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Chapter 5 Overview

 The principles of pipelining

 A pipelined design of SRC

 Pipeline hazards

 Instruction-level parallelism (ILP)
 Superscalar processors

 Very Long Instruction Word (VLIW) machines

 Microprogramming
 Control store and micro-branching

 Horizontal and vertical microprogramming
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Fig 5.1 Executing Machine Instructions vs. Manufacturing
Small Parts
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The Pipeline Stages

 5 pipeline stages are shown
 1. Fetch instruction

 2. Fetch operands

 3. ALU operation

 4. Memory access

 5. Register write

 5 instructions are executing
 shr r3, r3, 2 ;storing result in r3
 sub r2, r5, r1 ;idle, no mem. access needed
 add r4, r3, r2 ;adding in ALU
 st  r4, addr1 ;accessing r4 and addr1
 ld  r2, addr2 ;instruction being fetched
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Notes on Pipelining Instruction Processing

 Pipeline stages are shown top to bottom in order traversed by
one instruction

 Instructions listed in order they are fetched

 Order of insts. in pipeline is reverse of listed

 If each stage takes one clock:

    - every instruction takes 5 clocks to complete

    - some instruction completes every clock tick

 Two performance issues:  instruction latency, and instruction
bandwidth
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Dependence Among Instructions

 Execution of some instructions can depend on the completion of
others in the pipeline

 One solution is to “stall” the pipeline
 early stages stop while later ones complete processing

 Dependences involving registers can be detected and data
“forwarded” to instruction needing it, without waiting for register
write

 Dependence involving memory is harder and is sometimes
addressed by restricting the way the instruction set is used
 “Branch delay slot” is example of such a restriction

 “Load delay” is another example
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Branch and Load Delay Examples

Branch Delay

Load Delay

brz r2, r3
add r6, r7, r8
st  r6, addr1

This inst. always executed

Only done if r3 ≠ 0

ld  r2, addr
add r5, r1, r2
shr r1,r1,4
sub r6, r8, r2

This inst. gets “old”
value of r2

This inst. gets r2 value
loaded from addr

 Working of instructions not changed, but way they work together is
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Characteristics of Pipelined Processor Design

 Main memory must operate in one cycle
 This can be accomplished by expensive memory, but

 It is usually done with cache, to be discussed in Chap. 7

 Instruction and data memory must appear separate
 Harvard architecture has separate instruction & data memories

 Again, this is usually done with separate caches

 Few buses are used
 Most connections are point to point

 Some few-way multiplexers are used

 Data is latched (stored in temporary registers) at each pipeline
stage—called “pipeline registers.”

 ALU operations take only 1 clock (esp. shift)
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Adapting Instructions to Pipelined Execution

 All instructions must fit into a common pipeline stage structure

 We use a 5 stage pipeline for the SRC

     1) Instruction fetch

     2) Decode and operand access

     3) ALU operations

     4) Data memory access

     5) Register write

 We must fit load/store, ALU, and branch instructions into this
pattern
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Fig 5.2   ALU Instructions fit into 5
Stages

• Second ALU operand comes
either from a register or
instruction register c2 field

• Op code must be available
in stage 3 to tell ALU what to
do

• Result register, ra, is written
in stage 5

• No memory operation
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Figure 5.3 Logic Expressions Defining Pipeline Stage
Activity

branch := br ⁄ ∨ brl :
cond := (IR2〈2..0〉 = 1) ∨ ((IR2〈2..1〉=1)∧(IR2〈0〉⊕R[rb]=0)) ∨
         ((IR2〈2..1〉=2)∧(IR2〈0〉⊕R[rb]〈31〉) :
sh := shr ∨ shra ∨ shl ∨ shc :
alu := add ∨ addi ∨ sub ∨ neg ∨ and ∨ andi∨ or ∨ ori ∨ not ∨ sh :
imm := addi ∨ andi ∨ ori ∨ (sh ∧ (IR2〈4..0〉 ≠ 0) :
load := ld ∨ ldr :
ladr := la ∨ lar :
store := st ∨ str :
l-s := load ∨ ladr ∨ store :
regwrite := load ∨ ladr ∨ brl ∨ alu: ;these instructions write the register file
dsp := ld ∨ st ∨ la : ;instructions that use disp addressing
rl := ldr ∨ str ∨ lar : ;instructions that use rel addressing



