

Chapter 6 Overview

- Number Systems and Radix Conversion
- Fixed point arithmetic
- Seminumeric Aspects of ALU Design
- Floating Point Arithmetic

Digital Number Systems

- Digital number systems have a <u>base</u> or <u>radix</u> b
- Using <u>positional notation</u>, an m digit base b number is written

 $x = x_{m-1} x_{m-2} \dots x_1 x_0$ $0 \le x_i \le b-1, 0 \le i < m$

The value of this unsigned integer is

value(x) =
$$\sum_{i=0}^{m-1} x_i \cdot b^i$$
 Eq. 6.1

Range of Unsigned m Digit Base b Numbers

- The largest number has all of its digits equal to b-1, the largest possible base b digit
- Its value can be calculated in closed form

$$x_{max} = \sum_{i=0}^{m-1} (b-1) \cdot b^{i} = (b-1) \cdot \sum_{i=0}^{m-1} b^{i} = b^{m-1}$$
 Eq. 6.2

An important summation – geometric series

$$\sum_{i=0}^{m-1} b^{i} = \frac{b^{m-1}}{b-1}$$
 Eq. 6.3

Radix Conversion: General Matters

- Converting from one number system to another involves computation
- We call the base in which calculation is done c and the other base b
- Calculation is based on the division algorithm
 - For integers a & b, there exist integers q & r such that a = $q \cdot b + r$, with $0 \le r \le b-1$
- Notation:

C S Digit Symbol Correspondence Between Bases

- Each base has b (or c) different symbols to represent the digits
- If b < c, there is a table of b+1 entries giving base c symbols for each base b symbol & b
 - If the same symbol is used for the first b base c digits as for the base b digits, the table is implicit
- If c < b, there is a table of b+1 entries giving a base c number for each base b symbol & b
 - For base b digits \geq c, the base c numbers have more than one digit

Base 12: 0 1 2 3 4 5 6 7 8 9 A B 10 Base 3: 0 1 2 10 11 12 20 21 22 100 101 102 110

2/e

Convert Base b Integer to Calculator's Base, c

- 1) Start with base b x = $x_{m-1} x_{m-2} \dots x_1 x_0$
- 2) Set x = 0 in base c
- 3) Left to right, get next symbol x_i
- 4) Lookup base c number D_i for symbol x_i
- 5) Calculate in base c: $x = x \cdot b + D_i$
- 6) If there are more digits, repeat from step 3
- Example: convert 3AF₁₆ to base 10

$$x = 0$$

 $x = 16x + 3 = 3$
 $x = 16 \cdot 3 + 10(=A) = 58$
 $x = 16 \cdot 58 + 15(=F) = 943$

Convert Calculator's Base Integer to Base b

- 1) Let x be the base c integer
- 2) Initialize i = 0 and v = x & get digits right to left
- 3) Set $D_i = v \mod b \& v = \lfloor v/b \rfloor$. Lookup D_i to get x_i
- 4) i = i + 1; If $v \neq 0$, repeat from step 3

• Example: convert
$$3567_{10}$$
 to base 12
 $3587 \div 12 = 298 \text{ (rem = 11)} \Rightarrow x_0 = B$
 $298 \div 12 = 24 \text{ (rem = 10)} \Rightarrow x_1 = A$
 $24 \div 12 = 2 \text{ (rem = 0)} \Rightarrow x_2 = 0$
 $2 \div 12 = 0 \text{ (rem = 2)} \Rightarrow x_3 = 2$
Thus $3587_{10} = 20AB_{12}$

Fractions and Fixed Point Numbers

- The value of the base b fraction .f₋₁f₋₂...f_{-m} is the value of the integer f₋₁f₋₂...f_{-m} divided by b^m
- The value of a mixed fixed point number

 $X_{n-1}X_{n-2}...X_{1}X_{0}.X_{-1}X_{-2}...X_{-m}$

is the value of the n+m digit integer

 $x_{n-1}x_{n-2}...x_1x_0x_{-1}x_{-2}...x_{-m}$

divided by b^m

- Moving radix point one place left divides by b
 - For fixed radix point position in word, this is a right shift of word
- Moving radix point one place right multiplies by b
 - For fixed radix point position in word, this is a left shift of word

Converting Fraction to Calculator's Base

- Can use integer conversion & divide result by b^m
- Alternative algorithm
 - 1) Let base b number be $.f_{-1}f_{-2}...f_{-m}$
 - 2) Initialize f = 0.0 and i = -m
 - 3) Find base c equivalent D of f_i

4)
$$f = (f + D)/b; i = i + 1$$

- 5) If i = 0, the result is f. Otherwise repeat from 3
- Example: convert 413₈ to base 10

$$f = (0 + 3)/8 = .375$$

f = (.375 + 1)/8 = .171875
f = (.171875 + 4)/8 = .521484375

Non-terminating Fractions

- The division in the algorithm may give a non-terminating fraction in the calculator's base
- This is a general problem: a fraction of m digits in one base may have any number of digits in another base
- The calculator will normally keep only a fixed number of digits
 - Number should make base c accuracy about that of base b
- This problem appears in generating base b digits of a base c fraction
 - The algorithm can continue to generate digits unless terminated

Convert Fraction from Calculator's Base to Base b

- 1) Start with exact fraction f in base c
- 2) Initialize i = 1 and v = f
- 3) $D_{-i} = \lfloor b \cdot v \rfloor$; $v = b \cdot v D_{-i}$; Get base b f_{-i} for D_{-i}
- 4) i = i + 1; repeat from 3 unless v = 0 or enough base b digits have been generated

