Error Correcting Codes

1 Codes correcting a single symmetric error

In this section we consider the case when only a single bit can be corrupted during transmission. In this case the bit value will be negated. We assume that the codewords are binary sequences $x_{1} x_{2} \ldots x_{n}$ of length n for some fixed n. Let l be a number such that

$$
2^{l-1} \leq n<2^{l} .
$$

In other words, $l=\lfloor\log n\rfloor+1$. Any integer i from the interval $[0, n)$ can be represented in the binary system by using l bits. Denote by $e_{l}(i)$ the binary word of length l which is the representation of i.

Furthermore, for a binary word $X=x_{1} x_{2} \ldots x_{n}$ denote

$$
\begin{equation*}
H(X)=\sum_{i=1}^{n} x_{i} e_{l}(i) \tag{1}
\end{equation*}
$$

Evidently, $H(X)$ is a binary word of length l obtained by summing up component-wise modulo 2 some binary words of length l that correspond to the 1 's in X. Consider the code H_{n} defined by

$$
H_{n}=\{X=x_{1} x_{2} \ldots x_{n} \mid H(X)=(\underbrace{00 \ldots 0}_{l})\} .
$$

Example 1 Let $n=6, X=010101$ and $Y=110100$. Then $l=3, H(X)=010 \oplus 100 \oplus$ $110=000$ and $H(Y)=001 \oplus 010 \oplus 100=111$. Hence, $X \in H_{n}$ and $Y \notin H_{n}$.

For a binary word $X=x_{1} x_{2} \ldots x_{n}$ denote by $N(X)$ the decimal number, whose binary expansion is $x_{1} x_{2} \ldots x_{n}$. For example, $N(101)=5$. Assume that a codeword $X \in H_{n}$ is sent and a word Y (of the same length) is received. If the j-th symbol was corrupted, $Y=x_{1} x_{2} \ldots x_{j-1}\left(x_{j} \oplus 1\right) x_{j+1} \ldots x_{n}$. One has

$$
H(Y)=\sum_{i=1}^{n} x_{i} e_{l}(i) \oplus e_{l}(j)=H(X)+e_{l}(j)=e_{l}(j)
$$

since $H(X)=00 \ldots 0$. The sent word X can be restored by flipping the bit of Y with index $N(H(Y))=N\left(e_{l}(j)\right)=j$.

Example 2 Let $X=010101 \in H_{6}$ is sent and $Y=010111$ is received. Since $H(Y)=$ $010 \oplus 100 \oplus 101 \oplus 110=101$, the symbol with index 5 is corrupted.

The code H_{n} was designed by Hamming. For the number of codewords, one has $\left|H_{n}\right|=$ 2^{n-l}. Since $l=\lfloor\log n\rfloor+1=\lceil\log (n+1)\rceil$, one has

$$
\frac{2^{n-1}}{n} \leq\left|H_{n}\right|=2^{n-\lceil\log (n+1)\rceil} \leq \frac{2^{n}}{n+1} .
$$

In particular, $\left|H_{6}\right|=8$. The code H_{6} is presented in Table 1.

H_{6}	W_{6}	$W_{6,12}$	N_{6}
000000	000000	000000	000000
111000	100001	100011	001101
110011	010010	010101	011010
001011	001100	001110	100111
101101	110100	111001	110100
010101	001011	110110	
011110	110011		
100110	101101		
	011110		
	111111		

Table 1: Some binary codes

Note that $\left|H_{n}\right|=\frac{2^{n}}{n+1}$ if and only if n is of the form $2^{k}-1$ for some $k>1$. In this case the set of all binary words can be partitioned into balls of radius 1 around the codewords of H_{n}.

2 Codes correcting a single substitution error

Assume that only a single zero in the transmitted word can be substituted with 1 during the transmission. For a binary word $X=x_{1} x_{2} \ldots x_{n}$ denote

$$
W(X)=\sum_{i=1}^{n} x_{i} \cdot i .
$$

Obviously, $W(X)$ is the sum of indices of non-zero bits of X. For a given k define the code $W_{n, k}$ as

$$
\begin{equation*}
W_{n, k}=\left\{X=x_{1} x_{2} \ldots x_{n} \mid W(X) \equiv 0 \quad(\bmod k)\right\}, \tag{2}
\end{equation*}
$$

and put $W_{n}=W_{n, n+1}$.