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Notes on the Equations and Different Stages

 The logic equations are based on the instruction in the stage
where they are used

 When necessary, we append a digit to a logic signal name to
specify it is computed from values in that stage

 Thus regwrite5 is true when the opcode in stage 5 is load5
∨ ladr5 ∨ brl5 ∨ alu5, all of which are determined from op5
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Fig 5.4  Load and
Store Instructions

 ALU computes
effective addresses

 Stage 4 does read
or write

 Result reg. written
only on load
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Fig 5.5 The Branch
Instructions

 The new program
counter value is known
in stage 2

   —but not in stage 1

 Only branch&link does a
register write in stage 5

 There is no ALU or
memory operation
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Fig 5.6  SRC Pipeline
Registers and RTN

Specification

 The pipeline
registers pass info.
from stage to
stage

 RTN specifies
output reg. values
in terms of input
reg. values for
stage

 Discuss RTN at
each stage on
blackboard
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Global State of the Pipelined SRC

 PC, the general registers, instruction memory, and data memory
is the global machine state

 PC is accessed in stage 1 (& stage 2 on branch)

 Instruction memory is accessed in stage 1

 General registers are read in stage 2 and written in stage 5

 Data memory is only accessed in stage 4
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Restrictions on Access to Global State by
Pipeline

 We see why separate instruction and data memories (or
caches) are needed

 When a load or store accesses data memory in stage 4,
stage 1 is accessing an instruction
 Thus two memory accesses occur simultaneously

 Two operands may be needed from registers in stage 2
while another instruction is writing a result register in stage
5
 Thus as far as the registers are concerned, 2 reads and a

write happen simultaneously

 Increment of PC in stage 1 must be overridden by a
successful branch in stage 2
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Fig 5.7  Pipeline
Data Path &

Control Signals

 Most
control
signals
shown and
given
values

 Multiplexer
control is
stressed in
this figure
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Example of Propagation of Instructions Through
Pipe

 It is assumed that R[11] contains 512 when the brl instruction is
executed

 R[6] = 4 and R[8] = 5 are the add operands

 R[5] =16 for the ld and R[12] = 23 for the str

100: add r4, r6, r8; R[4] ← R[6] + R[8];
104: ld r7, 128(r5); R[7] ← M[R[5]+128];
108: brl r9, r11, 001; PC ← R[11]: R[9] ← PC;
112: str r12, 32;    M[PC+32] ← R[12];
 . . . . . .
512: sub ...     next instruction
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Fig 5.8 Cycle 1
 add Enters Pipe

 Program
counter is
incremented to
104

512: sub ... 
 . . . . . .
112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8
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Fig 5.9  Cycle 2
ld Enters Pipe

 add
operands
are fetched
in stage 2

512: sub ... 
 . . . . . .
112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8
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Fig 5.10  Cycle 3
brl Enters Pipe

 add
performs its
arithmetic in
stage 3

512: sub ... 
 . . . . . .
112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8
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Fig 5.11  Cycle 4
str enters pipe

 add is idle in stage 4

 Success of brl changes
program counter to 512

512: sub ... 
 . . . . . .
112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8
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 add completes in
stage 5

 sub is fetched from
loc. 512 after
successful brl

512: sub ... 
 . . . . . .
112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8

Fig 5.12  Cycle 5
sub Enters Pipe
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Functions of the Pipeline Registers in SRC

 Registers between stages 1 & 2:
 I2 holds full instruction including any reg. fields and constant;

 PC2 holds the incremented PC from instruction fetch

 Registers between stages 2 & 3:
 I3 holds op code and ra (needed in stage 5);

 X3 holds PC or a reg. value (for link or 1st ALU operand);

 Y3 holds c1 or c2 or a reg. value as 2nd ALU operand;

 MD3 is used for a register value to be stored in mem.
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Functions of the Pipeline Registers in SRC
(continued)

 Registers between stages 3 & 4:
 I4 has op code and ra;

