S Chapter 5 Overview

= The principles of pipelining
= A pipelined design of SRC
= Pipeline hazards

= Instruction-level parallelism (ILP)

= Superscalar processors

= Very Long Instruction Word (VLIW) machines
= Microprogramming

= Control store and micro-branching

= Horizontal and vertical microprogramming
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S The Pipeline Stages

= O pipeline stages are shown
= 1. Fetch instruction
= 2. Fetch operands
= 3. ALU operation
= 4. Memory access
= 5. Register write
= D instructions are executing
= shr r3, r3, 2 ;storing result in r3
= sub r2, r5, rl ;idle, no mem. access needed
= add r4, r3, r2 ;adding in ALU
= st r4, addrl ;accessing r4 and addrl
= 1d r2, addr2 ;instruction being fetched
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S Notes on Pipelining Instruction Processing

= Pipeline stages are shown top to bottom in order traversed by
one instruction

= Instructions listed in order they are fetched
= Order of insts. in pipeline is reverse of listed
= [f each stage takes one clock:
- every instruction takes 5 clocks to complete
- some instruction completes every clock tick

= Two performance issues: instruction latency, and instruction
bandwidth
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S Dependence Among Instructions

= Execution of some instructions can depend on the completion of
others in the pipeline
= One solution is to “stall” the pipeline
= early stages stop while later ones complete processing

= Dependences involving registers can be detected and data
“forwarded” to instruction needing it, without waiting for register
write

= Dependence involving memory is harder and is sometimes
addressed by restricting the way the instruction set is used
= “Branch delay slot” is example of such a restriction
= ‘Load delay” is another example
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S Branch and Load Delay Examples

Branch Delay

brz r2, r3 <« — This inst. always executed
r7, r8

add ré6,

st 1r6, addrl = Only done if r3 = 0
Load Delay

l1d r2, addr This inst. gets *“old”

add r5, rl, r2 <«  value of r2
shr rl,rl,4

sub r6, r8, r2 «——_  This inst. gets r2 value
loaded from addr

= Working of instructions not changed, but way they work together is
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Characteristics of Pipelined Processor Design

Main memory must operate in one cycle
= This can be accomplished by expensive memory, but
= It is usually done with cache, to be discussed in Chap. 7
Instruction and data memory must appear separate
= Harvard architecture has separate instruction & data memories
= Again, this is usually done with separate caches
Few buses are used
= Most connections are point to point
= Some few-way multiplexers are used
Data is latched (stored in temporary registers) at each pipeline
stage—called “pipeline registers.”

ALU operations take only 1 clock (esp. shift)
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S| Adapting Instructions to Pipelined Execution

= All instructions must fit into a common pipeline stage structure
= We use a 5 stage pipeline for the SRC

1) Instruction fetch

2) Decode and operand access

3) ALU operations

4) Data memory access

5) Register write

= We must fit load/store, ALU, and branch instructions into this
pattern
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S Fig 5.2 ALU Instructions fit into 5
D Stages
A
2/e

Second ALU operand comes
either from a register or
instruction register c2 field

Op code must be available
in stage 3 to tell ALU what to
do

Result register, ra, is written
in stage 5

No memory operation
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S Figure 5.3 Logic Expressions Defining Pipeline Stage
D Activity
A
2/e

branch := br/v brl :

cond := (IR2(2..0) = 1) v ((IR2(2..1)=1)A(IR2(0)®R[rb]=0)) v
((IR2(2..1)=2)A(IR2{0)®R[rb](31)) :

sh := shr v shra v shl v shc:

alu :=add v addi v sub v neg v and v andiv or v ori v not v sh:

imm := addi v andi v ori v (sh A (IR2(4..0) = 0) :

load :=1Id v Idr:

ladr :=la v lar:

store := st v str:

I-s :=load v ladr v store :

regwrite :=load v ladr v brl v alu: ;these instructions write the register file

dsp:=ldvstvla: ;instructions that use disp addressing

rl ;= Idr v strv lar: ;instructions that use rel addressing
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S| Notes on the Equations and Different Stages

= The logic equations are based on the instruction in the stage
where they are used

= \When necessary, we append a digit to a logic signal name to
specify it is computed from values in that stage

= Thus regwrited is true when the opcode in stage 5 is load5
v ladrd v brl5 v alud, all of which are determined from op5
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S Fig 5.5 The Branch
D Instructions

= The new program
counter value is known
in stage 2

—but not in stage 1

=  Only branch&link does a
register write in stage 5

= Thereisno ALU or
memory operation
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Fig 5.6 SRC Pipeline
Registers and RTN
Specification