Example: convert
$$.31_{10}$$
 to base 8
 $.31 \times 8 = 2.48 \implies f_{-1} = 2$
 $.48 \times 8 = 3.84 \implies f_{-2} = 3$
 $.84 \times 8 = 6.72 \implies f_{-1} = 6$

• Since $8^3 > 10^2$, .236₈ has more accuracy than .31₁₀

Conversion Between Related Bases by Digit Grouping

- Let base $b = c^k$; for example $b = c^2$
- Then base b number x_1x_0 is base c number $y_3y_2y_1y_0$, where x_1 base b = y_3y_2 base c and x_0 base b = y_1y_0 base c
- Examples: $102130_4 = 102130_4 = 49C_{16}$

 $49C_{16} = 0100\ 1001\ 1100_{2}$ $102130_{4} = 01\ 00\ 10\ 01\ 11\ 00_{2}$ $010010011100_{2} = 010\ 010\ 011\ 100_{2} = 2234_{8}$

C S D A 2/e

Negative Numbers, Complements, & Complement Representations

We will:

- Define two <u>complement operations</u>
- Define two <u>complement number systems</u>
 - Systems represent both positive and negative numbers
- Give a relation between complement and negate in a complement number system
- Show how to compute the complements
- Explain the relation between shifting and scaling a number by a power of the base
- Lead up to the use of complement number systems in signed addition hardware

Complement Operations for m Digit Base b Numbers

Radix complement of m digit base b number x

 $x^c = (b^m - x) \mod b^m$

Diminished radix complement of x

 $\underline{\mathbf{x}}^{c} = \mathbf{b}^{m} - \mathbf{1} - \mathbf{x}$

- The complement of a number in the range 0≤x≤b^m-1 is in the same range
- The mod b^m in the radix complement definition makes this true for x = 0; it has no effect for any other value of x
- Specifically, the radix complement of 0 is 0

Complement Number Systems

- Complement number systems use unsigned numbers to represent both positive and negative numbers
- Recall that the range of an m digit base b unsigned number is 0≤x≤b^m-1
- The first half of the range is used for positive, and the second half for negative, numbers
- Positive numbers are simply represented by the unsigned number corresponding to their absolute value

Use of Complements to Represent Negative Numbers

- The complement of a number in the range from 0 to b^m/2 is in the range from b^m/2 to b^m-1
- A negative number is represented by the complement of its absolute value
- There are an equal number (±1) of positive and negative number representations
 - The ±1 depends on whether b is odd or even and whether radix complement or diminished radix complement is used
- We will assume the most useful case of even b
 - Then radix complement system has one more negative representation
 - Diminished radix complement system has equal numbers of positive and negative representations

Reasons to Use Complement Systems for Negative Numbers

- The usual sign-magnitude system introduces extra symbols + &
 in addition to the digits
- In binary, it is easy to map $0 \Rightarrow +$ and $1 \Rightarrow -$
- In base b>2, using a whole digit for the two values + & is wasteful
- Most important, however, it is easy to do signed addition & subtraction in complement number systems

Radix Complement		Diminished Radix Complement	
Number	Representation	Number	Representation
0	0	0	0 or b ^m -1
0 <x<b<sup>m/2</x<b<sup>	x	0 <x<b<sup>m/2</x<b<sup>	x
-b ^m /2≤x<0	IxI ^c = b ^m - IxI	-b ^m /2 <x<0< td=""><td><math display="block">\underline{\mathbf{IxI}^{c}} = \mathbf{b}^{m} - 1 - \mathbf{IxI}</math></td></x<0<>	$\underline{\mathbf{IxI}^{c}} = \mathbf{b}^{m} - 1 - \mathbf{IxI}$

- For even b, radix comp. system represents one more negative than positive value
- while diminished radix comp. system has 2 zeros but represents same number of pos. & neg. values

Table 6.2 Base 2 Complement Representations

8 Bit 2's Complement		8 Bit 1's Complement	
Number	Representation	Number	Representation
0	0	0	0 or 255
0 <x<128< td=""><td>x</td><td>0<x<128< td=""><td>x</td></x<128<></td></x<128<>	x	0 <x<128< td=""><td>x</td></x<128<>	x
-128≤x<0	256 - Ixl	-127≤x<0	255 - Ixl

- In 1's complement, $255 = 11111111_2$ is often called -0
- In 2's complement, -128 = 10000000₂ is a legal value, but trying to negate it gives overflow

Negation in Complement Number Systems

- Except for -b^m/2 in the b's comp. system, the negative of any m digit value is also m digits
- The negative of any number x, positive or negative, in the b's or b-1's complement system is obtained by applying the b's or b-1's complement operation to x, respectively
- The 2 complement operations are related by

 $x^c = (\underline{x}^c + 1) \mod b^m$

 Thus an easy way to compute one of them will give an easy way to compute both

Digitwise Computation of the Diminished Radix Complement

 Using the geometric series formula, the b-1's complement of x can be written

$$x^{c} = b^{m-1-x} = \sum_{i=0}^{m-1} (b-1) \cdot b^{i} - \sum_{i=0}^{m-1} x_{i} \cdot b^{i}$$
$$= \sum_{i=0}^{m-1} (b-1-x_{i}) \cdot b^{i}$$
Eq. 6.9

 If 0≤x_i≤b-1, then 0≤(b-1-x_i)≤b-1, so last formula is just an m digit base b number with each digit obtained from the corresponding digit of x

