show that the code Wn,k with k ≥ n + 1 can correct a single error of this
type.

Assume that a single bit is dropped from a codeword X ∈ Wn,k during the transmission
and a word Y = y1y2 . . . yn−1 is received. Denote by n1 (respectively, n0) the number
of ones (respectively, zeros) located to the right of the dropped bit in X and W (Y ) =∑n−1

i=1 yi · i.

Note, that is a zero is dropped at position j, then each of the ones to the right of position j
(whose number is n1) will contribute one less to the sum. Therefore, W (X)−W (Y ) = n1.
If a one is dropped at position j, the entire sum will additionally decrease on j units, so
W (X) −W (Y ) = j + n1 = n − n0 (because n0 + n1 = n − j). Obviously, in either case
0 ≤ W (X)−W (Y ) ≤ n < k.

Denote ∆Y = k −W (Y ). Since W (X) ≡ 0 (mod k), one has W (X) −W (Y ) = ∆Y .
Taking into account

n1 ≤ ‖Y ‖ ≤ (n− 1)− n0 < n− n0,

comparing ∆Y and ‖Y ‖ one can figure out what symbol (0 or 1) was dropped during
the transmission. Namely, if ∆Y ≤ ‖Y ‖, then 0 was dropped, and to restore the sent
codeword X one should insert a 0 in Y at position j so that there is ∆Y ones to the right
of j. Similarly, if ∆Y > ‖Y ‖, one should insert a 1 at position l so that there is n−∆Y
zeros to the right of l.
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Example 5 Let X = 110100 ∈ W6 was sent and Y = 10100 is received (after dropping
the first symbol from X). One has ‖Y ‖ = 2, W (Y ) = 4, hence ∆Y = 3. Since the
condition ∆Y > ‖Y ‖ is satisfied, count n−∆Y = 3 zeros from the right of Y and insert
a 1 there. Note, that we insert a 1 at a different position (position 2 in this case), but the
obtained this way word is equal to the one being sent.

It turns out that any code correcting s or less deletions is at the same time a code
correcting s or less insertions. It is leaved as an exercise to figure out how to restore the
codeword of Wn after a single insertion.

4 Codes correcting a single arithmetic error

Arithmetic errors during the transmission lead to adding or subtracting a power of 2
to/from the codeword. Consider a code Nn consisting of all binary words X = x1x2 . . . xn
such that

N(X) =
n∑

i=1

xi2
n−i ≡ 0 (mod 2n+ 1). (3)

If a codeword X ∈ Nn was sent and a single arithmetic error of the type ±2i occurred,
the received word satisfies the condition

N(Y ) = N(X)± 2i.

Hence, N(Y ) ≡ ±2i (mod 2n+1). Therefore, the code Nn can correct a single arithmetic
error if the numbers

1, 2, . . . , 2n−1,−1,−2, . . . ,−2n−1 (4)

are all distinct and nonzero mod 2n+ 1.

We show that this condition is satisfied in the following two cases:

a. The number p = 2n + 1 is prime and 2 is a primitive root modulo p. This means
that all the numbers

1, 2, . . . , 2n−1, 2n, . . . , 22n−1 (5)

are pairwise distinct modulo p.

b. The number p = 2n + 1 is prime, 2 is not a primitive root modulo p, and −2 is a
one. This means that all the numbers

1,−2, 22,−23, . . . , 22n−2,−22n−1 (6)

are all distinct modulo p.
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Indeed, if p = 2n+ 1 is prime then, by the little Fermat theorem, 2p−1 − 1 = 22n − 1 ≡ 0
(mod p). This implies (2n+1)(2n−1) ≡ 0 (mod p). Therefore, either 2n ≡ −1 (mod p)
or 2n ≡ 1 (mod p).

If 2 is a primitive root modulo p then 2n 6≡ 1 (mod p). Hence, 2n ≡ −1 (mod p). Then
the set of numbers (5) is equal to the set (4), and the required condition is satisfied.

On the other hand, if 2 is not a primitive root modulo p, but −2 is a one, then n is odd.
Indeed, if n would be even, then the fact that −2 is a primitive root modulo p implies
2n = (−2)n 6≡ 1 (mod p). Hence, 2n ≡ −1 (mod p). But then the numbers set (6) is
the same as

1, 2n+1, 22, 2n+3, . . . , 22n−1, 2n, 2, 2n+2, 23, . . . , 22n−2, 2n−1,

which implies 2 is a primitive root modulo p. Therefore, n is odd and (−2)n = −2n 6≡ 1
(mod p), hence 2n ≡ 1 (mod p). But then the set of numbers (6) is the same as

1,−2, 22,−23, . . .− 2n−2, 2n−1,−1, 2,−22, . . . , 2n−2,−2n−1

and the required condition is also satisfied in case b).

Therefore, if the number n satisfies one of the conditions a) or b), then the code N6

corrects a single arithmetic error.

Example 6 The condition a) is satisfied for n = 6, and the positive residues modulo 13
of the numbers

1, 2, 22, 23, 24, 25,−1,−2,−22,−23,−24,−25 (7)

are equal, respectively, to
1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7. (8)

Note that X = 110100 ∈ N6, because N(X) = 25 + 24 + 22 = 52 ≡ 0 (mod 13). Assume
a single arithmetic error −23 occurred by transmission of the word X, so the received word
is Y = 101100. Since N(Y ) = 25 + 23 + 22 = 44 ≡ 5 (mod 13), take the number of the
set (7) corresponding to the number 5 of the set (8). This number is −23, which equals
the arithmetic error.

The code Nn was discovered by Brown. It is easily seen that |Nn| =
⌈

2n

2n+1

⌉
.
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