The pipeline
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from stage to
stage

RTN specifies
output reg. values
in terms of input
reg. values for
stage

Discuss RTN at
each stage on
blackboard
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S Global State of the Pipelined SRC

= PC, the general registers, instruction memory, and data memory
Is the global machine state

= PC is accessed in stage 1 (& stage 2 on branch)

= Instruction memory is accessed in stage 1

= General registers are read in stage 2 and written in stage 5
= Data memory is only accessed in stage 4
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Restrictions on Access to Global State by
Pipeline

We see why separate instruction and data memories (or
caches) are needed

When a load or store accesses data memory in stage 4,
stage 1 is accessing an instruction

= Thus two memory accesses occur simultaneously
Two operands may be needed from registers in stage 2

while another instruction is writing a result register in stage
3

= Thus as far as the registers are concerned, 2 reads and a
write happen simultaneously

Increment of PC in stage 1 must be overridden by a
successful branch in stage 2
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Fig 5.7 Pipeline
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Example of Propagation of Instructions Through

S .

D Pipe

A —

2/e
100: add r4,r6, r8; R[4] <— R[6] + R[8];
104: Id r7, 128(r5); R[7] < M[R[5]+128];
108: brl ro, r11, 001; PC < R[11]: R[9] < PC;
112; str r12, 32; M[PC+32] < R[12];
512: sub ... next instruction

= Itis assumed that R[11] contains 512 when the brl instruction is
executed

= RJ[6] =4 and R[8] = 5 are the add operands
= R[5] =16 for the Id and R[12] = 23 for the str
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Fig 5.8 Cycle 1
add Enters Pipe

= Program
counter is
incremented to
104

512:

112:
108:
104:
100:

r12, #32
r9, rii, 001
r7, r5, #128
r4, r6, r8
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= add
operands
are fetched
in stage 2

512:

112:
108:
104
100:

Fig 5.9 Cycle 2
|d Enters Pipe

r12, #32
r9, rii, 001
r7, r5, #128
r4, r6, r8
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Fig 5.10 Cycle 3
brl Enters Pipe

= add
performs its
arithmetic in
stage 3
512: sub
112: str r12, #32
108: brl 19, r11, 001
104: Id r7, r5, #128
100: add r4,r6, r8
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Fig 5.11 Cycle 4

str enters pipe

= add is idle in stage 4

= Success of brl change:
program counter to 51:

512:

112:
108:
104
100:

r12, #32
r9, ri1, 001
r7, r5, #128
r4, r6, r8
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C Instruction e¢pC _|
gi Fig 5.12 Cycle 5 e \1/ <

D sub Enters Pipe ' lm
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S|  Functions of the Pipeline Registers in SRC

= Registers between stages 1 & 2:
12 holds full instruction including any reg. fields and constant;

= PC2 holds the incremented PC from instruction fetch

= Registers between stages 2 & 3:
= |3 holds op code and ra (needed in stage 5);
= X3 holds PC or a reg. value (for link or 1st ALU operand);
= Y3 holds c1 or c2 or a reg. value as 2nd ALU operand,;
MD3 is used for a register value to be stored in mem.
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3 Functions of the Pipeline Registers in SRC
D (continued)

= Registers between stages 3 & 4
= |4 has op code and ra;
= Z4 has mem. address or result reg. value
= MD4 has value to be stored in data memory
= Registers between stages 4 & 5:
= |5 has op code and destination register number, ra

= Z5 has value to be stored in destination register: from ALU result,
PC link value, or fetched data
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Computer Systems Design and Architecture Second Edition

Functions of the SRC Pipeline Stages

= Stage 1: fetches instruction

= PC incremented or replaced by successful branch in stage 2
= Stage 2: decodes inst. and gets operands

= Load or store gets operands for address computation

= Store gets register value to be stored as 3rd operand

= ALU operation gets 2 registers or register and constant
= Stage 3: performs ALU operation

= Calculates effective address or does arithmetic/logic

= May pass through link PC or value to be stored in mem.
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3 Functions of the SRC Pipeline Stages
D (continued)
A
2/e

= Stage 4: accesses data memory

s Passes Z4 to Z5 unchanged for non-memory instructions

= Load fills Z5 from memory

= Store uses address from Z4 and data from MD4(no longer needed)
= Stage 5: writes result register

= Z5 contains value to be written, which can be ALU result, effective
address, PC link value, or fetched data