 Z4 has mem. address or result reg. value

 MD4 has value to be stored in data memory

 Registers between stages 4 & 5:
 I5 has op code and destination register number, ra

 Z5 has value to be stored in destination register: from ALU result,
PC link value, or fetched data
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Functions of the SRC Pipeline Stages

 Stage 1: fetches instruction
 PC incremented or replaced by successful branch in stage 2

 Stage 2: decodes inst. and gets operands
 Load or store gets operands for address computation

 Store gets register value to be stored as 3rd operand

 ALU operation gets 2 registers or register and constant

 Stage 3: performs ALU operation
 Calculates effective address or does arithmetic/logic

 May pass through link PC or value to be stored in mem.
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Functions of the SRC Pipeline Stages
(continued)

 Stage 4: accesses data memory
 Passes Z4 to Z5 unchanged for non-memory instructions

 Load fills Z5 from memory

 Store uses address from Z4 and data from MD4(no longer needed)

 Stage 5: writes result register
 Z5 contains value to be written, which can be ALU result, effective

address, PC link value, or fetched data

 ra field always specifies result register in SRC
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Dependence Between Instructions in Pipe:
Hazards

 Instructions that occupy the pipeline together are being
executed in parallel

 This leads to the problem of instruction dependence, well
known in parallel processing

 The basic problem is that an instruction depends on the
result of a previously issued instruction that is not yet
complete

 Two categories of hazards

  Data hazards: incorrect use of old and new data

  Branch hazards: fetch of wrong instruction on a change in PC
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General Classification of Data Hazards
(Not Specific to SRC)

 A read after write hazard (RAW) arises from a flow dependence,
where an instruction uses data produced by a previous one

 A write after read hazard (WAR) comes from an anti-
dependence, where an instruction writes a new value over one
that is still needed by a previous instruction

 A write after write hazard (WAW) comes from an output
dependence, where two parallel instructions write the same
register and must do it in the order in which they were issued
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Detecting Hazards and Dependence Distance

 To detect hazards, pairs of instructions must be considered

 Data is normally available after being written to reg.

 Can be made available for forwarding as early as the stage
where it is produced
 Stage 3 output for ALU results, stage 4 for mem. fetch

 Operands normally needed in stage 2

 Can be received from forwarding as late as the stage in which
they are used
 Stage 3 for ALU operands and address modifiers, stage 4 for

stored register, stage 2 for branch target
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Data Hazards in SRC

 Since all data memory access occurs in stage 4, memory writes
and reads are sequential and give rise to no hazards

 Since all registers are written in the last stage, WAW and WAR
hazards do not occur
 Two writes always occur in the order issued, and a write always

follows a previously issued read

 SRC hazards on register data are limited to RAW hazards
coming from flow dependence

 Values are written into registers at the end of stage 5 but may
be needed by a following instruction at the beginning of stage 2
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Possible Solutions to the Register Data Hazard
Problem

 Detection:
 The machine manual could list rules specifying that a dependent

instruction cannot be issued less than a given number of steps
after the one on which it depends

 This is usually too restrictive

 Since the operation and operands are known at each stage,
dependence on a following stage can be detected

 Correction:
 The dependent instruction can be “stalled” and those ahead of it

in the pipeline allowed to complete

 Result can be “forwarded” to a following inst. in a previous stage
without waiting to be written into its register

 Preferred SRC design will use detection, forwarding and
stalling only when unavoidable
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RAW, WAW, and WAR Hazards

 RAW hazards are due to causality: one cannot use a value before it
has been produced.

 WAW and WAR hazards can only occur when instructions are
executed in parallel or out of order.
 Not possible in SRC.

 Are only due to the fact that registers have the same name.

