

Chapter 6 Overview

- Number Systems and Radix Conversion
- Fixed point arithmetic
- Seminumeric Aspects of ALU Design
- Floating Point Arithmetic

Digital Number Systems

- Digital number systems have a base or radix b
- Using positional notation, an m digit base b number is written

$$
\begin{gathered}
x=x_{m-1} x_{m-2} \ldots x_{1} x_{0} \\
0 \leq x_{i} \leq b-1,0 \leq i<m
\end{gathered}
$$

- The value of this unsigned integer is

$$
\text { value }(x)=\sum_{i=0}^{m-1} x_{i} \cdot b^{i}
$$

Eq. 6.1

C

S Range of Unsigned m Digit Base b Numbers

- The largest number has all of its digits equal to $b-1$, the largest possible base b digit
- Its value can be calculated in closed form

$$
x_{\max }=\sum_{i=0}^{m-1}(b-1) \cdot b^{i}=(b-1) \cdot \sum_{i=0}^{m-1} b^{i}=b^{m}-1
$$

Eq. 6.2

- An important summation-geometric series

$$
\sum_{i=0}^{m-1} b^{i}=\frac{b m-1}{b-1}
$$

Eq. 6.3

Radix Conversion: General Matters

- Converting from one number system to another involves computation
- We call the base in which calculation is done c and the other base b
- Calculation is based on the division algorithm
- For integers a \& b, there exist integers q \& r such that a $=q \cdot b+r$, with $0 \leq r \leq b-1$
- Notation:

$$
\begin{aligned}
q & =\lfloor a / b\rfloor \\
r & =a \bmod b
\end{aligned}
$$

S Digit Symbol Correspondence Between Bases

- Each base has b (or c) different symbols to represent the digits
- If $b<c$, there is a table of $b+1$ entries giving base c symbols for each base b symbol \& b
- If the same symbol is used for the first b base c digits as for the base b digits, the table is implicit
- If $c<b$, there is a table of $b+1$ entries giving a base c number for each base b symbol \& b
- For base b digits $\geq \mathrm{c}$, the base c numbers have more than one digit

Base 12:	0	1	2	3	4	5	6	7	8	9	A	B	10
Base 3:	0	1	2	10	11	12	20	21	22	100	101	102	110

S Convert Base b Integer to Calculator's Base, c

1) Start with base $b x=x_{m-1} x_{m-2} \ldots x_{1} x_{0}$
2) Set $x=0$ in base c
3) Left to right, get next symbol x_{i}
4) Lookup base c number D_{i} for symbol x_{i}
5) Calculate in base c: $x=x \cdot b+D_{i}$
6) If there are more digits, repeat from step 3

- Example: convert $3 \mathrm{AF}_{16}$ to base 10

$$
\begin{aligned}
& x=0 \\
& x=16 x+3=3 \\
& x=16 \cdot 3+10(=A)=58 \\
& x=16 \cdot 58+15(=F)=943
\end{aligned}
$$

C

S Convert Calculator's Base Integer to Base b

1) Let x be the base c integer
2) Initialize $i=0$ and $v=x \&$ get digits right to left
3) Set $D_{i}=v \bmod b \& v=\lfloor v / b\rfloor$. Lookup D_{i} to get x_{i}
4) $i=i+1$; If $v \neq 0$, repeat from step 3

- Example: convert 3567_{10} to base 12

$$
\begin{aligned}
& 3587 \div 12=298(\text { rem }=11) \Rightarrow x_{0}=B \\
& 298 \div 12=24(\text { rem }=10) \Rightarrow x_{1}=A \\
& 24 \div 12=2(\text { rem }=0) \Rightarrow x_{2}=0 \\
& 2 \div 12=0(\text { rem }=2) \Rightarrow x_{3}=2
\end{aligned}
$$

Thus $3587_{10}=20 \mathrm{AB}_{12}$

Fractions and Fixed Point Numbers

- The value of the base b fraction.$f_{-1} f_{-2} \ldots f_{-m}$ is the value of the integer $f_{-1} f_{-2} \ldots f_{-m}$ divided by b^{m}
- The value of a mixed fixed point number

$$
x_{n-1} x_{n-2} \ldots x_{1} x_{0} \cdot x_{-1} x_{-2} \ldots x_{-m}
$$

is the value of the $n+m$ digit integer

$$
x_{n-1} x_{n-2} \cdots x_{1} x_{0} x_{-1} x_{-2} \cdots x_{-m}
$$

divided by b^{m}

- Moving radix point one place left divides by b
- For fixed radix point position in word, this is a right shift of word
- Moving radix point one place right multiplies by b
- For fixed radix point position in word, this is a left shift of word

S Converting Fraction to Calculator's Base

- Can use integer conversion \& divide result by b^{m}
- Alternative algorithm

1) Let base b number be.$_{-1} f_{-2} \ldots f_{-m}$
2) Initialize $f=0.0$ and $i=-m$
3) Find base c equivalent D of f_{i}
4) $f=(f+D) / b ; i=i+1$
5) If $i=0$, the result is f. Otherwise repeat from 3

- Example: convert 413_{8} to base 10

$$
\begin{aligned}
& f=(0+3) / 8=.375 \\
& f=(.375+1) / 8=.171875 \\
& f=(.171875+4) / 8=.521484375
\end{aligned}
$$

Non-terminating Fractions

- The division in the algorithm may give a non-terminating fraction in the calculator's base
- This is a general problem: a fraction of m digits in one base may have any number of digits in another base
- The calculator will normally keep only a fixed number of digits
- Number should make base c accuracy about that of base b
- This problem appears in generating base b digits of a base c fraction
- The algorithm can continue to generate digits unless terminated

Convert Fraction from Calculator's Base to Base b

1) Start with exact fraction f in base c
2) Initialize $i=1$ and $v=f$
3) $D_{-i}=\lfloor b \cdot v\rfloor ; v=b \cdot v-D_{-i}$; Get base $b f_{-i}$ for D_{-i}
4) $i=i+1$; repeat from 3 unless $v=0$ or enough base b digits have been generated