Base 5	4's	 4's complement of 201341₅ is 		
Digit	Comp.	243103 ₅		
0	4	5's complement of 201341 ₅ is		
1	3	$243103_5 + 1 = 243104_5$		
- 0	2	 5's complement of 444445 is 		
Z	2	$00000_5 + 1 = 00001_5$		
3	1	 5's complement of 00000₅ is 		
4	0	• $(44444_5 + 1) \mod 5^5 = 00000_5$		

С

D

Α

<mark>2</mark>/e

S

Complement Fractions

- Since m digit fraction is same as m digit integer divided by b^m, the b^m in complement definitions corresponds to 1 for fractions
- Thus radix complement of x = .x₋₁x₋₂...x_{-m} is
 (1-x) mod 1, where mod 1 means discard integer
- The range of fractions is roughly -1/2 to +1/2
- This can be inconvenient for a base other than 2
- The b's comp. of a mixed number

 $x = x_{m-1}x_{m-2}...x_1x_0.x_{-1}x_{-2}...x_n$ is $b^m - x$, where both integer and fraction digits are subtracted

- Roughly, multiplying by b corresponds to moving radix point one place right or shifting number one place left
- Dividing by b roughly corresponds to a right shift of the number or a radix point move to the left one place
- There are 2 new issues for complement numbers
 - 1) What is new left digit on right shift?
 - 2) When does a left shift overflow?

Right Shifting a Complement Number to Divide by b

 For positive x_{m-1}x_{m-2}...x₁x₀, dividing by b corresponds to right shift with zero fill

 $0x_{m-1}x_{m-2}...x_{1}$

For negative x_{m-1}x_{m-2}...x₁x₀, dividing by b corresponds to right shift with b-1 fill

 $(b-1)x_{m-1}x_{m-2}...x_{1}$

- This holds for both b's and b-1's comp. systems
- For even b, the rule is: fill with 0 if x_{m-1} < b/2 and fill with (b-1) if x_{m-1} ≥ b/2

Complement Number Overflow on Left Shift to Multiply by b

- For positive numbers, overflow occurs if any digit other than 0 shifts off left end
- Positive numbers also overflow if the digit shifted into left position makes number look negative, i.e. digit ≥ b/2 for even b
- For negative numbers, overflow occurs if any digit other than b-1 shifts off left end
- Negative numbers also overflow if new left digit makes number look positive, i.e. digit<b/2 for even b

Left Shift Examples With Radix Complement Numbers

- Non-overflow cases: Left shift of 762₈ = 620₈, -14₁₀ becomes -112₁₀ Left shift of 031₈ = 310₈, 25₁₀ becomes 200₁₀
- Overflow cases:

Left shift of $241_8 = 410_8$ shifts $2 \neq 0$ off left Left shift of $041_8 = 410_8$ changes from + to -Left shift of $713_8 = 130_8$ changes from - to + Left shift of $662_8 = 620_8$ shifts $6 \neq 7$ off left

Fixed Point Addition and Subtraction

- If the radix point is in the same position in both operands, addition or subtraction act as if the numbers were integers
- Addition of signed numbers in radix complement system needs only an unsigned adder
- So we only need to concentrate on the structure of an m digit, base b unsigned adder
- To see this let x be a signed integer and rep(x) be its 2's complement representation
- The following theorem summarizes the result

Theorem on Signed Addition in a Radix Complement System

- Theorem: Let s be unsigned sum of rep(x) & rep(y). Then s = rep(x+y), except for overflow
- Proof sketch: Case 1, signs differ, x≥0, y<0. Then x+y = x-|y| and s = (x+b^m-|y|) mod b^m.

If x-|y| \geq 0, mod discards b^m, giving result, if

x-|y| < 0, then $rep(x+y) = (b-|x-|y||) \mod b^{m}$.

Case 3, x<0, y<0. s = $(2b^m - |x| - |y|) \mod b^m$, which reduces to s = $(b^m - |x+y|) \mod b^m$. This is rep(x+y) provided the result is in range of an m digit b's comp. representation. If it is not, the unsigned s s<b/bd>

- Typical cell produces $s_j = (x_j + y_j + c_j) \mod b$ and $c_{j+1} = \lfloor (x_j + y_j + c_j)/b \rfloor$
- Since x_j , $y_j \le b-1$, $c_j \le 1$ implies $c_{j+1} \le 1$, and since $c_0 \le 1$, all carries are ≤ 1 , regardless of b

Unsigned Addition Examples

	$12.03_4 = 6.1875_{10}$.9A2C ₁₆	
	$13.21_4 = 7.5625_{10}$.7BE2 ₁₆	Overflow
Carry	01 01	1 11 0	for 16 bit
Sum	$31.30_4 = 13.75_{10}$	1.160E ₁₆	word

- If result can only have a fixed number of bits, overflow occurs on carry from leftmost digit
- Carries are either 0 or 1 in all cases
- A table of sum and carry for each of the b² digit pairs, and one for carry in = 1, define the addition

Base 4

+	0	1	2	3
0	00	01	02	03
1	01	02	03	10
2	02	03	10	11
3	03	10	11	12

Implementation Alternatives for Unsigned Adders

- If b = 2^k, then each base b digit is equivalent to k bits
- A base b digit adder can be viewed as a logic circuit with 2k+1 inputs and k+1 outputs
- This combinational logic circuit can be designed with as few as 2 levels of logic
- PLA, ROM, and multi-level logic are also alternatives
- If 2 level logic is used, max. gate delays for m digit base b unsigned adder is 2m