 Can be fixed by renaming one of the registers or by delaying the updating of
a register until the appropriate value has been produced.
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Tbl 5.1  Instruction Pair Hazard Interaction

Class alu load ladr brl
  N/E 6/4 6/5 6/4 6/2Class N/L

alu 2/3
load 2/3
ladr 2/3
store 2/3
branch 2/2

4/1 4/2 4/1 4/1
4/1 4/2 4/1 4/1
4/1 4/2 4/1 4/1
4/1 4/2 4/1 4/1
4/2 4/3 4/2 4/1

Result Normally/Earliest available

Value
Normally/
Latest
needed

Instruction separation to eliminate
hazard, Normal/Forwarded

 Latest needed stage 3 for store is based on address modifier register. The
stored value is not needed until stage 4

 Store also needs an operand from ra. See Text Tbl 5.
 Instruction separation is used rather than bubbles because of the applicability

to multi-issue, multi-pipelined machines.

Read from 
Reg. File

Write to Reg. File
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Delays Unavoidable by Forwarding

 In the column headed by load, we see the value loaded cannot
be available to the next instruction, even with forwarding
 Can restrict compiler not to put a dependent instruction in the next

position after a load (next 2 positions if the dependent instruction is
a branch)

 Target register cannot be forwarded to branch from the
immediately preceding instruction
 Code is restricted so that branch target must not be changed by

instruction preceding branch (previous 2 instructions if loaded from
mem.)

 Do not confuse this with the branch delay slot, which is a
dependence of instruction fetch on branch, not a dependence of
branch on something else
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Stalling the Pipeline on Hazard Detection

 Assuming hazard detection, the pipeline can be stalled by
inhibiting earlier stage operation and allowing later stages to
proceed

 A simple way to inhibit a stage is a pause signal that turns off
the clock to that stage so none of its output registers are
changed

 If stages 1 & 2, say, are paused, then something must be
delivered to stage 3 so the rest of the pipeline can be cleared

 Insertion of nop into the pipeline is an obvious choice
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Example of Detecting ALU Hazards and Stalling
Pipeline

 The following expression detects hazards between ALU
instructions in stages 2 & 3 and stalls the pipeline

( alu3∧alu2∧ ((ra3=rb2) ∨ (ra3=rc2)∧¬imm2 ) ) →
( pause2: pause1: op3 ← 0 ):

 After such a stall, the hazard will be between stages 2 & 4,
detected by

( alu4∧alu2∧((ra4=rb2) ∨ (ra4=rc2) ∧¬imm2 ) ) →
( pause2: pause1: op3 ← 0 ):

 Hazards between stages 2 & 5 require
( alu5∧alu2∧ ((ra5=rb2) ∨ (ra5=rc2) ∧¬imm2 ) ) →

( pause2: pause1: op3 ← 0 ):

Fig 5.13
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Fig 5.14  Stall Due to a Dependence Between
Two alu Instructions
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Data Forwarding:
from alu Instruction to alu Instruction

 The pair table for data dependencies says that if forwarding is done,
dependent alu instructions can be adjacent, not 4 apart

 For this to work, dependences must be detected and data sent from
where it is available directly to X or Y input of ALU

 For a dependence of an alu inst. in stage 3 on an alu inst. in stage 5
the equation is

        alu5∧alu3 → ((ra5=rb3) → X3 ← Z5:

                             (ra5=rc3)∧¬imm3 → Y3 ← Z5 ):
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Data Forwarding:
alu to alu Instruction (continued)

 For an alu inst. in stage 3 depending on one in stage 4, the equation is
        alu4∧alu3 → ((ra4=rb3) → X3 ← Z4:

                             (ra4=rc3)∧¬imm3 → Y3 ← Z4 ):

 We can see that the rb and rc fields must be available in stage 3 for
hazard detection

 Multiplexers must be put on the X and Y inputs to the ALU so that Z4 or
Z5 can replace either X3 or Y3 as inputs
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Fig 5.15  alu to alu Data
Forwarding Hardware

 Can be from
either Z4 or Z5 to
either X or Y
input to ALU

 rb & rc needed in
stage 3 for
detection
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Restrictions Left If Forwarding Done Wherever
Possible

1) Branch delay slot
• The instruction after a branch is always executed, whether the

branch succeeds or not.
2) Load delay slot
• A register loaded from memory cannot be used as an operand

in the next instruction.
• A register loaded from memory cannot be used as a branch

target for the next two instructions.
3) Branch target
• Result register of alu or ladr instruction cannot be used as

branch target by the next instruction.

br r4
add . . .
 • • •

ld r4, 4(r5)
nop
neg r6, r4

ld r0, 1000
nop
nop
br r0

not r0, r1
nop
br r0
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Questions for Discussion

 How and when would you debug this design?