- Example: convert $.31_{10}$ to base 8

$$
\begin{aligned}
& .31 \times 8=2.48 \Rightarrow f_{-1}=2 \\
& .48 \times 8=3.84 \Rightarrow f_{-2}=3 \\
& .84 \times 8=6.72 \Rightarrow f_{-1}=6
\end{aligned}
$$

- Since $8^{3}>10^{2}, .236_{8}$ has more accuracy than $.31_{10}$

C

 $C$$\mathbf{S}$
\mathbf{D}
\mathbf{A}
$2 / \mathrm{e}$

Conversion Between Related Bases by Digit Grouping

- Let base $b=c^{k}$; for example $b=c^{2}$
- Then base b number $x_{1} x_{0}$ is base c number $y_{3} y_{2} y_{1} y_{0}$, where x_{1} base $b=y_{3} y_{2}$ base c and x_{0} base $b=y_{1} y_{0}$ base c
- Examples: $102130_{4}=102130_{4}=49 \mathrm{C}_{16}$

$$
49 C_{16}=010010011100_{2}
$$

$102130_{4}=010010011100_{2}$
$010010011100_{2}=010010011100_{2}=2234_{8}$

Negative Numbers, Complements, \& Complement Representations

We will:

- Define two complement operations
- Define two complement number systems
- Systems represent both positive and negative numbers
- Give a relation between complement and negate in a complement number system
- Show how to compute the complements
- Explain the relation between shifting and scaling a number by a power of the base
- Lead up to the use of complement number systems in signed addition hardware

Complement Operationsfor m Digit Base b Numbers

2/e

- Radix complement of m digit base b number x

$$
x^{c}=\left(b^{m}-x\right) \bmod b^{m}
$$

- Diminished radix complement of x

$$
\underline{x}^{c}=b^{m}-1-x
$$

- The complement of a number in the range $0 \leq x \leq b^{m}-1$ is in the same range
- The mod b^{m} in the radix complement definition makes this true for $x=0$; it has no effect for any other value of x
- Specifically, the radix complement of 0 is 0

Complement Number Systems

- Complement number systems use unsigned numbers to represent both positive and negative numbers
- Recall that the range of an m digit base b unsigned number is $0 \leq x \leq b^{m}-1$
- The first half of the range is used for positive, and the second half for negative, numbers
- Positive numbers are simply represented by the unsigned number corresponding to their absolute value

C D
 Use of Complements to Represent Negative Numbers

- The complement of a number in the range from 0 to $\mathrm{b}^{\mathrm{m}} / 2$ is in the range from $b^{m} / 2$ to $b^{m}-1$
- A negative number is represented by the complement of its absolute value
- There are an equal number (± 1) of positive and negative number representations
- The ± 1 depends on whether b is odd or even and whether radix complement or diminished radix complement is used
- We will assume the most useful case of even b
- Then radix complement system has one more negative representation
- Diminished radix complement system has equal numbers of positive and negative representations

Reasons to Use Complement Systems for Negative Numbers

- The usual sign-magnitude system introduces extra symbols + \& - in addition to the digits
- In binary, it is easy to map $0 \Rightarrow+$ and $1 \Rightarrow$ -
- In base $b>2$, using a whole digit for the two values $+\&-$ is wasteful
- Most important, however, it is easy to do signed addition \& subtraction in complement number systems

Sjable 6.1 Complement Representations of Negative Numbers
 2/e

Radix Complement | Diminished Radix Complement

Number	Representation	Number	Representation
0	0	0	0 or $b^{m}-1$
$0<x<b^{m} / 2$	x	$0<x<b^{m} / 2$	x
$-b^{m} / 2 \leq x<0$	$\|x\|^{c}=b^{m}-\|x\|$	$-b^{m} / 2<x<0$	$\underline{\|x\|^{c}}=b^{m}-1-\|x\|$

- For even b, radix comp. system represents one more negative than positive value
- while diminished radix comp. system has 2 zeros but represents same number of pos. \& neg. values

Table 6.2 Base 2 Complement

Representations

8 Bit 2's Complement

Number	Representation	Number	Representation
0	0	0	0 or 255
$0<x<128$	x	$0<x<128$	x
$-128 \leq x<0$	$256-\|x\|$	$-127 \leq x<0$	$255-\|x\|$

- In 1 's complement, $255=11111111_{2}$ is often called -0
- In 2's complement, $-128=10000000_{2}$ is a legal value, but trying to negate it gives overflow

S Negation in Complement Number Systems

- Except for -bm/2 in the b's comp. system, the negative of any m digit value is also m digits
- The negative of any number x, positive or negative, in the b's or b-1's complement system is obtained by applying the b's or b-1's complement operation to x, respectively
- The 2 complement operations are related by

$$
x^{c}=\left(x^{c}+1\right) \bmod b^{m}
$$

- Thus an easy way to compute one of them will give an easy way to compute both

Digitwise Computation of the Diminished Radix Complement

- Using the geometric series formula, the $b-1$'s complement of x can be written

$$
\begin{aligned}
x^{c}=b^{m}-1-x & =\sum_{i=0}^{m-1}(b-1) \cdot b^{i}-\sum_{i=0}^{m-1} x_{i} \cdot b^{i} \\
& =\sum_{i=0}^{m-1}\left(b-1-x_{i}\right) \cdot b^{i}
\end{aligned}
$$

Eq. 6.9

- If $0 \leq x_{i} \leq b-1$, then $0 \leq\left(b-1-x_{i}\right) \leq b-1$, so last formula is just an m digit base b number with each digit obtained from the corresponding digit of x

C

Base 5 Digit	4's Comp.
0	4
1	3
2	2
3	1
4	0

- 4's complement of 201341_{5} is 243103_{5}
- 5's complement of 201341_{5} is $243103_{5}+1=243104_{5}$
- 5 's complement of 444445 is

$$
00000_{5}+1=00001_{5}
$$

- 5 's complement of 00000_{5} is
- $\left(44444_{5}+1\right) \bmod 5^{5}=00000_{5}$