Fig 6.1a

Two Level Logic Design of a Base 4 Digit Adder

- The base 4 digit x is represented by the 2 bits x_b x_a, y by y_b y_a, and s by s_b s_a
- s_a is independent of x_b and y_b, c₁ is given by y_by_ac₀+x_ay_bc₀+x_bx_ac₀+x_by_ac₀+x_bx_ay_a+x_ay_by_a+x_by_b, while s_b is a 12 input OR of 4 input ANDs

С

D

Α

<mark>2</mark>/e

S

Overflow Detection in Complement Add & Subtract

- We saw that all cases of overflow in complement addition came when adding numbers of like signs, and the result seemed to have the opposite sign
- For even b, the sign can be determined from the left digit of the representation
- Thus an overflow detector only needs x_{m-1}, y_{m-1}, s_{m-1}, and an add/subtract control
- It is particularly simple in base 2

Speeding Up Addition With Carry Lookahead

- Speed of digital addition depends on carries
- A base b = 2^k divides length of carry chain by k
- Two level logic for base b digit becomes complex quickly as k increases
- If we could compute the carries quickly, the full adders compute result with 2 more gate delays
- Carry lookahead computes carries quickly
- It is based on two ideas:
 - —a digit position generates a carry
 - —a position propagates a carry in to the carry out

Binary Propagate and Generate Signals

- In binary, the generate for digit j is $G_j = x_j \cdot y_j$
- Propagate for digit j is $P_j = x_j + y_j$
 - Of course x_j+y_j covers x_j·y_j but it still corresponds to a carry out for a carry in
- Carries can then be written: $c_1 = G_0 + P_0 \cdot c_0$
- $c_2 = G_1 + P_1 \cdot G_0 + P_1 \cdot P_0 \cdot c_0$
- $c_3 = G_2 + P_2 \cdot G_1 + P_2 \cdot P_1 \cdot G_0 + P_2 \cdot P_1 \cdot P_0 \cdot c_0$
- $c_4 = G_3 + P_3 \cdot G_2 + P_3 \cdot P_2 \cdot G_1 + P_3 \cdot P_2 \cdot P_1 \cdot G_0 + P_3 \cdot P_2 \cdot P_1 \cdot P_0 \cdot C_0$
- In words, the c₂ logic is: c₂ is one if digit 1 generates a carry, or if digit 0 generates one and digit 1 propagates it, or if digits 0&1 both propagate a carry in

Speed Gains With Carry Lookahead

- It takes one gate to produce a G or P, two levels of gates for any carry, & 2 more for full adders
- The number of OR gate inputs (terms) and AND gate inputs (literals in a term) grows as the number of carries generated by lookahead
- The real power of this technique comes from applying it recursively
- For a group of, say 4, digits an overall generate is $G_0^1 = G_3 + P_3 \cdot G_2 + P_3 \cdot P_2 \cdot G_1 + P_3 \cdot P_2 \cdot P_1 \cdot G_0$
- An overall propagate is $P_0^1 = P_3 \cdot P_2 \cdot P_1 \cdot P_0$

Recursive Carry Lookahead Scheme

- If level 1 generates G¹_j and propagates P¹_j are defined for all groups j, then we can also define level 2 signals G²_j and P²_i over groups of groups
- If k things are grouped together at each level, there will be log_km levels, where m is the number of bits in the original addition
- Each extra level introduces 2 more gate delays into the worst case carry calculation
- k is chosen to trade-off reduced delay against the complexity of the G and P logic
- It is typically 4 or more, but the structure is easier to see for k=2

Fig. 6.4 Carry Lookahead Adder for Group Size k = 2

С

S

D

Α

<mark>2/</mark>e

		Fig. 6	6.5 I	Digita	al Mu	Itiplic	cation	Sch	ema
<mark>2/</mark> e									
					<i>x</i> 3	x2	<i>x</i> 1	<i>x</i> 0	multiplicand
					<i>y</i> 3	<i>y</i> 2	<i>y</i> 1	<i>у</i> 0	multiplier
				$(xy_0)_4$	(<i>xy</i> ₀) ₃	(<i>xy</i> ₀) ₂	(<i>xy</i> ₀) ₁	(<i>xy</i> ₀) ₀	bb0
			$(xy_1)_4$	$(xy_1)_3$	(<i>xy</i> ₁) ₂	$(xy_1)_1$	$(xy_1)_0$		pp1
		(<i>xy</i> ₂) ₄	(<i>xy</i> ₂) ₃	(<i>xy</i> ₂) ₂	(<i>xy</i> ₂) ₁	(<i>xy</i> ₂) ₀			pp2
	(<i>xy</i> ₃) ₄	(<i>xy</i> ₃) ₃	(<i>xy</i> ₃) ₂	(<i>xy</i> ₃) ₁	(<i>xy</i> ₃) ₀				pp3
	<i>p</i> 7	<i>p</i> 6	<i>p</i> 5	<i>p</i> 4	<i>p</i> 3	p2	p_1	p_0	
	p: prod	uct			pp: p	partial p	product		

Serial By Digit of Multiplier, Then By Digit of Multiplicand

1.	for i := 0 step 1 until 2m-1
2.	p _i := 0;
3.	for j := 0 step 1 until m-1
4.	begin
5.	c := 0;
6.	for i := 1 step 1 until m-1
7.	begin
8.	$p_{i+i} := (p_{i+i} + x_i y_i + c) \mod b;$
9.	$\mathbf{c} := \lfloor (\mathbf{p}_{i+i} + \mathbf{x}_i \mathbf{y}_i + \mathbf{c})/\mathbf{b} \rfloor;$
10.	end;
11.	p _{i+m} := c;
12.	end;
÷	If c ≤ b-1 on the RHS of 9, then c ≤ b-1 on the LHS of 9 because $0 \le p_{j+i}$, x_i , $y_j \le$ b-1