= ra field always specifies result register in SRC

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall



Dependence Between Instructions in Pipe:
D Hazards

= Instructions that occupy the pipeline together are being
executed in parallel

= This leads to the problem of instruction dependence, well
known in parallel processing

= The basic problem is that an instruction depends on the
result of a previously issued instruction that is not yet
complete

= [wo categories of hazards
Data hazards: incorrect use of old and new data
Branch hazards: fetch of wrong instruction on a change in PC
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S General Classification of Data Hazards
D (Not Specific to SRC)
A
2/e

= A read after write hazard (RAW) arises from a flow dependence,
where an instruction uses data produced by a previous one

= A write after read hazard (WAR) comes from an anti-
dependence, where an instruction writes a new value over one
that is still needed by a previous instruction

= A write after write hazard (WAW) comes from an output
dependence, where two parallel instructions write the same
register and must do it in the order in which they were issued
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S| Detecting Hazards and Dependence Distance

= To detect hazards, pairs of instructions must be considered
= Data is normally available after being written to reg.

= Can be made available for forwarding as early as the stage
where it is produced

= Stage 3 output for ALU results, stage 4 for mem. fetch
= Operands normally needed in stage 2

= Can be received from forwarding as late as the stage in which
they are used

= Stage 3 for ALU operands and address modifiers, stage 4 for
stored register, stage 2 for branch target
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S Data Hazards in SRC

= Since all data memory access occurs in stage 4, memory writes
and reads are sequential and give rise to no hazards

= Since all registers are written in the last stage, WAW and WAR
hazards do not occur

= [wo writes always occur in the order issued, and a write always
follows a previously issued read

= SRC hazards on register data are limited to RAW hazards
coming from flow dependence

= Values are written into registers at the end of stage 5 but may
be needed by a following instruction at the beginning of stage 2
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3 Possible Solutions to the Register Data Hazard
D Problem

s Detection:

= The machine manual could list rules specifying that a dependent
instruction cannot be issued less than a given number of steps
after the one on which it depends

= This is usually too restrictive

= Since the operation and operands are known at each stage,
dependence on a following stage can be detected

s Correction:

= The dependent instruction can be “stalled” and those ahead of it
in the pipeline allowed to complete

= Result can be “forwarded” to a following inst. in a previous stage
without waiting to be written into its register

= Preferred SRC design will use detection, forwarding and
stalling only when unavoidable
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S RAW, WAW, and WAR Hazards
D
A
2/e RAW WAW WAR
l. add r0, rl, r2 1. add r0O, rl, rd 1. add r2, rl, ri
2. sub r4, r3, ro 2. sub r0, rd, rb 2. sub rQ, r3, rd

= RAW hazards are due to causality: one cannot use a value before it
has been produced.
= WAW and WAR hazards can only occur when instructions are
executed in parallel or out of order.
= Not possible in SRC.
= Are only due to the fact that registers have the same name.

= Can be fixed by renaming one of the registers or by delaying the updating of
a reqister until the appropriate value has been produced.
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S Tbl 5.1 Instruction Pair Hazard Interaction
D
A
2/e Write to Reg. File
@Normally/Earliest av@
gzad;;z m Rlass alu loaq\/ ladr brl
9- Class N/L\N/E 6/4 6/4 6/2
Value alu 2/3 4/1 4a/2 4/1 4/1
load 2/3 4/1 4/2 4/1 4/1
\}a% 2/3 4/1 a/2 4/1 4/1
store*(2/3> 4/1 4/2 4/1 | 4/1
branch 2/2 4/2 | 4/3 | 4/2 ( 4/1D

Instruction separation tq/eliminate
hazard,(Normal/Forwarded

= Latest needed stage 3 for store is based on address modifier register. The
stored value is not needed until stage 4

= Store also needs an operand from ra. See Text Tbl 5.

= Instruction separation is used rather than bubbles because of the applicability
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S Delays Unavoidable by Forwarding

= In the column headed by load, we see the value loaded cannot
be available to the next instruction, even with forwarding
= Can restrict compiler not to put a dependent instruction in the next
position after a load (next 2 positions if the dependent instruction is
a branch)
= Target register cannot be forwarded to branch from the
Immediately preceding instruction
= Code is restricted so that branch target must not be changed by

instruction preceding branch (previous 2 instructions if loaded from
mem.)