Complement Fractions

- Since m digit fraction is same as m digit integer divided by b^{m}, the b^{m} in complement definitions corresponds to 1 for fractions
- Thus radix complement of $x=. x_{-1} x_{-2} \ldots x_{-m}$ is (1-x) mod 1 , where mod 1 means discard integer
- The range of fractions is roughly $-1 / 2$ to $+1 / 2$
- This can be inconvenient for a base other than 2
- The b's comp. of a mixed number

$$
x=x_{m-1} x_{m-2} \cdots x_{1} x_{0} \cdot x_{-1} x_{-2} \ldots x_{-n} \text { is } b^{m}-x \text {, }
$$

where both integer and fraction digits are subtracted

C
 Scaling Complement Numbers by Powers of the Base

- Roughly, multiplying by b corresponds to moving radix point one place right or shifting number one place left
- Dividing by b roughly corresponds to a right shift of the number or a radix point move to the left one place
- There are 2 new issues for complement numbers

1) What is new left digit on right shift?
2) When does a left shift overflow?

C

Right Shifting a Complement Number to Divide by b

- For positive $x_{m-1} x_{m-2} \cdots x_{1} x_{0}$, dividing by b corresponds to right shift with zero fill

$$
0 x_{m-1} x_{m-2} \cdots x_{1}
$$

- For negative $x_{m-1} x_{m-2} \ldots x_{1} x_{0}$, dividing by b corresponds to right shift with $b-1$ fill

$$
(b-1) x_{m-1} x_{m-2} \ldots x_{1}
$$

- This holds for both b's and b-1's comp. systems
- For even b, the rule is: fill with 0 if $x_{m-1}<b / 2$ and fill with (b1) if $x_{m-1} \geq b / 2$

C
 Complement Number Overflow on Left Shift to Multiply by b

- For positive numbers, overflow occurs if any digit other than 0 shifts off left end
- Positive numbers also overflow if the digit shifted into left position makes number look negative, i.e. digit $\geq b / 2$ for even b
- For negative numbers, overflow occurs if any digit other than b-1 shifts off left end
- Negative numbers also overflow if new left digit makes number look positive, i.e. digit<b/2 for even b

Left Shift Examples With Radix Complement Numbers

- Non-overflow cases:

Left shift of $762_{8}=620_{8},-14_{10}$ becomes -112_{10}
Left shift of $031_{8}=310_{8}, 25_{10}$ becomes 200_{10}

- Overflow cases:

Left shift of $241_{8}=410_{8}$ shifts $2 \neq 0$ off left
Left shift of $041_{8}=410_{8}$ changes from + to Left shift of $713_{8}=130_{8}$ changes from - to + Left shift of $662_{8}=620_{8}$ shifts $6 \neq 7$ off left

Fixed Point Addition and Subtraction

- If the radix point is in the same position in both operands, addition or subtraction act as if the numbers were integers
- Addition of signed numbers in radix complement system needs only an unsigned adder
- So we only need to concentrate on the structure of an migit, base b unsigned adder
- To see this let x be a signed integer and rep(x) be its 2's complement representation
- The following theorem summarizes the result

C D
 Theorem on Signed Addition in a Radix Complement System

- Theorem: Let s be unsigned sum of rep(x) \& rep(y). Then s= rep($\mathrm{x}+\mathrm{y}$), except for overflow
- Proof sketch: Case 1 , signs differ, $x \geq 0, y<0$. Then $x+y=x-|y|$ and $\mathrm{s}=\left(\mathrm{x}+\mathrm{b}^{\mathrm{m}}-\mathrm{y} \mid\right)$ mod b^{m}.
If $x-|y| \geq 0$, mod discards b^{m}, giving result, if $x-|y|<0$, then $\operatorname{rep}(x+y)=(b-|x-|y||) \bmod b^{m}$.
Case $3, x<0, y<0 . s=\left(2 b^{m}-|x|-|y|\right)$ mod b^{m}, which reduces to s $=\left(b^{m}-|x+y|\right) \bmod b^{m}$. This is rep $(x+y)$ provided the result is in range of an m digit b's comp. representation. If it is not, the unsigned $\mathrm{s}<\mathrm{b}^{\mathrm{m}} / 2$ appears positive.

- Typical cell produces $\mathrm{s}_{\mathrm{j}}=\left(\mathrm{x}_{\mathrm{j}}+\mathrm{y}_{\mathrm{j}}+\mathrm{c}_{\mathrm{j}}\right) \bmod \mathrm{b}$ and $\mathrm{c}_{\mathrm{j}+1}=\left\lfloor\left(\mathrm{x}_{\mathrm{j}}+\mathrm{y}_{\mathrm{j}}+\mathrm{c}_{\mathrm{j}}\right) / \mathrm{b}\right\rfloor$
- Since $x_{j}, y_{j} \leq b-1, c_{j} \leq 1$ implies $c_{j+1} \leq 1$, and since $c_{0} \leq 1$, all carries are ≤ 1, regardless of b

Unsigned Addition Examples

	$12.03_{4}=6.1875_{10}$. 9A2C $_{16}$	
	$13.21_{4}=7.5625_{10}$	$.7 B E 2_{16}$	Overflow
Carry	0101	1110	for 16 bit
Sum	$31.30_{4}=13.75_{10}$	$1.160 E_{16}$	word

- If result can only have a fixed number of bits, overflow occurs on carry from leftmost digit
- Carries are either 0 or 1 in all cases
- A table of sum and carry for each of the b^{2} digit pairs, and one for carry in $=1$, define the addition

Base 4

+	0	1	2	3
0	00	01	02	03
1	01	02	03	10
2	02	03	10	11
3	03	10	11	12

Implementation Alternatives for Unsigned

A 2/e

Adders

- If $b=2^{k}$, then each base b digit is equivalent to k bits
- A base b digit adder can be viewed as a logic circuit with $2 k+1$ inputs and $k+1$ outputs

Fig 6.1a

- This combinational logic circuit can be designed with as few as 2 levels of logic
- PLA, ROM, and multi-level logic are also alternatives
- If 2 level logic is used, max. gate delays for m digit base \mathbf{b} unsigned adder is $\mathbf{2 m}$