Example 3 Let $n=6, X=110100$ and $Y=010101$. Then $W(X)=1+2+4=7$, $W(Y)=2+4+6=12$. Hence, $X \in W_{6}$ and $Y \notin W_{6}$.

We show that the code $W_{n, k}$ for $k \geq n+1$ (in particular, the code W_{6}) is a code correcting a single error of the type $0 \rightarrow 1$. Assume that a codeword X was sent, a word Y is received, and at most one error occurred during the transmission. Clearly, $W(Y)=W(X)$ in case of no error, and $W(Y)=W(X)+j$ if the j-th bit is corrupted. Since $W(X) \equiv 0$ $(\bmod k)$, in the last case one has $W(Y) \equiv j(\bmod k)$. This allows to figure out the index of the corrupted bit.

Example 4 Let $X=110100 \in W_{6}$ was sent and $Y=110101$ is received. Since $W(Y)=$ $1+2+4+6=13$ and $13 \equiv 6(\bmod 7)$, the bit number 6 is corrupted.

The code W_{n} is constructed by Varshamov and Tennenholz. One can show that

$$
\left|W_{n}\right|=\frac{1}{2(n+1)} \sum_{\substack{d \mid n+1 \\ d \text { is odd }}} \phi(d) \cdot 2^{(n+1) / d}
$$

where $\phi(d)$ is the number of numbers i in the interval $[0, d]$ that are relatively prime with d, that is, $\operatorname{gcd}(i, d)=1$ (Euler function). In particular, $\left|W_{6}\right|=\frac{2^{7}+6 \cdot 2}{14}=10$. The code W_{6} is shown in Table 1.

3 Codes correcting a single deletion or insertion

Here we assume that at most one bit can be dropped from a codeword during the transmission. We show that the code $W_{n, k}$ with $k \geq n+1$ can correct a single error of this type.

Assume that a single bit is dropped from a codeword $X \in W_{n, k}$ during the transmission and a word $Y=y_{1} y_{2} \ldots y_{n-1}$ is received. Denote by n_{1} (respectively, n_{0}) the number of ones (respectively, zeros) located to the right of the dropped bit in X and $W(Y)=$ $\sum_{i=1}^{n-1} y_{i} \cdot i$.

Note, that is a zero is dropped at position j, then each of the ones to the right of position j (whose number is n_{1}) will contribute one less to the sum. Therefore, $W(X)-W(Y)=n_{1}$. If a one is dropped at position j, the entire sum will additionally decrease on j units, so $W(X)-W(Y)=j+n_{1}=n-n_{0}$ (because $n_{0}+n_{1}=n-j$). Obviously, in either case $0 \leq W(X)-W(Y) \leq n<k$.

Denote $\Delta Y=k-W(Y)$. Since $W(X) \equiv 0(\bmod k)$, one has $W(X)-W(Y)=\Delta Y$. Taking into account

$$
n_{1} \leq\|Y\| \leq(n-1)-n_{0}<n-n_{0},
$$

comparing ΔY and $\|Y\|$ one can figure out what symbol (0 or 1) was dropped during the transmission. Namely, if $\Delta Y \leq\|Y\|$, then 0 was dropped, and to restore the sent codeword X one should insert a 0 in Y at position j so that there is ΔY ones to the right of j. Similarly, if $\Delta Y>\|Y\|$, one should insert a 1 at position l so that there is $n-\Delta Y$ zeros to the right of l.

Example 5 Let $X=110100 \in W_{6}$ was sent and $Y=10100$ is received (after dropping the first symbol from X). One has $\|Y\|=2, W(Y)=4$, hence $\Delta Y=3$. Since the condition $\Delta Y>\|Y\|$ is satisfied, count $n-\Delta Y=3$ zeros from the right of Y and insert a 1 there. Note, that we insert a 1 at a different position (position 2 in this case), but the obtained this way word is equal to the one being sent.

It turns out that any code correcting s or less deletions is at the same time a code correcting s or less insertions. It is leaved as an exercise to figure out how to restore the codeword of W_{n} after a single insertion.