= Do not confuse this with the branch delay slot, which is a
dependence of instruction fetch on branch, not a dependence of
branch on something else
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S Stalling the Pipeline on Hazard Detection

= Assuming hazard detection, the pipeline can be stalled by

inhibiting earlier stage operation and allowing later stages to
proceed

= A simple way to inhibit a stage is a pause signal that turns off
the clock to that stage so none of its output registers are
changed

= [f stages 1 & 2, say, are paused, then something must be
delivered to stage 3 so the rest of the pipeline can be cleared

= Insertion of nop into the pipeline is an obvious choice
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C
S Example of Detecting ALU Hazards and Stalling

Pipeline

D
A
= The following expression detects hazards between ALU
instructions in stages 2 & 3 and stalls the pipeline
(alu3aalu2a ((ra3=rb2) v (ra3=rc2)A-imm2)) —
( pause2: pausel: op3 <= 0):
= After such a stall, the hazard will be between stages 2 & 4,
detected by
( alu4ralu2a((rad=rb2) v (rad=rc2) A-imm2)) —
( pause2: pausel: op3 < 0 ):
= Hazards between stages 2 & 5 require
( alubaalu2a ((ra5=rb2) v (ra5=rc2) A-imm2) ) — L

| A |
( pause2: pausel: op3 < 0 ): ausel ] ) To stage 1

Fig 5.13

Dause? To stage 2
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3 Fig 5.14 Stall Due to a Dependence Between
D Two alu Instructions

Clock cycle 1 Clock cycle 2 Clock cycle 3 Clock cycle 4 Clock cycle &
Mew
Stalled Stalled Stalled
~ Fetch Icd 8, addr? » |d 8, addr? » |d 18 addr? = |d r8, addr2 \ add r5, r8, r&
instruction
l 4 Y ¥ : l
Fetch Stalled Stalled Stalled i ;
addrl, 2,13 » add r1, 12, 13 » add r1, 12, r3 »add i, r2, 3 Icd r8, addr?
operands * » "
Mew l
AU | I . I:
operation | g \
Memoary ;_ :' 1
access /
¥ ¥ l \ l
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._,/ i
Completed Completed Bloop !
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S Data Forwarding:
[A from alu Instruction to alu Instruction
2/e

= The pair table for data dependencies says that if forwarding is done,
dependent alu instructions can be adjacent, not 4 apart

= For this to work, dependences must be detected and data sent from
where it is available directly to X or Y input of ALU

= For a dependence of an alu inst. in stage 3 on an alu inst. in stage 5
the equation is

alubaalud — ((ra5=rb3) — X3 < Z5:
(ra5=rc3)A-imm3 — Y3 < Z5):
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DS Data Forwarding:
A alu to alu Instruction (continued)
2/e

= For an alu inst. in stage 3 depending on one in stage 4, the equation is
alu4aalud — ((rad=rb3) — X3 < Z4:

(rad=rc3)A-imm3 — Y3 < Z4 ).

= We can see that the rb and rc fields must be available in stage 3 for
hazard detection

= Multiplexers must be put on the X and Y inputs to the ALU so that Z4 or
Z5 can replace either X3 or Y3 as inputs
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S! Fig 5.15 alu to alu Data
D Forwarding Hardware

= Can be from
either Z4 or Z5 to
either Xor Y
input to ALU

= rb & rc needed in
stage 3 for
detection
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S Restrictions Left If Forwarding Done Wherever
D Possible
A
2/e

1) Branch delay slot

- The instruction after a branch is always executed, whether the
branch succeeds or not.

2) Load delay slot

« A reqister loaded from memory cannot be used as an operand
in the next instruction.

« A reqister loaded from memory cannot be used as a branch
target for the next two instructions.

3) Branch target

« Result register of alu or ladr instruction cannot be used as
branch target by the next instruction.

Computer Systems Design and Architecture Second Edition

br r4
add . ..

|d r4, 4(r5)
nop
neg r6, r4

Id rO, 1000
nop

nop

br r0

not rO, r1
nop
br rO
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S Questions for Discussion

= How and when would you debug this design?

= How does RTN and similar Hardware Description
Languages fit into testing and debugging?