Operation of the Parallel Multiplier Array

- Each box in the array does the base b digit calculations p_k(out) := (p_k(in) + x y + c(in)) mod b and c(out) := [(p_k(in) + x y + c(in))/b]
- Inputs and outputs of boxes are single base b digits, including the carries
- The worst case path from an input to an output is about 6m gates if each box is a 2 level circuit
- In base 2, the digit boxes are just full adders with an extra AND gate to compute xy

Series Parallel Multiplication Algorithm

- Hardware multiplies the full multiplicand by one multiplier digit and adds it to a running product
- The operation needed is $p := p + xy_i b^j$
- Multiplication by b^j is done by scaling xy_j, shifting it left, or shifting p right, by j digits
- Except in base 2, the generation of the partial product xy_j is more difficult than the shifted add
- In base 2, the partial product is either x or 0

D

Α

Steps for Using the Unsigned Series-Parallel Multiplier

- 1) Clear product shift register p.
- 2) Initialize multiplier digit number j=0.
- 3) Form the partial product xy_i.
- 4) Add partial product to upper half of p.
- 5) Increment j=j+1, and if j=m go to step 8.
- 6) Shift p right one digit.
- 7) Repeat from step 3.
- 8) The 2m digit product is in the p register.

Multiply with Fixed Length Words: Integer and Fraction Multiply

- If words can store only m digits, and the radix point is in a fixed position in the word, 2 positions make sense integer: right end, and fraction: left end
- In integer multiply, overflow occurs if any of the upper m digits of the 2m digit product ≠0
- In fraction multiply, the upper m digits are the most significant, and the lower m digits are discarded or rounded to give an m digit fraction

Signed Multiplication

- The sign of the product can be computed immediately from the signs of the operands
- For complement numbers, negative operands can be complemented, their magnitudes multiplied, and the product recomplemented if necessary
- A complement representation multiplicand can be handled by a b's complement adder for partial products and sign extension for the shifts
- A 2's complement multiplier is handled by the formula for a 2's complement value: add all PP's except last, subtract it.

value(x) =
$$-x_{m-1}^{m-2} 2^{m-1} + \sum_{i=0}^{m-2} x_i^{2^i}$$
 Eq. 6.25

Steps for Using the 2's Complement Multiplier Hardware

- 1) Clear the bit counter and partial product accumulator register.
- 2) Add the product (AND) of the multiplicand and rightmost multiplier bit.
- 3) Shift accumulator and multiplier registers right one bit.
- 4) Count the multiplier bit and repeat from 2 if count less than m-1.
- 5) Subtract the product of the multiplicand and bit m-1 of the multiplier.

Note: bits of multiplier used at rate product bits produced

Examples of 2's Complement Multiplication

-5/8=		1.	0	1	1			
× 6/8=	X	0.	1	1	0			
pp ₀	0	0.	0	0	0			
acc.	0	0.	0	0	0	0		
pp ₁	1	1.	0	1	1			
acc.	1	1.	1	0	1	1	0	
pp ₂	1	1.	0	1	1			
acc.	1	1.	1	0	0	0	1	0
pp ₃	0	0.	0	0	0			
res.	1	1.	1	0	0	0	1	0

6/8=	=	0.	1	1	0			
×-5/8=	= ×	1.	0	1	1			
pp ₀	0	0.	1	1	0			
acc.	0	0.	0	1	1	0		
pp ₁	0	0.	1	1	0			
acc.	0	0.	1	0	0	1	0	
pp_2	0	0.	0	0	0			
acc.	0	0.	0	1	0	0	1	0
pp ₃	1	1.	0	1	0			
res.	1	1.	1	0	0	0	1	0

Booth Recoding and Similar Methods

- Forms the basis for a number of signed multiplication algorithms
- Based upon recoding the multiplier, y, to a recoded value, z.
- The multiplicand remains unchanged.
- Uses signed digit (SD) encoding:
- Each digit can assume three values instead of just 2: +1, 0, and -1, encoded as 1, 0, and 1. This is known as signed digit (SD) notation.

This means that the value can be computed by *adding* the weighted values of all the digits except the most significant, and *subtracting* that digit.

-5 = 1011 in 2's Complement Notation $1011 = \overline{1}011 = -8 + 0 + 2 + 1 = -5$ in SD Notation

Consider -1 = 1111. In SD Notation this can

be represented as $000\overline{1}$

The Booth method is:

 Working from lsb to msb, replace each 0 digit of the original number with 0 in the recoded number until a 1 is encountered.
When a 1 is encountered, insert a 1 in that position in the recoded number, and skip over any succeeding 1's until a 0 is encountered.

3. Replace that 0 with a 1. If you encounter the msb without encountering a 0, stop and do nothing.

0011 1101 1001 = 512 + 256 + 128 + 64 + 16 + 8 + 1 = 985 $\downarrow \qquad \downarrow$ 0100 0110 1011 = 1024 - 64 + 32 - 8 + 2 - 1 = 985

Tbl 6.4 Booth Recoding Table

^{2/e}Consider pairs of numbers, y_i , y_{i-1} . Recoded value is z_i .

y _i	y_{i-1}	Z_{i}	Value	Situation
0	0	0	0	String of 0's
0	1	1	+1	End of string of 1's
1	0	1	-1	Begin string of 1's
1	1	0	0	String of 1's

Algorithm can be done in parallel. Examine the example of multiplication 6.11 in text.