S

C

S Two Level Logic Design of a Base 4 Digit Adder
 2/e

$x_{b} 0000000000000001111111111111111$
$x_{\mathrm{a}} 0000000011111111000000011111111$
yb0001111000011110000111100001111
ya0 0110011001100110011001100110011
co 01010101010101010101010101010101
$\mathbf{c}_{1} 0000001000001110001111101111111$
$\mathrm{s}_{\mathrm{b}} 00011110011110001110000110000111$
sa 01100110100110010110011010011001

- The base 4 digit x is represented by the 2 bits $x_{b} x_{a}, y$ by y_{b} y_{a}, and s by $\mathrm{s}_{\mathrm{b}} \mathrm{s}_{\mathrm{a}}$
- s_{a} is independent of x_{b} and y_{b}, c_{1} is given by $y_{b} y_{a} c_{0}+x_{a} y_{b} c_{0}+x_{b} x_{a} c_{0}+x_{b} y_{a} c_{0}+x_{b} x_{a} y_{a}+x_{a} y_{b} y_{a}+x_{b} y_{b}$, while s_{b} is a 12 input OR of 4 input ANDs

C

S Fig. 6.2 base b Complement Subtracter
 2/e . To do subtraction in the radix complement system, it is only necessary to negate (radix complement) the 2nd operand

- It is easy to take the diminished radix complement, and the adder has a carry in for the +1

Overflow Detection in Complement Add \& Subtract

- We saw that all cases of overflow in complement addition came when adding numbers of like signs, and the result seemed to have the opposite sign
- For even b, the sign can be determined from the left digit of the representation
- Thus an overflow detector only needs $\mathrm{x}_{\mathrm{m}-1}, \mathrm{y}_{\mathrm{m}-1}, \mathrm{~s}_{\mathrm{m}-1}$, and an add/subtract control
- It is particularly simple in base 2

S Fig. 6.3 2's Complement Adder/Subtracter

- A multiplexer to select y or its complement becomes an exclusive OR gate

c

S Speeding Up Addition With Carry Lookahead

- Speed of digital addition depends on carries
- A base $b=2^{k}$ divides length of carry chain by k
- Two level logic for base b digit becomes complex quickly as k increases
- If we could compute the carries quickly, the full adders compute result with 2 more gate delays
- Carry lookahead computes carries quickly
- It is based on two ideas:
-a digit position generates a carry
-a position propagates a carry in to the carry out

Binary Propagate and Generate Signals

- In binary, the generate for digit j is $G_{j}=x_{j} y_{j}$
- Propagate for digit j is $P_{j}=x_{j}+y_{j}$
- Of course $x_{j}+y_{j}$ covers $x_{j} \cdot y_{j}$ but it still corresponds to a carry out for a carry in
- Carries can then be written: $\mathrm{c}_{1}=\mathrm{G}_{0}+\mathrm{P}_{0} \cdot \mathrm{c}_{0}$
- $\mathrm{C}_{2}=\mathrm{G}_{1}+\mathrm{P}_{1} \cdot G_{0}+P_{1} \cdot P_{0} \cdot C_{0}$
- $\mathrm{C}_{3}=\mathrm{G}_{2}+\mathrm{P}_{2} \cdot G_{1}+\mathrm{P}_{2} \cdot P_{1} \cdot G_{0}+P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{0}$
- $\mathrm{C}_{4}=\mathrm{G}_{3}+\mathrm{P}_{3} \cdot \mathrm{G}_{2}+\mathrm{P}_{3} \cdot P_{2} \cdot G_{1}+\mathrm{P}_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0}+P_{3} \cdot P_{2} \cdot P_{1} \cdot P_{0} \cdot C_{0}$
- In words, the c_{2} logic is: c_{2} is one if digit 1 generates a carry, or if digit 0 generates one and digit 1 propagates it, or if digits $0 \& 1$ both propagate a carry in

Speed Gains With Carry Lookahead

- It takes one gate to produce a G or P, two levels of gates for any carry, \& 2 more for full adders
- The number of OR gate inputs (terms) and AND gate inputs (literals in a term) grows as the number of carries generated by lookahead
- The real power of this technique comes from applying it recursively
- For a group of, say 4, digits an overall generate is $\mathrm{G}_{0}{ }_{0}=\mathrm{G}_{3}$

$$
+P_{3} \cdot G_{2}+P_{3} \cdot P_{2} \cdot G_{1}+P_{3} \cdot P_{2} \cdot P_{1} \cdot G_{0}
$$

- An overall propagate is $\mathrm{P}_{0}=\mathrm{P}_{3} \cdot \mathrm{P}_{2} \cdot \mathrm{P}_{1} \cdot \mathrm{P}_{0}$

Recursive Carry Lookahead Scheme

- If level 1 generates G^{1} and propagates P^{1} are defined for all groups j, then we can also define level 2 signals G^{2} and $\mathrm{P}^{2}{ }_{\mathrm{j}}$ over groups of groups
- If k things are grouped together at each level, there will be $\log _{k} m$ levels, where m is the number of bits in the original addition
- Each extra level introduces 2 more gate delays into the worst case carry calculation
- k is chosen to trade-off reduced delay against the complexity of the G and P logic
- It is typically 4 or more, but the structure is easier to see for $\mathrm{k}=2$

Fig. 6.4 Carry Lookahead Adder for Group Size k = 2

Fig. 6.5 Digital Multiplication Schema

C

Serial By Digit of Multiplier, Then By Digit of Multiplicand

1. for $\mathrm{i}:=0$ step 1 until $\mathbf{2 m - 1}$
2. $p_{i}:=0$;
3. for $\mathrm{j}:=0$ step 1 until $\mathrm{m}-1$
begin

$$
\begin{aligned}
& c:=0 ; \\
& \text { for } i:=1 \text { step } 1 \text { until } m-1 \\
& \quad \text { begin } \\
& \\
& \\
& \quad \begin{array}{l}
\quad p_{j+i}:=\left(p_{j+i}+x_{i} y_{j}+c\right) \bmod b ; \\
\\
\\
\quad \text { end; }:=\left\lfloor\left(p_{j+i}+x_{i} y_{j}+c\right) / b\right\rfloor ;
\end{array} \\
& p_{j+m}:=c ;
\end{aligned}
$$

end;