= What tools would you use, and which stage?
= What kind of software test routines would you use?
= How would you correct errors at each stage in the design?
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Instruction Level Parallelism

A pipeline that is full of useful instructions completes at most
one every clock cycle

Sometimes called the Flynn limit

If there are multiple function units and multiple instructions
have been fetched, then it is possible to start several at
once

Two approaches are: superscalar

= Dynamically issue as many prefetched instructions to idle
function units as possible

and Very Long Instruction Word (VLIW)

= Statically compile long instruction words with many operations
in a word, each for a different function unit

= Word size may be 128 or 256 or more bits.
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3 Character of the Function Units in Multiple Issue
D Machines
A
2/e

= There may be different types of function units
= Floating point

= Integer
= Branch

= There can be more than one of the same type
= Each function unit is itself pipelined
= Branches become more of a problem

= There are fewer clock cycles between branches
= Branch units try to predict branch direction

= Instructions at branch target may be prefetched, and even
executed speculatively, in hopes the branch goes that way
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S| Example 5.2: Dual Issue VLIW version of SRC

= Two instructions per word. Word size 2x32 (64) bits
= Two pipelines, each almost the same as the previous pipeline design.

= Only pipeline 1 can execute memory-access instructions: Id, Idr, st, and
str

= Thus only one memory access per cycle.
= Only pipeline 2 can execute shr shra shl shc, br, and brl

= Assumes that a barrel shifter for the shift instructions is expensive and
needed only in one pipeline, located in stage 4 replacing the memory
access stage.

= Limits the execution unit to one branch instruction per word.

= Either pipeline can execute the other instructions: la, lar, add, addi, sub,
and, andi, or, ori, neg, not, nop, and stop.
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Figure 5.16: Structure of the Dual-Pipeline SRC

Stage

Pipeline 1

Instruction fetch

Pipeline 2

Instruction 1 | Instruction 2

!

Decode and
operand read

¥

ALU operation

Y

Memory access

Y

Register write

Pipeline 1 instructions

Instructions executed
in either pipeline

Y
Decode, operand
read, and branch

v

ALU operation

v

Shift operations

Y

Register write

Pipeline 2 instructions

Id, Idr, st, str

la, lar, add, addi, sub,
neg, and, andi, or, ori,
not, nop, stop

Copyright © 2004 Pearscen Prentice Hall, Inc.

srr, shra, shl, shc,
br, brl
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S Other features

= Register file may have 4 reads and two writes per cycle.

= Either provide more read and write ports, or incorporate two
register files, each an identical "shadow" copy of the other.

= No branch delay slot
= Instruction forwarding wherever possible.
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S Figures 5.17a and b: SRC Programs to Compute the
D Fibonacci Series on Single- and Dual-issue machines

2 / (a) Program for a scalar version of SRC

; fib.asm. Compute Fibonacci numbers.
;: The Fibonacci sequence is defined as follows:
; fib(l) = 1, fib(2) = 1,
: fib(n) = fib(n-1) + fib{(n-2) n > 2.
cnt:  .equ 8 : Mo. to compute after first two
.org O : Store sequence at addr. O
seq: .dc 1 : Init. the first Fib. Mo.
next: .dc 1 : Init. the second Fib. No.
ans: .dw cnt : Storage for the next & Fib. Nos.
.org Ox1000 : Begin ass'y. at hex. addr. 1000
Tar r31, loop ; Branch address
la r0, cnt ; Init. count
la rl, seqg i Init rl to index of seq[0]
Toop: 1d r2, seq(rl) : Get fib(n-2)
1d ri, next{rl) : Get fib(n-1)
]

add r2, r2, r3 compute fib(n)
st r2, ans(rl) Store fib{n)
addi rl, ri1, 4 Increment index
addi r0, ro0, -1 Decrement count
brnz r31, r0 lToop until done
stop

(b} Program for a dual-issue version of SRC
Pipcline | Pipchineg 2 Lmnc#

g 2, ansirl) nop
pddirl, rl, 4 bz £31,

. . Etﬂp o .
Computer Systems Design and Architecture secona taiuon © 2004 Prentice Hall

lar 21, loop la rl, cnt |

la rl, seq nop 2
loop: Id r2, segirly addi o, ), -1 3
ld 3, nextirl) nop 4

TIEV) nop 5

1 add r2, 2, r3 &

7

8

9



S| Fibonacci Program on the Dual-Issue Machine

= Total program length has been reduced from 11 lines to 9.

= The loop, where the program will spend most of its time, has been reduced
but only from 7 lines to 6 due to the imposed limitation that pipeline 2
cannot do memory accesses.

= If this limitation were removed, both loads could take place at line 3.

= The addi at line 3 would then be moved down to line 4, and line 5 could be
eliminated.
= These loads still need to be separated by two from the sum of the two

fibs in line 6 because of the hazard between load as writer and alu as
reader. See Table 5.1.