С

D

Α

S

Recoding using Bit Pair Recoding

- Booth method may actually increase number of multiplies.
- Consider pairs of digits, and recode each pair into 1 digit.
- Derive Table 6.5, pg. 279 on the blackboard to show how bit pair recoding works.
- Demonstrate Example 6.13 on the blackboard as an example of multiplication using bit pair recoding.
- There are many variants on this approach.

Table 6.5 Radix-4 Booth Encoding (Bit-Pair Encoding)

Original Bit Pair		Digit to Right	Recoded Bit Pair		Multiplier Value	Situation	
y _i	y_{i-1}	у _{і-2}	z _i	z_{i-1}			
0	0	0		0	0	String of 0s	
0	0	1		1	+1	End string of 1s	
0	1	0		1	+1	Single 1	
0	1	1	1		+2	End string of 1s	
1	0	0	1		-2	Begin string of 1s	
1	0	1		1	-1	Single 0	
1	1	0		1	-1	Begin string of 1s	
1	1	1		0	0	String of 1s	

Digital Division: Terminology and Number Sizes

- A <u>dividend</u> is divided by a <u>divisor</u> to get a <u>quotient</u> and a <u>remainder</u>
- A 2m digit dividend divided by an m digit divisor does <u>not</u> necessarily give an m digit quotient and remainder
- If the divisor is 1, for example, an integer quotient is the same size as the dividend
- If a fraction D is divided by a fraction d, the quotient is only a fraction if D<d
- If D≥d, a condition called <u>divide overflow</u> occurs in fraction division

С

D

Α

2/e

S

Fig 6.9 Unsigned Binary Division Hardware

- 2m bit dividend register
- m bit divisor
- m bit quotient
- Divisor can be subtracted from dividend, or not

С

D

Α

S

Use of Division Hardware for Integer Division

- 1) Put dividend in lower half of register and clear upper half. Put divisor in divisor register. Initialize quotient bit counter to zero.
- 2) Shift dividend register left one bit.
- 3) If difference positive, shift 1 into quotient and replace upper half of dividend by difference. If negative, shift 0 into quotient.
- 4) If fewer than m quotient bits, repeat from 2.
- 5) m bit quotient is an integer, and an m bit integer remainder is in upper half of dividend register.

Use of Division Hardware for Fraction Division

- 1) Put dividend in upper half of dividend register and clear lower half. Put divisor in divisor register. Initialize quotient bit counter to zero.
- 2) If difference positive, report divide overflow.
- 3) Shift dividend register left one bit.
- 4) If difference positive, shift 1 into quotient and replace upper part of dividend by difference. If negative, shift 0 into the quotient.
- 5) If fewer than m quotient bits, repeat from 3.
- 6) m bit quotient has binary point at the left, and remainder is in upper part of dividend register.

Integer Binary Division Example: D=45, d=6, q=7, r=3

	D	000000101101		
	d	000110		
Init.	D	00000101101-		
	d	000110		
diff(-)	D	0000101101	q	0
	d	000110		
diff(-)	D	000101101	q	00
	d	000110		
diff(-)	D	00101101	q	000
	d	000110		
diff(+)	D	0010101	q	0001
	d	000110		
diff(+)	D	001001	q	00011
	d	000110		
diff(+)	rem.	000011	q	000111

Branching on Arithmetic Conditions

- An ALU with two m bit operands produces more than just an m bit result
- The carry from the left bit and the true/false value of 2's complement overflow are useful
- There are 3 common ways of using outcome of compare (subtract) for a branch condition
 - 1) Do the compare in the branch instruction
 - 2) Set special condition code bits and test them in the branch
 - 3)Set a general register to a comparison outcome and branch on this logical value

Drawbacks of Condition Codes

- Condition codes are extra processor state; set, and overwritten, by many instructions
- Setting and use of CCs also introduces hazards in a pipelined design
- CCs are a scarce resource, they must be used before being set again
 - The PowerPC has 8 sets of CC bits
- CCs are processor state that must be saved and restored during exception handling

Drawbacks of Comparison in Branch and Set General Register

- Branch instruction length: it must specify 2 operands to be compared, branch target, and branch condition (possibly place for link)
- Amount of work before branch decision: it must use the ALU and test its output—this means more branch delay slots in pipeline
- Setting a general register to a particular outcome of a compare, say ≤ unsigned, uses a register of 32 or more bits for a true/false value

Use of Condition Codes: Motorola 68000

• The HLL statement:

if
$$(A > B)$$
 then $C = D$

translates to the MC68000 code:

For 2's comp. A & B	For unsigned A & B		
MOVE.W A, DO	MOVE.W A, DO		
CMP.W B, D0	CMP.W B, DO		
BLE Over	BLS Over		
MOVE.W D, C	MOVE.W D, C		
Over:	Over:		

Standard Condition Codes: NZVC

- Assume compare does the subtraction s = x-y
- N: negative result, $s_{m-1} = 1$ if $x_{m-1}y_{m-1}\overline{s}_{m-1} + \overline{x}_{m-1}\overline{y}_{m-1}s_{m-1}$
- Z: zero result, s = 0
- V: 2's comp. overflow, C: carry from leftmost bit position, s_m = 1
- Information in N, Z, V, and C determines several signed & unsigned relations of x & y

Correspondence of Conditions and NZVC Bits

.