- If $\mathrm{c} \leq \mathrm{b}-1$ on the RHS of 9 , then $\mathrm{c} \leq \mathrm{b}-1$ on the LHS of 9 because $0 \leq p_{j+i}, x_{i}, y_{j} \leq b-1$

S Fig. 6.6 Parallel Array Multiplier for Unsigned D Base b Numbers

A 2/e

C

S
 D
 A
 2/e

Operation of the Parallel Multiplier Array

- Each box in the array does the base b digit calculations $p_{k}($ out $):=\left(p_{k}(\right.$ in $\left.)+x y+c(i n)\right)$ mod b and $c(o u t):=\left\lfloor\left(p_{k}(\right.\right.$ in $)+x$ $y+c(i n)) / b\rfloor$
- Inputs and outputs of boxes are single base b digits, including the carries
- The worst case path from an input to an output is about 6 m gates if each box is a 2 level circuit
- In base 2, the digit boxes are just full adders with an extra AND gate to compute $x y$

Series Parallel Multiplication Algorithm

- Hardware multiplies the full multiplicand by one multiplier digit and adds it to a running product
- The operation needed is $p:=p+x_{j} b^{j}$
- Multiplication by bi is done by scaling xy_{j}, shifting it left, or shifting p right, by j digits
- Except in base 2, the generation of the partial product $x y_{j}$ is more difficult than the shifted add
- In base 2 , the partial product is either x or 0

Fig. 6.7 Unsigned Series-Parallel Multiplication Hardware

A
2/e
Multiplicand

Steps for Using the Unsigned Series-Parallel

Multiplier

1) Clear product shift register p.
2) Initialize multiplier digit number $\mathrm{j}=0$.
3) Form the partial product $x y_{j}$.
4) Add partial product to upper half of p.
5) Increment $j=j+1$, and if $j=m$ go to step 8.
6) Shift p right one digit.
7) Repeat from step 3.
8) The $2 m$ digit product is in the p register.

- If words can store only m digits, and the radix point is in a fixed position in the word, 2 positions make sense integer: right end, and fraction: left end
- In integer multiply, overflow occurs if any of the upper m digits of the 2 m digit product $\neq 0$
- In fraction multiply, the upper m digits are the most significant, and the lower m digits are discarded or rounded to give an m digit fraction

Signed Multiplication

- The sign of the product can be computed immediately from the signs of the operands
- For complement numbers, negative operands can be complemented, their magnitudes multiplied, and the product recomplemented if necessary
- A complement representation multiplicand can be handled by a b's complement adder for partial products and sign extension for the shifts
- A 2's complement multiplier is handled by the formula for a 2's complement value: add all PP's except last, subtract it.

$$
\text { value }(x)=-x_{m-1} 2^{m-1}+\sum_{i=0}^{m-2} x_{i} 2^{i}
$$

Eq. 6.25

Fig. 6.8 2's Complement Signed Multiplier Hardware

1) Clear the bit counter and partial product accumulator register.
2) Add the product (AND) of the multiplicand and rightmost multiplier bit.
3) Shift accumulator and multiplier registers right one bit.
4) Count the multiplier bit and repeat from 2 if count less than $m-1$.
5) Subtract the product of the multiplicand and bit $\mathrm{m}-1$ of the multiplier.

Note: bits of multiplier used at rate product bits produced

	$\begin{array}{r} 1.011 \\ =\times 0.110 \end{array}$
pp_{0}	00.000
acc.	00.0000
pp_{1}	11.011
acc.	11.10110
pp_{2}	11.011
acc.	11.10001
P_{3}	00.000
res.	11.100010

$\begin{aligned} & 6 / 8= \\ & \times-5 / 8= \\ & \times\end{aligned}$	
pp_{0}	00.110
acc.	00.0110
pp_{1}	00.110
acc.	00.10010
pp_{2}	00.000
acc.	00.01001
pp_{3}	11.010
res.	11.1000

Booth Recoding and Similar Methods

- Forms the basis for a number of signed multiplication algorithms
- Based upon recoding the multiplier, y, to a recoded value, z.
- The multiplicand remains unchanged.
- Uses signed digit (SD) encoding:
- Each digit can assume three values instead of just 2:
$+1,0$, and -1 , encoded as 1,0 , and 1 . This is known as signed digit (SD) notation.

C

A 2's Complement Integer's Value can be Represented as:

$$
\begin{equation*}
\operatorname{value}(y)=-y_{m}-12^{m-1}+\sum_{i=0}^{m-2} Y_{i} 2^{i} \tag{Eq6.26}
\end{equation*}
$$

This means that the value can be computed by adding the weighted values of all the digits except the most significant, and subtracting that digit.
\mathbf{D}^{S}
\mathbf{A} / e^{-}

Example: Represent -5 in SD Notation

$-5=1011$ in 2's Complement Notation

$1011=\overline{1} 011=-8+0+2+1=-5$ in SD Notation

> Consider $-1=1111$. In SD Notation this can be represented as $000 \overline{1}$

The Booth method is:

1. Working from Isb to msb, replace each 0 digit of the original number with 0 in the recoded number until a 1 is encountered.
2. When a 1 is encountered, insert a 1 in that position in the recoded number, and skip over any succeeding 1 's until a 0 is encountered.
3. Replace that 0 with a 1 . If you encounter the msb without encountering a 0 , stop and do nothing.

Example of Booth Recoding

$0011 \quad 1101 \quad 1001=512+256+128+64+16+8+1=985$

$$
\begin{array}{cc}
\downarrow & \downarrow \\
0100 & 0 \overline{1} 10
\end{array} \quad \overline{1} 01 \overline{1}=1024-64+32-8+2-1=985
$$

S Tbl 6.4 Booth Recoding Table

y_{i}	y_{i-1}	z_{i}	Value	Situation
0	0	0	0	String of 0's
0	1	1	+1	End of string of 1's
1	0	$\overline{1}$	-1	Begin string of 1's
1	1	0	0	String of 1's

Algorithm can be done in parallel.
Examine the example of multiplication 6.11 in text.