 How does RTN and similar Hardware Description
Languages fit into testing and debugging?

 What tools would you use, and which stage?

 What kind of software test routines would you use?

 How would you correct errors at each stage in the design?
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Instruction Level Parallelism

 A pipeline that is full of useful instructions completes at most
one every clock cycle

Sometimes called the Flynn limit
 If there are multiple function units and multiple instructions

have been fetched, then it is possible to start several at
once

 Two approaches are: superscalar
 Dynamically issue as many prefetched instructions to idle

function units as possible

 and Very Long Instruction Word (VLIW)
 Statically compile long instruction words with many operations

in a word, each for a different function unit
 Word size may be 128 or 256 or more bits.
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Character of the Function Units in Multiple Issue
Machines

 There may be different types of function units
 Floating point

 Integer

 Branch

 There can be more than one of the same type

 Each function unit is itself pipelined

 Branches become more of a problem
 There are fewer clock cycles between branches

 Branch units try to predict branch direction

 Instructions at branch target may be prefetched, and even
executed speculatively, in hopes the branch goes that way
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Example 5.2: Dual Issue VLIW version of SRC

 Two instructions per word. Word size 2x32 (64) bits

 Two pipelines, each almost the same as the previous pipeline design.

 Only pipeline 1 can execute memory-access instructions: ld, ldr, st, and
str
 Thus only one memory access per cycle.

 Only pipeline 2 can execute shr shra shl shc, br, and brl
 Assumes that a barrel shifter for the shift instructions is expensive and

needed only in one pipeline, located in stage 4 replacing the memory
access stage.

 Limits the execution unit to one branch instruction per word.

 Either pipeline can execute the other instructions: la, lar, add, addi, sub,
and, andi, or, ori, neg, not, nop, and stop.
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Figure 5.16: Structure of the Dual-Pipeline SRC
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Other features

 Register file may have 4 reads and two writes per cycle.
 Either provide more read and write ports, or incorporate two

register files, each an identical "shadow" copy of the other.

 No branch delay slot

 Instruction forwarding wherever possible.
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Figures 5.17a and b: SRC Programs to Compute the
Fibonacci Series on Single- and Dual-issue machines
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Fibonacci Program on the Dual-Issue Machine

 Total program length has been reduced from 11 lines to 9.
 The loop, where the program will spend most of its time, has been reduced

but only from 7 lines to 6 due to the imposed limitation that pipeline 2
cannot do memory accesses.

 If this limitation were removed, both loads could take place at line 3.

  The addi at line 3 would then be moved down to line 4, and line 5 could be
eliminated.

 These loads still need to be separated by two from the sum of the two
fibs in line 6 because of the hazard between load as writer and alu as
reader. See Table 5.1.

 The store at line 7 needs to be separated by one from the add in line 6
because of the undefined semantics of computing a value and using it
in an instruction in the same wide word.
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Figure 5.19: Dual-Issue SRC Pipelines and
Forwarding Paths
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Figure 5.20: Dynamic Information in Dual-Issue
SRC
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Figure 5.21: Operand Flow of st r8, 4(r7)
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Getting Specific: Some Commercial
Superscalar Processors

 PowerPC G4: Eleven pipelined functional units: 4 IUs, an FPU
with a separate floating point register file, a BPU, an LSU, and 4
VPUs. It is capable of executing sixteen instructions
simultaneously.

 Intel P6: Five functional units: 14-stage pipeline, 2 IUs, separate
load and store units, FPU and BPU. Since the P6 must execute
the CISC-like 80X86 instruction set, instructions entering the
pipeline are decoded and fragmented into simpler RISC-like
micro-ops, as they are called, which are dispatched to one of
the five functional units. Instructions may be executed out of
order, provided that doing so does not cause hazards.