Condition	Unsigned Integers	Signed Integers
carry out	С	С
overflow	С	V
negative	n.a.	N
>	C·Z	$(N \cdot V + \overline{N} \cdot \overline{V}) \cdot \overline{Z}$
2	C	$N \cdot V + \overline{N} \cdot \overline{V}$
=	Z	Z
*	Z	Z
4	C+Z	$(N \cdot \nabla + \overline{N} \cdot V) + Z$
<	С	$N \cdot \nabla + N \cdot V$

Branches That Do Not Use Condition Codes

- SRC compares a single number to zero
- The simple comparison can be completed in pipeline stage 2
- The MIPS R2000 compares 2 numbers using a branch of the form: bgtu R1, R2, Lb1
- Different branch instructions are needed for each signed or unsigned condition
- The MIPS R2000 also allows setting a general register to 1 or 0 on a compare outcome

sgtu R3, R1, R2

ALU Logical, Shift and Rotate Instructions

- Shifts are often combined with logic to extract bit fields from, or insert them into, full words
- A MC68000 example extracts bits 30..23 of a 32 bit word (exponent of a floating point #)

MOVE.L D0, D1 ;Get # into D1

ROL.L #9, D1 ;exponent to bits 7..0

ANDI.L #FFH, D1 ;clear bits 31..8

 MC68000 shifts take 8+2n clocks, where n = shift count, so ROL.L #9 is better then SHR.L #23 in the above example

Types and Speed of Shift Instructions

- Rotate right is equivalent to rotate left with a different shift count
- Rotates can include the carry or not
- Two right shifts, one with sign extend, are needed to scale unsigned and signed numbers
- Only a zero fill left shift is needed for scaling
- Shifts whose execution time depends on the shift count use a single bit ALU shift repeatedly, as we did for SRC in Chap. 4
- Fast shifts, important for pipelined designs, can be done with a barrel shifter

Fig 6.11 A 6 Bit Crossbar Barrel Rotator for Fast Shifting

Properties of the Crossbar Barrel Shifter

- There is a 2 gate delay for any length shift
- Each output line is effectively an n way multiplexer for shifts of up to n bits
- There are n² 3-state drivers for an n bit shifter
 - For n = 32, this means 1024 3-state drivers
- For 32 bits, the decoder is 5 bits to 1 out of 32
- The minimum delay but large number of gates in the crossbar prompts a compromise:

the logarithmic barrel shifter

Fig 6.12 Barrel Shifter with a Logarithmic Number of Stages

Elements of a Complete ALU

- In addition to the arithmetic hardware, there must be a controller for multi-step operations, such as series parallel multiply
- The shifter is usually a separate unit, and may have lots of gates if it is to be fast
- Logic operations are usually simple
- The arithmetic unit may need to produce condition codes as well as a result number
- Multiplexers select the result and condition codes from the correct sub-unit

- Software can use arithmetic with a fixed binary point position, say left end, and keep a separate scale factor e for a number f×2^e
- Add or subtract on numbers with same scale is simple, since f×2^e + g×2^e = (f+g)×2^e
- Even with same scale for operands, scale of result is different for multiply and divide (f×2^e)·(g×2^e) = (f·g)×2^{2e}; (f×2^e)÷(g×2^e) = f÷g
- Since scale factors change, general expressions lead to a different scale factor for each number—floating point representation

Fig 6.14 Floating Point Numbers Include Scale S & Number in One Word

- All floating-point formats follow a scheme similar to the one above
- s is sign, e is exponent, and f is significand
- We will assume a fraction significand, but some representations have used integers

С

D

Α

Signs in Floating Point Numbers

- Both significand and exponent have signs
- A complement representation could be used for f, but signmagnitude is most common now
- The sign is placed at the left instead of with f so test for negative always looks at left bit
- The exponent could be 2's complement, but it is better to use a biased exponent
- If -e_{min} ≤ e ≤ e_{max}, where e_{min}, e_{max} > 0, then
 e = e_{min} + e is always positive, so e replaced by e
- We will see that a sign at the left & a positive exponent left of the significand, helps compare

Exponent Base and Floating Point Number Range

- In a floating point format using 24 out of 32 bits for significand, 7 would be left for exponent
- A number x would have a magnitude 2⁻⁶⁴≤x≤2⁶³, or about 10⁻¹⁹≤x≤10¹⁹
- For more exponent range, bits of significand would have to be given up with loss of accuracy
- An alternative is an exponent base >2
- IBM used exponent base 16 in the 360/370 series for a magnitude range about 10⁻⁷⁵≤x≤10⁷⁵
- Then 1 unit change in e corresponds to a binary point shift of 4 bits

Normalized Floating Point Numbers

- There are multiple representations for a FP #
- If f₁ and f₂ = 2^df₁ are both fractions & e₂ = e₁-d, then (s, f₁, e₁)
 & (s, f₂, e₂) have same value
- Scientific notation example: .819×10³ = .0819×10⁴
- A normalized floating point number has a leftmost digit nonzero (exponent small as possible)
- With exponent base b, this is a base b digit: for the IBM format the leftmost 4 bits (base 16) are ≠0
- Zero cannot fit this rule; usually written as all 0s
- In norm. base 2 left bit =1, so it can be left out
 - So called hidden bit

Comparison of Normalized Floating Point Numbers

- If normalized numbers are viewed as integers, a biased exponent field to the left means an exponent unit is more than a significand unit
- The largest magnitude number with a given exponent is followed by the smallest one with the next higher exponent
- Thus normalized FP numbers can be compared for <,≤,>,≥,=,≠ as if they were integers
- This is the reason for the s,e,f ordering of the fields and the use of a biased exponent, and one reason for normalized numbers