= The store at line 7 needs to be separated by one from the add in line 6
because of the undefined semantics of computing a value and using it
in an instruction in the same wide word.
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Figure 5.19: Dual-Issue SRC Pipelines and
Forwarding Paths

Instruction «—  PC |
fetch A
| I
¥ v
2 y 2 : Decode and operand fetch
Decode and operand felch PC update
opimuxira| p1 | P2 | P3 op/muxfral Q1 | Q2 |
1 | " |
| I T 1T A 1 1 |
[ v | M2 | M3 | LNt | N2 |
¥ Y ¥ Y i Y Y
ALU operation ALU operation
op/muxral [Busa]l [ A1 op/muxiral [BusC | | C1 |
I P T s I
LT Tt [Tl L1
[ ma | [ wms | [ na | |Lns |
¥ ¥ ¥ ¥ ¥ v
Memaory access Shifter
opfa | |BusB]| op/fra | | BusD |
¥ Y ¥ ¥
Result write Result write
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Figure 5.20: Dynamic Information in Dual-Issue
D SRC

(b) Dynamic Table #1: Register status
table for instruction in stage 3

(a) Instructions issued : ~
Register Locationt
- Instruction word
Stage [ﬁ::: I — | 600 2 s it
nstruction nstruction RS (A, 0):(B,1+1)
5 t—2 | addr6,r4, 14 shcr7,r1,8 R6 (B, ):(RF,t+1)
t—-1 | addir5,r3,16 lar r8, 12 R7 (D r)*(RF’ t+1)
3 t | str8,4(r7) sub 17,15, 16 R8 (C.0:D " 1)
R9 RF

T Bus A, B, C, D, or register file (RF)

(¢) Dynamic Table #2: Op codes and multiplexer settings issued at time ¢

Pipeline 1 Pipeline 2
st M1=D, M2=P2, M3=C, M4=A_ M5=Al | sub N1=A,6N2=B, N4=C, N5=d

Copyright @ 2004 Pearson Prentice Hall, Inc.
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S Figure 5.21: Operand Flow of st r8, 4(r7)

2/ e Instruction 4—'?'
fetch A
| l
Y ¥
Decode and operand fetch Decode and operand feich
st 8 4 7 sub 9 r5 ré
op/muxiral p1 | p2 | P3 opimuxfral Q1 | Q2 |
|
| |
l lI T |
| [ IT h_ — 1 *-‘I
Lmt | m2 | m3 | LNt [ w2 |
Y Y Y Y Y Y ¥
ALU operation ALU cperaticon
addi rs lar rg
op/muxiral [ BusA| | A1 op/muxral [BusC] [c1 |
1 | |
1 1 B | 1
_h_lfjr“"'“ IV |
[ w4 [ M5 [ra ] s ]
¥ ¥ ¥ ¥ ¥ ¥
Memory access Shifter
addi ré she 7
opfra | [BusB]| op/ra | | BusD |
L L 4 Y L |
Result write Result write
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Getting Specific: Some Commercial
Superscalar Processors

PowerPC G4: Eleven pipelined functional units: 4 IUs, an FPU
with a separate floating point register file, a BPU, an LSU, and 4
VPUs. It is capable of executing sixteen instructions
simultaneously.

Intel P6: Five functional units: 14-stage pipeline, 2 IUs, separate
load and store units, FPU and BPU. Since the P6 must execute
the CISC-like 80X86 instruction set, instructions entering the
pipeline are decoded and fragmented into simpler RISC-like
micro-ops, as they are called, which are dispatched to one of
the five functional units. Instructions may be executed out of
order, provided that doing so does not cause hazards.

HP Alpha 21164 This processor has a 7-stage pipeline, 2 IUs,
and 2 FPUs: one for add/subtract, and one for multiply/divide,
branch prediction.
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S| The Superscalar IBM PowerPC 970

Front End

/e L1 Instruction
Cache

& Group

Wectar Perm, Wector Math Flaaling-paint IntegenLaad-Siore IntegerLoad-Store

Queues Cueuesg Gueues Guewes 1 Clusyes F

actor
Fermute
I

Execution Core =T - ====

Figure courtesy Arstechnica
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S Microprogramming: Basic ldea
D
A
2/e

Recall control sequence for 1-bus SRC

Step Concrete RTN Control Sequence

T0. MA < PC: C <— PC+4; PC,, MA,, Inc4, C,, Read

T1. MD < M[MA]: PC <~ C; C_,, PC,,, Wait

T2. IR < MD; MD,, IR,

T3. A < R[rb]; Grb, R, A,

T4. C < A + Rrc]; Gre, R,,, ADD, C;,

T5. R[ra] < C; C. Gra, R, End

= Control unit job is to generate the sequence of control signals
= How about building a computer to do this?