4 Codes correcting a single arithmetic error

Arithmetic errors during the transmission lead to adding or subtracting a power of 2 to/from the codeword. Consider a code N_{n} consisting of all binary words $X=x_{1} x_{2} \ldots x_{n}$ such that

$$
\begin{equation*}
N(X)=\sum_{i=1}^{n} x_{i} 2^{n-i} \equiv 0 \quad(\bmod 2 n+1) . \tag{3}
\end{equation*}
$$

If a codeword $X \in N_{n}$ was sent and a single arithmetic error of the type $\pm 2^{i}$ occurred, the received word satisfies the condition

$$
N(Y)=N(X) \pm 2^{i}
$$

Hence, $N(Y) \equiv \pm 2^{i} \quad(\bmod 2 n+1)$. Therefore, the code N_{n} can correct a single arithmetic error if the numbers

$$
\begin{equation*}
1,2, \ldots, 2^{n-1},-1,-2, \ldots,-2^{n-1} \tag{4}
\end{equation*}
$$

are all distinct and nonzero $\bmod 2 n+1$.
We show that this condition is satisfied in the following two cases:
a. The number $p=2 n+1$ is prime and 2 is a primitive root modulo p. This means that all the numbers

$$
\begin{equation*}
1,2, \ldots, 2^{n-1}, 2^{n}, \ldots, 2^{2 n-1} \tag{5}
\end{equation*}
$$

are pairwise distinct modulo p.
b. The number $p=2 n+1$ is prime, 2 is not a primitive root modulo p, and -2 is a one. This means that all the numbers

$$
\begin{equation*}
1,-2,2^{2},-2^{3}, \ldots, 2^{2 n-2},-2^{2 n-1} \tag{6}
\end{equation*}
$$

are all distinct modulo p.

Indeed, if $p=2 n+1$ is prime then, by the little Fermat theorem, $2^{p-1}-1=2^{2 n}-1 \equiv 0$ $(\bmod p)$. This implies $\left(2^{n}+1\right)\left(2^{n}-1\right) \equiv 0 \quad(\bmod p)$. Therefore, either $2^{n} \equiv-1 \quad(\bmod p)$ or $2^{n} \equiv 1 \quad(\bmod p)$.

If 2 is a primitive root modulo p then $2^{n} \not \equiv 1 \quad(\bmod p)$. Hence, $2^{n} \equiv-1 \quad(\bmod p)$. Then the set of numbers (5) is equal to the set (4), and the required condition is satisfied.

On the other hand, if 2 is not a primitive root modulo p, but -2 is a one, then n is odd. Indeed, if n would be even, then the fact that -2 is a primitive root modulo p implies $2^{n}=(-2)^{n} \not \equiv 1 \quad(\bmod p)$. Hence, $2^{n} \equiv-1 \quad(\bmod p)$. But then the numbers set (6) is the same as

$$
1,2^{n+1}, 2^{2}, 2^{n+3}, \ldots, 2^{2 n-1}, 2^{n}, 2,2^{n+2}, 2^{3}, \ldots, 2^{2 n-2}, 2^{n-1}
$$

which implies 2 is a primitive root modulo p. Therefore, n is odd and $(-2)^{n}=-2^{n} \not \equiv 1$ $(\bmod p)$, hence $2^{n} \equiv 1(\bmod p)$. But then the set of numbers (6) is the same as

$$
1,-2,2^{2},-2^{3}, \ldots-2^{n-2}, 2^{n-1},-1,2,-2^{2}, \ldots, 2^{n-2},-2^{n-1}
$$

and the required condition is also satisfied in case b).
Therefore, if the number n satisfies one of the conditions a) or b), then the code N_{6} corrects a single arithmetic error.

Example 6 The condition a) is satisfied for $n=6$, and the positive residues modulo 13 of the numbers

$$
\begin{equation*}
1,2,2^{2}, 2^{3}, 2^{4}, 2^{5},-1,-2,-2^{2},-2^{3},-2^{4},-2^{5} \tag{7}
\end{equation*}
$$

are equal, respectively, to

$$
\begin{equation*}
1,2,4,8,3,6,12,11,9,5,10,7 \tag{8}
\end{equation*}
$$

Note that $X=110100 \in N_{6}$, because $N(X)=2^{5}+2^{4}+2^{2}=52 \equiv 0(\bmod 13)$. Assume a single arithmetic error -2^{3} occurred by transmission of the word X, so the received word is $Y=101100$. Since $N(Y)=2^{5}+2^{3}+2^{2}=44 \equiv 5(\bmod 13)$, take the number of the set (7) corresponding to the number 5 of the set (8). This number is -2^{3}, which equals the arithmetic error.

The code N_{n} was discovered by Brown. It is easily seen that $\left|N_{n}\right|=\left\lceil\frac{2^{n}}{2 n+1}\right\rceil$.

