Error Correcting Codes

1 Codes correcting a single symmetric error

In this section we consider the case when only a single bit can be corrupted during
transmission. In this case the bit value will be negated. We assume that the codewords
are binary sequences x5 . .. x, of length n for some fixed n. Let [ be a number such that

ol < p < 9L,

In other words, I = [logn| + 1. Any integer ¢ from the interval [0,n) can be represented
in the binary system by using [ bits. Denote by ¢;(7) the binary word of length [ which is
the representation of 7.

Furthermore, for a binary word X = z125...x, denote
H(X) :in er(i). (1)
i=1

Evidently, H(X) is a binary word of length [ obtained by summing up component-wise
modulo 2 some binary words of length [ that correspond to the 1’s in X. Consider the
code H,, defined by

H,={X=z129...2, | HX)=(00...0)}.

Example 1 Let n =6, X = 010101 and Y = 110100. Then [ =3, H(X) =010 & 100 &
110 =000 and H(Y) =001 & 010 ® 100 = 111. Hence, X € H,, and Y ¢ H,,.

For a binary word X = zyz5...x, denote by N(X) the decimal number, whose binary
expansion is z1xs ... x,. For example, N(101) = 5. Assume that a codeword X € H, is
sent and a word Y (of the same length) is received. If the j-th symbol was corrupted,
Y =a29...2j-1(x; ® 1)1 ... 2, One has

H(Y) = z ei) ® e(j) = H(X) + a(f) = aj),

since H(X) = 00...0. The sent word X can be restored by flipping the bit of Y with
index N(H(Y)) = N(e/(j)) = J.



Example 2 Let X = 010101 € Hg is sent and Y = 010111 is received. Since H(Y) =
010 ¢ 100 & 101 & 110 = 101, the symbol with index 5 is corrupted.

The code H,, was designed by Hamming. For the number of codewords, one has |H,| =

271 Since | = |logn| + 1 = [log(n + 1)], one has
2n71 on

< |H,| = ptoses < 2
n

In particular, |Hg| = 8. The code Hg is presented in Table 1.

Hg We W12 Ng
000000 | 000000 | OO0000 | 000000
111000 | 100001 | 100011 | 001101
110011 | 010010 | 010101 | 011010
001011 | 001100 | 001110 | 100111
101101 | 110100 | 111001 | 110100
010101 | 001011 | 110110
011110 | 110011
100110 | 101101
011110
111111

Table 1: Some binary codes

Note that |H,| = f—:l if and only if n is of the form 2% — 1 for some k > 1. In this case

the set of all binary words can be partitioned into balls of radius 1 around the codewords
of H,.

2 Codes correcting a single substitution error

Assume that only a single zero in the transmitted word can be substituted with 1 during
the transmission. For a binary word X = xyx5. ..z, denote

DV()() ::zz:ﬂ% - 1.
i=1
Obviously, W (X) is the sum of indices of non-zero bits of X. For a given k define the

code W, j as
Wop={X=z129...2, | W(X) =0 (mod k)}, (2)

and put W, = Wy, ,41.

Example 3 Let n = 6, X = 110100 and Y = 010101. Then W(X) =1+2+4+4 =7,
W({Y)=2+4+6=12. Hence, X € W5 and Y ¢ W;s.
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We show that the code W, x for k > n+1 (in particular, the code Ws) is a code correcting a
single error of the type 0 — 1. Assume that a codeword X was sent, a word Y is received,
and at most one error occurred during the transmission. Clearly, W(Y) = W(X) in
case of no error, and W(Y') = W(X) + j if the j-th bit is corrupted. Since W(X) = 0
(mod k), in the last case one has W(Y) = j (mod k). This allows to figure out the
index of the corrupted bit.

Example 4 Let X = 110100 € Wy was sent and Y = 110101 is received. Since W(Y') =
14+2444+6=13 and 13=6 (mod 7), the bit number 6 is corrupted.

The code W, is constructed by Varshamov and Tennenholz. One can show that

_ 1 _o(n+1)/d

d|n+1

d is odd
where ¢(d) is the number of numbers ¢ in the interval [0, d] that are relatively prime with
d, that is, ged(i,d) = 1 (Euler function). In particular, |Wg| = 27?% = 10. The code Ws
is shown in Table 1.

3 Codes correcting a single deletion or insertion

Here we assume that at most one bit can be dropped from a codeword during the trans-
mission. We show that the code W, with £ > n 4 1 can correct a single error of this

type.