Computer Systems Design and Architecture Second Edition
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S The Microcode Engine

= A computer to generate control signals is much simpler than an
ordinary computer

= At the simplest, it just reads the control signals in order from a
read only memory

= The memory is called the control store

= A control store word, or microinstruction, contains a bit pattern
telling which control signals are true in a specific step

= The major issue is determining the order in which
microinstructions are read
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Fig 5.22 Block Diagram of a Microcoded

S
D Control Unit
A
2/e Ck CCs Other  —————1——————-
l i l i i IR Dpiode _______
= Microinstruction has Sequencer [, {coril_p’iles o
branch control, branch T startaddn) | “source
address, and control 1 JL ) i” LT
signal fields Increment 4-1 Mux
= Micro-program counter T §"
can be set from several n, hs
sources to do the Y
required sequencing Control
1k store 1n
im
uBranch iR
= T,

Control signals address
PC etc.

out*
Copyright © 2004 Pearson Prentice Hall, Inc.
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Parts of the Microprogrammed Control Unit

Since the control signals are just read from memory, the main
function is sequencing

This is reflected in the several ways the uPC can be loaded
= Output of incrementer—uPC+1

= PLA output—start address for a macroinstruction
= Branch address from uinstruction

= External source—say for exception or reset

Micro conditional branches can depend on condition codes, data
path state, external signals, etc.
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S Contents of a Microinstruction
D
A
2/e
Microinstruction format
Branch contro Control signals Branch address
T T T T 1 o0
> £ £ 8 c e
Y s a o

= Main component is list of 1/0 control signal values
s [Thereis a branch address in the control store

s [ here are branch control bits to determine when to use the
branch address and when to use uPC+1
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S Figure 5.23: Layout of the Control Store
D
A
2/e 0 uCode for instruction fetch
= Common inst.
ai fetch
Microaddress uCode for add sequence
= Separate
a2 .Code for br sequences for
each (macro)
3 Instruction
° uCode for shr = Wide words
on. 1
- m bits wide >

- Kubranch_ o  ccontrol___p o Nbranch__,
control bits signals addr. bits
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S| Size and Shape of System RAM vs Control Store
D
A
2/e .
= System RAM3'23 one Assume control store has 128
byte wide x 2°2 bytes instructions, 128 bits wide, with
deep. 8 steps each.
A Control store would be 16 bytes
wide, but only 128x8 or 1024
words deep.
232
1024 §
< 16
v
<+»
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Table 5.2: Microinstruction Control Signals for

S

D the add Instruction

A

2/e
215 ol =
%%Eug‘go§§<g.s§§-£.53§§8seeE
T |lp ol o= xK|= a ||z ]|E|x <|ol|lo|o|w
101 1/oJojof1]1]ofo]o]of1[1]0]0[0]0]0fO
102 o/1{oloJojof1]o]ofojo]o|1[o]o]0f0]O
103 olof[1]ofolo]jo[1]of[o]o]jofo]ofo]o]0]0
200 olofol1]o]oflo]o]1][o]o]o]jofo]o]1]0]0
201 olofo]1]{ol1]olo]ofo]ofofo]1][o]o0]1]0
202 o/1{olo]ofolo]o]ofl1]o]ofolo]1][0]0]

s Addresses 101-103 are the instruction fetch

= Addresses 200-202 do the add
= Change of ucontrol from 103 to 200 uses a kind of ubranch
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Uses for ubranching in the Microprogrammed
D Control Unit

= 1) Branch to start of ucode for a specific inst.
= 2) Conditional control signals, e.g. CON — PC_
= 3) Looping on conditions, e.g. n=0 — ... Goto6

= Conditions will control ubranches instead of being ANDed
with control signals

= Microbranches are frequent and control store addresses are
short, so it is reasonable to have a ubranch address field in

every u instruction
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S lllustration of ubranching Control Logic

= We illustrate a ubranching control scheme by a machine having
condition code bits N & Z
= Branch control has 2 parts:
= 1) selecting the input applied to the uPC and
= 2) specifying whether this input or uPC+1 is used
= We allow 4 possible inputs to uPC
= The incremented value uPC+1
= The PLA lookup table for the start of a macroinstruction

= An externally supplied address
= The branch address field in the uinstruction word
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3 Fig 5.24 Branching Controls in the Microcoded
D Control Unit