Recoding using Bit Pair Recoding

- Booth method may actually increase number of multiplies.
- Consider pairs of digits, and recode each pair into 1 digit.
- Derive Table 6.5, pg. 279 on the blackboard to show how bit pair recoding works.
- Demonstrate Example 6.13 on the blackboard as an example of multiplication using bit pair recoding.
- There are many variants on this approach.

Table 6.5 Radix-4 Booth Encoding
(Bit-Pair Encoding)

Original Bit Pair		Digit to Right	Recoded Bit Pair		Multiplier Value	Situation
$y_{\text {i }}$	y_{i-1}	y_{i-2}	z_{i}	z_{i-1}		
0	0	0		0	0	String of 0s
0	0	1		1	+1	End string of 1s
0	1	0		1	+1	Single 1
0	1	1	1		+2	End string of 1s
1	0	0	1		-2	Begin string of 1s
1	0	1		1	-1	Single 0
1	1	0		1	-1	Begin string of 1s
1	1	1		0	0	String of 1s

C

S Digital Division: Terminology and Number Sizes

- A dividend is divided by a divisor to get a quotient and a remainder
- A 2 m digit dividend divided by an m digit divisor does not necessarily give an m digit quotient and remainder
- If the divisor is 1 , for example, an integer quotient is the same size as the dividend
- If a fraction D is divided by a fraction d, the quotient is only a fraction if $D<d$
- If $D \geq d$, a condition called divide overflow occurs in fraction division

S Use of Division Hardware for Integer Division

1) Put dividend in lower half of register and clear upper half. Put divisor in divisor register. Initialize quotient bit counter to zero.
2) Shift dividend register left one bit.
3) If difference positive, shift 1 into quotient and replace upper half of dividend by difference. If negative, shift 0 into quotient.
4) If fewer than m quotient bits, repeat from 2.
5) m bit quotient is an integer, and an m bit integer remainder is in upper half of dividend register.

S Use of Division Hardware for Fraction Division
 D
 A
 2/e

1) Put dividend in upper half of dividend register and clear lower half. Put divisor in divisor register. Initialize quotient bit counter to zero.
2) If difference positive, report divide overflow.
3) Shift dividend register left one bit.
4) If difference positive, shift 1 into quotient and replace upper part of dividend by difference. If negative, shift 0 into the quotient.
5) If fewer than m quotient bits, repeat from 3.
6) m bit quotient has binary point at the left, and remainder is in upper part of dividend register.

CS Integer Binary Division Example: $\mathrm{D}=45, \mathrm{~d}=6$, $\mathrm{q}=7, \mathrm{r}=3$
A
2/e

	D	000000101101		
	d	000110		
Init.	D	00000101101 -		
	d	000110		
diff(-)	D	0000101101 -	q	0
	d	000110		
diff(-)	D	$000101101-$	q	00
	d	000110		
diff(-)	D	00101101 - -	q	000
	d	000110		
diff(+)	D	0010101 - - -	q	0001
	d	000110		
diff(+)	D	001001 - - -	q	00011
	d	000110		
diff(+)	rem.	000011	q	000111

Branching on Arithmetic Conditions

- An ALU with two m bit operands produces more than just an m bit result
- The carry from the left bit and the true/false value of 2's complement overflow are useful
- There are 3 common ways of using outcome of compare (subtract) for a branch condition

1) Do the compare in the branch instruction
2) Set special condition code bits and test them in the branch 3)Set a general register to a comparison outcome and branch on this logical value

Drawbacks of Condition Codes

- Condition codes are extra processor state; set, and overwritten, by many instructions
- Setting and use of CCs also introduces hazards in a pipelined design
- CCs are a scarce resource, they must be used before being set again
- The PowerPC has 8 sets of CC bits
- CCs are processor state that must be saved and restored during exception handling

C

S Drawbacks of Comparison in Branch and Set General Register

- Branch instruction length: it must specify 2 operands to be compared, branch target, and branch condition (possibly place for link)
- Amount of work before branch decision: it must use the ALU and test its output-this means more branch delay slots in pipeline
- Setting a general register to a particular outcome of a compare, say \leq unsigned, uses a register of 32 or more bits for a true/false value

- The HLL statement:

$$
\text { if }(A>B) \text { then } C=D
$$

translates to the MC68000 code:

For 2's comp. A \& B	For unsigned A \& B	
MOVE.W	A, D0	MOVE.W
CMP.W	B, D0	CMP.W
BLE	Over	BLS
MOVE.W	D, C	MOVE.W
Over $:$.	D, C

Standard Condition Codes: NZVC

- Assume compare does the subtraction $\mathrm{s}=\mathrm{x}-\mathrm{y}$
- N : negative result, $\mathrm{s}_{\mathrm{m}-1}=1$ if $x_{m-1} y_{m-1} \bar{s}_{m-1}+\bar{x}_{m-1} \bar{y}_{m-1} s_{m-1}$
- Z: zero result, s = 0
- V: 2's comp. overflow, C: carry from leftmost bit position, $\mathrm{s}_{\mathrm{m}}=1$
- Information in N, Z, V, and C determines several signed \& unsigned relations of $x \& y$

S Correspondence of Conditions and NZVC Bits

Condition	Unsigned Integers	Signed Integers
carry out	C	C
overflow	C	V
negative	n.a.	N
$>$	$\bar{C} \cdot \bar{Z}$	$(\mathrm{~N} \cdot \mathrm{~V}+\overline{\mathrm{N}} \cdot \bar{\nabla}) \cdot \bar{Z}$
\geq	$\overline{\mathrm{C}}$	$\mathrm{N} \cdot \mathrm{V}+\overline{\mathrm{N}} \cdot \overline{\mathrm{V}}$
$=$	Z	Z
\neq	Z	$\overline{\mathrm{Z}}$
\leq	$\mathrm{C}+\mathrm{Z}$	$(\mathrm{N} \cdot \bar{\nabla}+\overline{\mathrm{N}} \cdot \mathrm{V})+\mathrm{Z}$
$<$	C	$\mathrm{N} \cdot \bar{\nabla}+\bar{N} \cdot V$