 HP Alpha 21164: This processor has a 7-stage pipeline, 2 IUs,
and 2 FPUs: one for add/subtract, and one for multiply/divide,
branch prediction.
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The Superscalar IBM PowerPC 970

Figure courtesy Arstechnica
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Microprogramming: Basic Idea

 Control unit job is to generate the sequence of control signals

 How about building a computer to do this?

Step Concrete RTN Control Sequence
T0. MA ← PC: C ← PC+4; PCout, MAin, Inc4, Cin, Read
T1. MD ← M[MA]: PC ← C; Cout, PCin, Wait
T2. IR ← MD; MDout, IRin
T3. A ← R[rb]; Grb, Rout, Ain
T4. C ← A + R[rc]; Grc, Rout, ADD, Cin
T5. R[ra] ← C; Cout, Gra, Rin, End

• Recall control sequence for 1-bus SRC
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The Microcode Engine

 A computer to generate control signals is much simpler than an
ordinary computer

 At the simplest, it just reads the control signals in order from a
read only memory

 The memory is called the control store

 A control store word, or microinstruction, contains a bit pattern
telling which control signals are true in a specific step

 The major issue is determining the order in which
microinstructions are read
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Fig 5.22  Block Diagram of a Microcoded
Control Unit

 Microinstruction has
branch control, branch
address, and control
signal fields

 Micro-program counter
can be set from several
sources to do the
required sequencing
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Parts of the Microprogrammed Control Unit

 Since the control signals are just read from memory, the main
function is sequencing

 This is reflected in the several ways the µPC can be loaded
 Output of incrementer—µPC+1

 PLA output—start address for a macroinstruction
 Branch address from µinstruction

 External source—say for exception or reset

 Micro conditional branches can depend on condition codes, data
path state, external signals, etc.
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Contents of a Microinstruction

 Main component is list of 1/0 control signal values

 There is a branch address in the control store

 There are branch control bits to determine when to use the
branch address and when to use µPC+1
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Figure 5.23: Layout of the Control Store
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Size and Shape of System RAM vs Control Store

 System RAM is one
byte wide x 232 bytes
deep.

 Assume control store has 128
instructions, 128 bits wide, with
8 steps each.

 Control store would be 16 bytes
wide, but only 128x8 or 1024
words deep.

1024

16

232

1
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Table 5.2: Microinstruction Control Signals for
the add Instruction

 Addresses 101–103 are the instruction fetch

 Addresses 200–202 do the add
 Change of µcontrol from 103 to 200 uses a kind of µbranch

.

1 01
102
103
200
201
202

• • •
• • •
• • •
• • •
• • •
• • •

1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0
0
0

0 0 1 1 10 0 0 0 0 0 0 0 0 0 0 0
1 1 1 10 0 0 0 0 0 0 00 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 01 1
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Uses for µbranching in the Microprogrammed
Control Unit

 1) Branch to start of µcode for a specific inst.

 2) Conditional control signals, e.g. CON → PCin

 3) Looping on conditions, e.g. n≠0 → ... Goto6

 Conditions will control µbranches instead of being ANDed
with control signals

 Microbranches are frequent and control store addresses are
short, so it is reasonable to have a µbranch address field in
every µ instruction
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Illustration of µbranching Control Logic

 We illustrate a µbranching control scheme by a machine having
condition code bits N & Z

 Branch control has 2 parts:
 1) selecting the input applied to the µPC and

 2) specifying whether this input or µPC+1 is used

 We allow 4 possible inputs to µPC
 The incremented value µPC+1

 The PLA lookup table for the start of a macroinstruction

 An externally supplied address
 The branch address field in the µinstruction word
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Fig 5.24  Branching Controls in the Microcoded
Control Unit
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Some Possible µbranches Using the Illustrated
Logic

 If the control signals are all zero, the µinst. only does a test

 Otherwise test is combined with data path activity

.