Assume that a single bit is dropped from a codeword X € W, ; during the transmission
and a word Y = 4195...y,_1 is received. Denote by n; (respectively, ng) the number
of ones (respectively, zeros) located to the right of the dropped bit in X and W (Y) =
Z?:Hl Yi

Note, that is a zero is dropped at position 7, then each of the ones to the right of position j
(whose number is n;) will contribute one less to the sum. Therefore, W(X)—-W(Y) = n;.
If a one is dropped at position j, the entire sum will additionally decrease on j units, so
W(X)—-W()=j+n =n—mng (because ng + ny = n — j). Obviously, in either case
0<W(X)-W(Y)<n<k.

Denote AY =k — W(Y). Since W(X) =0 (mod k), one has W(X) — W (Y) = AY.
Taking into account
n <||Y||<(n—1)—mng <n—no,

comparing AY and ||Y|| one can figure out what symbol (0 or 1) was dropped during
the transmission. Namely, if AY < ||Y||, then 0 was dropped, and to restore the sent
codeword X one should insert a 0 in Y at position j so that there is AY ones to the right
of j. Similarly, if AY > ||Y||, one should insert a 1 at position [ so that there is n — AY
zeros to the right of [.



Example 5 Let X = 110100 € Wg was sent and Y = 10100 is received (after dropping
the first symbol from X ). One has ||Y| = 2, W(Y) = 4, hence AY = 3. Since the
condition AY > ||Y|| is satisfied, count n — AY =3 zeros from the right of Y and insert
a 1 there. Note, that we insert a 1 at a different position (position 2 in this case), but the
obtained this way word is equal to the one being sent.

It turns out that any code correcting s or less deletions is at the same time a code
correcting s or less insertions. It is leaved as an exercise to figure out how to restore the
codeword of W,, after a single insertion.

4 Codes correcting a single arithmetic error

Arithmetic errors during the transmission lead to adding or subtracting a power of 2
to/from the codeword. Consider a code N,, consisting of all binary words X = z125 ...z,
such that

N(X) =Y 22 =0 (mod 2n+1). (3)

If a codeword X € N, was sent and a single arithmetic error of the type £2° occurred,
the received word satisfies the condition

N(Y)=N(X)+2"

Hence, N(Y) = £2° (mod 2n+1). Therefore, the code N,, can correct a single arithmetic

error if the numbers
1,2,...,2"04 —1,—2,..., —2"! (4)

are all distinct and nonzero mod 2n + 1.

We show that this condition is satisfied in the following two cases:

a. The number p = 2n + 1 is prime and 2 is a primitive root modulo p. This means
that all the numbers
1,2,...,20 "t on . 2l (5)

are pairwise distinct modulo p.

b. The number p = 2n + 1 is prime, 2 is not a primitive root modulo p, and —2 is a
one. This means that all the numbers

1,-2,2% =23 . 222 _9gn-l (6)

are all distinct modulo p.



Indeed, if p = 2n + 1 is prime then, by the little Fermat theorem, 2°~! —1=2?" —1=0
(mod p). This implies (2"+1)(2"—1) =0 (mod p). Therefore, either 2" = —1 (mod p)
or2"=1 (mod p).

If 2 is a primitive root modulo p then 2" # 1 (mod p). Hence, 2" = —1 (mod p). Then
the set of numbers (5) is equal to the set (4), and the required condition is satisfied.

On the other hand, if 2 is not a primitive root modulo p, but —2 is a one, then n is odd.
Indeed, if n would be even, then the fact that —2 is a primitive root modulo p implies
2" = (=2)"#1 (mod p). Hence, 2" = —1 (mod p). But then the numbers set (6) is
the same as

1,27+ 92 on¥3 - gZn=l gn 9 ont2 93 9¥n=2 on-l

which implies 2 is a primitive root modulo p. Therefore, n is odd and (—2)" = —2" # 1
(mod p), hence 2" =1 (mod p). But then the set of numbers (6) is the same as

1,-2,2% =23 . —9on29n"t 1 9 92 on72 _on-l

)
and the required condition is also satisfied in case b).

Therefore, if the number n satisfies one of the conditions a) or b), then the code Ng
corrects a single arithmetic error.

Example 6 The condition a) is satisfied for n = 6, and the positive residues modulo 13
of the numbers
1,2,2%, 23 24 925 —1, -2, —22 —23 21 _9° (7)

are equal, respectively, to
1,2,4,8,3,6,12,11,9,5,10, 7. (8)

Note that X = 110100 € Ng, because N(X) =2°+214+22=52=0 (mod 13). Assume
a single arithmetic error —23 occurred by transmission of the word X, so the received word
is Y = 101100. Since N(Y) =25 +23+22 =44=5 (mod 13), take the number of the
set (7) corresponding to the number 5 of the set (8). This number is —23, which equals
the arithmetic error.

The code N,, was discovered by Brown. It is easily seen that |V,| = [;LW