C

S Branches That Do Not Use Condition Codes

- SRC compares a single number to zero
- The simple comparison can be completed in pipeline stage 2
- The MIPS R2000 compares 2 numbers using a branch of the form: bgtu R1, R2, Lbl
- Different branch instructions are needed for each signed or unsigned condition
- The MIPS R2000 also allows setting a general register to 1 or 0 on a compare outcome
sgtu R3, R1, R2

S ALU Logical, Shift and Rotate Instructions

- Shifts are often combined with logic to extract bit fields from, or insert them into, full words
- A MC68000 example extracts bits 30 .. 23 of a 32 bit word (exponent of a floating point \#) MOVE.L DO, D1 ;Get \# into D1 ROL.L \#9, D1 ;exponent to bits 7..0 ANDI.L \#FFH, D1 ;clear bits 31..8
- MC68000 shifts take $8+2 n$ clocks, where $\mathrm{n}=$ shift count, so ROL.L \#9 is better then SHR.L \#23 in the above example

Types and Speed of Shift Instructions

- Rotate right is equivalent to rotate left with a different shift count
- Rotates can include the carry or not
- Two right shifts, one with sign extend, are needed to scale unsigned and signed numbers
- Only a zero fill left shift is needed for scaling
- Shifts whose execution time depends on the shift count use a single bit ALU shift repeatedly, as we did for SRC in Chap. 4
- Fast shifts, important for pipelined designs, can be done with a barrel shifter

Fig 6.11 A 6 Bit Crossbar Barrel Rotator for Fast Shifting

Properties of the Crossbar Barrel Shifter

- There is a 2 gate delay for any length shift
- Each output line is effectively an n way multiplexer for shifts of up to n bits
- There are $\mathrm{n}^{2} 3$-state drivers for an n bit shifter
- For $\mathrm{n}=32$, this means 1024 3-state drivers
- For 32 bits, the decoder is 5 bits to 1 out of 32
- The minimum delay but large number of gates in the crossbar prompts a compromise:
the logarithmic barrel shifter

Fig 6.12 Barrel Shifter with a Logarithmic Number of Stages

C

Elements of a Complete ALU

- In addition to the arithmetic hardware, there must be a controller for multi-step operations, such as series parallel multiply
- The shifter is usually a separate unit, and may have lots of gates if it is to be fast
- Logic operations are usually simple
- The arithmetic unit may need to produce condition codes as well as a result number
- Multiplexers select the result and condition codes from the correct sub-unit

S Floating Point Preliminaries: Scaled Arithmetic

- Software can use arithmetic with a fixed binary point position, say left end, and keep a separate scale factor e for a number $\mathrm{f} \times 2^{\mathrm{e}}$
- Add or subtract on numbers with same scale is simple, since $\mathrm{f} \times 2^{\mathrm{e}}+\mathrm{g} \times 2^{\mathrm{e}}=(\mathrm{f}+\mathrm{g}) \times 2^{\mathrm{e}}$
- Even with same scale for operands, scale of result is different for multiply and divide $\left(f \times 2^{e}\right) \cdot\left(g \times 2^{e}\right)=(f \cdot g) \times 2^{2 e} ; \quad\left(f \times 2^{e}\right) \div\left(g \times 2^{e}\right)=f \div g$
- Since scale factors change, general expressions lead to a different scale factor for each number-floating point representation

C

Fig 6.14 Floating Point Numbers Include Scale \& Number in One Word

- All floating-point formats follow a scheme similar to the one above
- s is sign, e is exponent, and f is significand
- We will assume a fraction significand, but some representations have used integers

Signs in Floating Point Numbers

- Both significand and exponent have signs
- A complement representation could be used for f, but signmagnitude is most common now
- The sign is placed at the left instead of with f so test for negative always looks at left bit
- The exponent could be 2's complement, but it is better to use a biased exponent
- If $-\mathrm{e}_{\text {min }} \leq \mathrm{e} \leq \mathrm{e}_{\text {max }}$, where $\mathrm{e}_{\text {min }}, \mathrm{e}_{\text {max }}>0$, then $e=e_{\text {min }}+e$ is always positive, so e replaced by e
- We will see that a sign at the left \& a positive exponent left of \wedge the significand, helps compare

C D
 Exponent Base and Floating Point Number Range

- In a floating point format using 24 out of 32 bits for significand, 7 would be left for exponent
- A number x would have a magnitude $2^{-64} \leq x \leq 2^{63}$, or about $10^{-19} \leq x \leq 10^{19}$
- For more exponent range, bits of significand would have to be given up with loss of accuracy
- An alternative is an exponent base >2
- IBM used exponent base 16 in the 360/370 series for a magnitude range about $10^{-75} \leq x \leq 10^{75}$
- Then 1 unit change in e corresponds to a binary point shift of 4 bits

Normalized Floating Point Numbers

- There are multiple representations for a FP \#
- If f_{1} and $f_{2}=2^{d f_{1}}$ are both fractions \& $e_{2}=e_{1}$-d, then (s, f_{1}, e_{1}) \& ($\mathrm{s}, \mathrm{f}_{2}, \mathrm{e}_{2}$) have same value
- Scientific notation example: $.819 \times 10^{3}=.0819 \times 10^{4}$
- A normalized floating point number has a leftmost digit nonzero (exponent small as possible)
- With exponent base b, this is a base b digit: for the IBM format the leftmost 4 bits (base 16) are $\neq 0$
- Zero cannot fit this rule; usually written as all 0s
- In norm. base 2 left bit $=1$, so it can be left out
- So called hidden bit

Comparison of Normalized Floating Point

 Numbers- If normalized numbers are viewed as integers, a biased exponent field to the left means an exponent unit is more than a significand unit
- The largest magnitude number with a given exponent is followed by the smallest one with the next higher exponent
- Thus normalized FP numbers can be compared for $<, \leq,>, \geq,=, \neq$ as if they were integers
- This is the reason for the s,e,f ordering of the fields and the use of a biased exponent, and one reason for normalized numbers