Control
Signals

Branch
Address Branching action

00
01
10
11
11
11

0
1

0 0 0 0
0 0 0 0

0 0 1
1

1
1

0 0
0 0 0 0
0 0 0 0

0 0 0 0
0•••0

•••
•••
•••
•••

•••

XXX
XXX
XXX
300
206
204

None—next instruction
Branch to output of PLA
Br if Z to Extern. Addr.
Br if N to 300 (else next)
Br if N to 206 (else next)
Br to 204
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 In horizontal microcode, each control signal is represented by a
bit in the µinstruction

 In vertical microcode, a set of true control signals is represented
by a shorter code

 The name horizontal implies fewer control store words of more
bits per word

 Vertical µcode only allows RTs in a step for which there is a
vertical µinstruction code

 Thus vertical µcode may take more control store words of fewer
bits

Horizontal Versus Vertical Microcode Schemes
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Fig 5.25  A Somewhat Vertical Encoding

 Scheme would save (16+7) - (4+3) = 16 bits/word in the case
illustrated
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Fig  5.26  Completely Horizontal and Vertical
Microcoding
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Saving Control Store Bits With Horizontal
Microcode

 Some control signals cannot possibly be true at the same time
 One and only one ALU function can be selected

 Only one register out gate can be true with a single bus

 Memory read and write cannot be true at the same step

 A set of m such signals can be encoded using log2m bits
(log2(m+1) to allow for no signal true)

 The raw control signals can then be generated by a k to 2k

decoder, where 2k ≥ m (or 2k ≥ m+1)

 This is a compromise between horizontal and vertical
encoding
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A Microprogrammed Control Unit for the 1-bus
SRC

 Using the 1-bus SRC data path design gives a specific set of
control signals

 There are no condition codes, but data path signals CON and
n=0 will need to be tested

 We will use µbranches BrCON, Brn=0, & Brn≠0

 We adopt the clocking logic of Fig. 4.9 on p. 4-20

 Logic for exception and reset signals is added to the
microcode sequencer logic

 Exception and reset are assumed to have been synchronized
to the clock
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Table 5.4 Microinstructions for SRC add

 Microbranching to the output of the PLA is shown at 102

 Microbranch to 100 at 202 starts next fetch

..

Addr.
Other
Control
Signals

B r
Addr. Actions

100

101

102

200

201

202

• • •

• • •

• • •

• • •

• • •

• • •

XXX

XXX

XXX

XXX

XXX

100 R[ra] ← C: µPC ← 100;

MA ← PC: C ← PC+4;

MD ← M[MA]: PC ← C;

IR ← MD; µPC ← PLA;

A ← R[rb];

C ← A + R[rc];

00 0 0 0 0 0 1 1

00 0 0 0 0 0 0 0

01 1 0 0 0 0 0 0

00

00

11

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 001 1
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Getting the PLA Output in Time for the
Microbranch

 So that the input to the PLA is correct for the µbranch in 102,
it has to come from MD, not IR

 An alternative is to use see-thru latches for IR so the op code
can pass through IR to PLA before the end of the clock cycle
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See-thru Latch Hardware for IR So µPC Can
Load Immediately

 Data must have
time to get from
MD across Bus,
through IR,
through the PLA,
and satisfy µPC
set up time before
trailing edge of S
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Fig 5.27  Microcode Sequencer Logic for SRC
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Table 5.6 A Somewhat Vertical Encoding of the
SRC Microinstruction
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Other Microprogramming Issues

 Multi-way branches: often an instruction can have 4-8 cases,
say address modes
 Could take 2-3 successive µbranches, i.e. clock pulses

 The bits selecting the case can be ORed into the branch address
of the µinstruction to get a several way branch

 Say if 2 bits were ORed into the 3rd & 4th bits from the low end, 4
possible addresses ending in 0000, 0100, 1000, and 1100 would
be generated as branch targets

 Advantage is a multi-way branch in one clock

 A hardware push-down stack for the µPC can turn repeated
µsequences into µsubroutines

 Vertical µcode can be implemented using a horizontal µengine,
sometimes called nanocode
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Chapter 5 Summary

 This chapter has dealt with some alternative ways of designing a
computer

 A pipelined design is aimed at making the computer fast—target
of one inst. per clock

 Forwarding, branch delay slot, and load delay slot are steps in
approaching this goal

 A static multiissue SRC design shows some of the strengths and
limitations of this architecture.

 Microprogramming is a design method with a target of easing the
design task, and allowing for easy design change or multiple
compatible implementations of the same instruction set