Fig 6.15 IEEE Single-Precision Floating Point Format

ê	е	Value	Туре
255	none	none	Infinity or NaN
254	127	(-1) ^s ×(1.f ₁ f ₂)×2 ¹²⁷	Normalized
2	-125	(-1) ^s ×(1.f ₁ f ₂)×2 ⁻¹²⁵	Normalized
1	-126	(-1) ^s ×(1.f ₁ f ₂)×2 ⁻¹²⁶	Normalized
0	-126	(-1) ^s ×(0.f ₁ f ₂)×2 ⁻¹²⁶	Denormalized

• Exponent bias is 127 for normalized #s

Special Numbers in IEEE Floating Point

- An all zero number is a normalized 0
- Other numbers with biased exponent e = 0 are called denormalized
- Denorm numbers have a hidden bit of 0 and an exponent of -126; they may have leading 0s
- Numbers with biased exponent of 255 are used for ±∞ and other special values, called NaN (not a number)
- For example, one NaN represents 0/0

Fig 6.16 IEEE Standard Double Precision Floating Point

- Exponent bias for normalized #s is 1023
- The denorm biased exponent of 0 corresponds to an unbiased exponent of -1022
- Infinity and NaNs have a biased exponent of 2047
- Range increases from about 10⁻³⁸≤|x|≤10³⁸ to about 10⁻³⁰⁸≤|x|≤10³⁰⁸

Decimal Floating Point Add and Subtract Examples

Operands	Alianment	Normalize & round	
6.144 ×10 ²	0.06144 ×10 ⁴	1.003644 ×10 ⁵	
<u>+9.975 ×10⁴</u>	<u>+9.975 ×10⁴</u>	+ .0005 ×10 ⁵	
	10.03644 ×10 ⁴	1.004 ×10 ⁵	

Operands	Alianment	Normalize & round
1.076 ×10 ⁻⁷	1.076 ×10 ⁻⁷	7.7300 ×10 ⁻⁹
<u>-9.987 ×10⁻⁸</u>	-0.9987 ×10 ⁻⁷	<u>+ .0005 ×10⁻⁹</u>
	0.0773 ×10 ⁻⁷	7.730 ×10 ⁻⁹

Floating Add, FA, and Floating Subtract, FS, Procedure

Add or subtract (s_1, e_1, f_1) and (s_2, e_2, f_2)

- 1) Unpack (s, e, f); handle special operands
- 2) Shift fraction of # with smaller exponent right by $|e_1-e_2|$ bits
- 3) Set result exponent $e_r = max(e_1, e_2)$
- 4) For FA & s₁=s₂ or FS & s₁≠s₂, add significands, otherwise subtract them
- Count lead zeros, z; carry can make z=-1; shift left z bits or right 1 bit if z=-1
- 6) Round result, shift right & adjust z if round OV
- 7) $e_r \leftarrow e_r$ -z; check over- or underflow; bias & pack

- Adders for exponents and significands
- Shifters for alignment and normalize
- Multiplexers for exponent and swap of significands
- Lead zeros counter

Decimal Floating Point Examples for Multiply & Divide

- Multiply fractions and add exponents
- These examples assume normalzed result is 0.xxx

Sign, fraction & exponent Normalize & round

(-0.1403	×10 ⁻³)	-0.4238463 ×1	0 ²
<u>×(+0.3021</u>	×10 ⁶)	-0.00005 ×1	02
-0.042384	63 ×10 ⁻³⁺⁶	-0.4238 ×1	0 ²

• Divide fractions and subtract exponents

Sign, fraction &	& exponent	Nor	malize & round	b
(-0.9325	×10²)		+0.9306387	7 ×10 ⁹
<u>+(-0.1002</u>	×10 ⁻⁶)		+0.00005	×10 ⁹
+9.306387	×10 ²⁻⁽⁻⁶⁾		+0.9306	×10 ⁹

Floating Point Multiply of Normalized Numbers

- Multiply $(s_r, e_r, f_r) = (s_1, e_1, f_1) \times (s_2, e_2, f_2)$
- 1) Unpack (s, e, f); handle special operands
- 2) Compute $s_r = s_1 \oplus s_2$; $e_r = e_1 + e_2$; $f_r = f_1 \times f_2$
- If necessary, normalize by 1 left shift & subtract 1 from e_r; round & shift right if round OV
- 4) Handle overflow for exponent too positive and underflow for exponent too negative
- 5) Pack result, encoding or reporting exceptions

Floating Point Divide of Normalized Numbers

Divide $(s_r, e_r, f_r) = (s_1, e_1, f_1) \div (s_2, e_2, f_2)$

- 1) Unpack (s, e, f); handle special operands
- 2) Compute $s_r = s_1 \oplus s_2$; $e_r = e_1 e_2$; $f_r = f_1 \div f_2$
- 3) If necessary, normalize by 1 right shift & add 1 to e_r; round & shift right if round OV
- 4) Handle overflow for exponent too positive and underflow for exponent too negative
- 5) Pack result, encoding or reporting exceptions

Chapter 6 Summary

- Digital number representations and algebraic tools for the study of arithmetic
- Complement representation for addition of signed numbers
- Fast addition by large base & carry lookahead
- Fixed point multiply and divide overview
- Non-numeric aspects of ALU design
- Floating point number representations
- Procedures and hardware for float add & sub
- Floating multiply and divide procedures