C

 $\mathbf{C}^{\mathbf{S}}$$\mathbf{D}$
A $/ \mathrm{e}$ Fig 6.15 IEEE Single-Precision Floating Point

Format

\hat{e}	e	Value	Type
255	none	none	Infinity or NaN
254	127	$(-1)^{s} \times\left(1 . f_{1} f_{2} \ldots\right) \times 2^{127}$	Normalized
\ldots	\ldots	\ldots	\ldots
2	-125	$(-1)^{5} \times\left(1 . f_{1} f_{2} \ldots\right) \times 2^{-125}$	Normalized
1	-126	$(-1)^{5} \times\left(1 . f_{1} f_{2} \ldots\right) \times 2^{-126}$	Normalized
0	-126	$(-1)^{5} \times\left(0 . \mathrm{f}_{1} f_{2} \ldots\right) \times 2^{-126}$	Denormalized

- Exponent bias is 127 for normalized \#s

Special Numbers in IEEE Floating Point

- An all zero number is a normalized 0
- Other numbers with biased exponent e = 0 are called denormalized
- Denorm numbers have a hidden bit of 0 and an exponent of -126 ; they may have leading 0s
- Numbers with biased exponent of 255 are used for $\pm \infty$ and other special values, called NaN (not a number)
- For example, one NaN represents $0 / 0$

C

Fig 6.16 IEEE Standard Double Precision Floating Point

- Exponent bias for normalized \#s is 1023
- The denorm biased exponent of 0 corresponds to an unbiased exponent of -1022
- Infinity and NaNs have a biased exponent of 2047
- Range increases from about $10^{-38} \leq|x| \leq 10^{38}$ to about 10^{-} ${ }^{308} \leq|x| \leq 10^{308}$

Decimal Floating Point Add and Subtract Examples

Operands	Alignment	Normalize \& round
6.144×10^{2}	0.06144×10^{4}	1.003644×10^{5}
$+9.975 \times 10^{4}$	$+9.975 \times 10^{4}$	$+.0005 \times 10^{5}$
	$\frac{10.03644 \times 10^{4}}{}$	1.004×10^{5}

Operands	Alignment	Normalize \& round
1.076×10^{-7}	1.076×10^{-7}	7.7300×10^{-9}
-9.987×10^{-8}	-0.9987×10^{-7}	$+.0005 \times 10^{-9}$
		7.730×10^{-9}

C

Floating Add, FA, and Floating Subtract, FS,

Procedure

Add or subtract $\left(s_{1}, e_{1}, f_{1}\right)$ and ($\left.s_{2}, e_{2}, f_{2}\right)$

1) Unpack (s, e, f); handle special operands
2) Shift fraction of \# with smaller exponent right by $\left|e_{1}-e_{2}\right|$ bits
3) Set result exponent $e_{r}=\max \left(e_{1}, e_{2}\right)$
4) For FA \& $s_{1}=s_{2}$ or FS \& $s_{1} \neq s_{2}$, add significands, otherwise subtract them
5) Count lead zeros, z; carry can make $z=-1$; shift left z bits or right 1 bit if $z=-1$
6) Round result, shift right \& adjust z if round $O V$
7) $e_{r} \leftarrow e_{r}-z$; check over- or underflow; bias \& pack

C

- Adders for exponents and significands
- Shifters for alignment and normalize
- Multiplexers for exponent and swap of significands
- Lead zeros counter

C

Decimal Floating Point Examples for Multiply \& Divide

- Multiply fractions and add exponents
- These examples assume normalzed result is 0.xxx

Sign, fraction \& exponent Normalize \& round

$(-0.1403$	$\left.\times 10^{-3}\right)$	-0.4238463×10^{2}	
$\times(+0.3021$	$\left.\times 10^{6}\right)$		
$-0.04238463 \times 10^{-3+6}$	-0.00005	$\times 10^{2}$	
-0.4238	$\times 10^{2}$		

- Divide fractions and subtract exponents

Sign, fraction \& exponent Normalize \& round

$(-0.9325$	$\left.\times 10^{2}\right)$	$+0.9306387 \times 10^{9}$
$\div(-0.1002$	$\left.\times 10^{-6}\right)$	
+9.306387	$\times 10^{2-(-6)}$	+0.00005
10.9306×10^{9}		

S Floating Point Multiply of Normalized Numbers
 A
 2/e

$$
\text { Multiply }\left(s_{r}, e_{r}, f_{r}\right)=\left(s_{1}, e_{1}, f_{1}\right) \times\left(s_{2}, e_{2}, f_{2}\right)
$$

1) Unpack (s, e, f); handle special operands
2) Compute $s_{r}=s_{1} \oplus s_{2} ; e_{r}=e_{1}+e_{2} ; f_{r}=f_{1} \times f_{2}$
3) If necessary, normalize by 1 left shift \& subtract 1 from e_{r}; round \& shift right if round OV
4) Handle overflow for exponent too positive and underflow for exponent too negative
5) Pack result, encoding or reporting exceptions

S Floating Point Divide of Normalized Numbers

Divide $\left(s_{r}, e_{r}, f_{r}\right)=\left(s_{1}, e_{1}, f_{1}\right) \div\left(s_{2}, e_{2}, f_{2}\right)$

1) Unpack (s, e, f); handle special operands
2) Compute $s_{r}=s_{1} \oplus s_{2} ; e_{r}=e_{1}-e_{2} ; f_{r}=f_{1} \div f_{2}$
3) If necessary, normalize by 1 right shift \& add 1 to e_{r}; round \& shift right if round OV
4) Handle overflow for exponent too positive and underflow for exponent too negative
5) Pack result, encoding or reporting exceptions

Chapter 6 Summary

- Digital number representations and algebraic tools for the study of arithmetic
- Complement representation for addition of signed numbers
- Fast addition by large base \& carry lookahead
- Fixed point multiply and divide overview
- Non-numeric aspects of ALU design
- Floating point number representations
- Procedures and hardware for float add \& sub
- Floating multiply and divide procedures