2/6 LM Sequencer |
| FPLA
S |
—] = Extarnal adorezs
—z2| | l ‘ = 5 branch
2 ¥ Y Y conditions
= 41 M
g 2 | ¢ = NotN
I
—D‘"EL | [ Mner €] HPC Branch = N
- TTTHAT————— | + Sl rems = NotZ
ot [ | Z
Siaree .
= Uncondit.
¥
ofolofofo[clo] comrel signals | 244, = To 1of4 places
—..'E"Lr'ﬂL-[:{ C:}ﬂtr’::})—l-rl ¢¢¢¢ ot # - NeXt MInSt
E?PZET_E Mux G Select = PLA
EiZ oo | =
Erhoty oy et K = Extern. addr.
Brht 10 External address « Branch addr.

11 Branch sddress
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Some Possible ubranches Using the lllustrated

S .

D Logic

A

2/e
S 13| |2
x S22 Cpntrol Branch
slslslals 5 15i9nals JAddress Branching action
00 [0|O[0]|O|O] eee | XXX [None—next instruction
01 |1]0[0|0|0] eee | XXX [Branch to output of PLA
10 [0[0]1]0]O] eee | XXX |BrifZ to Extern. Addr.
11|0]ofof[o|1] eee | 300 |BrifN to 300 (else next)
11 |0]ofo[1]0] Oeee0 | 206 |Brif N to 206 (else next)
11 |{1[{0]0]O|O| weee 204 |Br to 204

= [f the control signals are all zero, the uinst. only does a test
= Otherwise test is combined with data path activity
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S, Horizontal Versus Vertical Microcode Schemes

= In horizontal microcode, each control signal is represented by a
bit in the uinstruction

= In vertical microcode, a set of true control signals is represented
by a shorter code

= The name horizontal implies fewer control store words of more
bits per word

= Vertical ucode only allows RTs in a step for which there is a
vertical uinstruction code

= Thus vertical ucode may take more control store words of fewer
bits
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DS Fig 5.25 A Somewhat Vertical Encoding
A
2/e ALU Register-out

ops field fleld
IR -5 *oe -3

¢

4-16 decoder| | 3-8 decoder

YYYIVVIVYY  YYYYOVVYY

16 ALU 7T Red, .,
Control control
signals signals

= Scheme would save (16+7) - (4+3) = 16 bits/word in the case
illustrated
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3 Fig 5.26 Completely Horizontal and Vertical
D Microcoding

HFC I
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ot ral
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3 Saving Control Store Bits With Horizontal
D Microcode

=  Some control signals cannot possibly be true at the same time
= One and only one ALU function can be selected
= Only one register out gate can be true with a single bus
= Memory read and write cannot be true at the same step

= A set of m such signals can be encoded using log,m bits
(log,(m+1) to allow for no signal true)

= The raw control signals can then be generated by a k to 2
decoder, where 2> m (or 2k =2 m+1)

= Thisis a compromise between horizontal and vertical
encoding

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall



A Microprogrammed Control Unit for the 1-bus
D SRC

= Using the 1-bus SRC data path design gives a specific set of
control signals

= There are no condition codes, but data path signals CON and
n=0 will need to be tested

=  We will use ubranches BrCON, Brn=0, & Brn=0
= We adopt the clocking logic of Fig. 4.9 on p. 4-20

= Logic for exception and reset signals is added to the
microcode sequencer logic

= EXxception and reset are assumed to have been synchronized
to the clock
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S Table 5.4 Microinstructions for SRC add
D
A
2/e
5 Z| olo o Other
Addr. § § Ej % % Ne) Ug {EControlli;d Actions
S |o|lo|o|d|o|a|= Signals r-
100 |00 Ol Ol O] O] O] 111 eee |IXXX | MA <= PC: C < PC+4;
101 00| O O] O O] Ol O] Of *°** XXX | MD < M[MA]: PC <= C;
102101 {11001 O0] OO Of ®** XXX | IR < MD; uPC < PLA;
200 (00| O] O O[ O] O] OO ®°° | XXX | A<R[rb];
201 {00 | 0| O O] O] O]l O[O ®*** | XXX | C< A +R[rc];
202111111000 1]10] 0| *** |100 | R[ra] = C: uPC < 100;

= Microbranching to the output of the PLA is shown at 102
=  Microbranch to 100 at 202 starts next fetch
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Getting the PLA Output in Time for the
D Microbranch

= So that the input to the PLA is correct for the ubranch in 102,
it has to come from MD, not IR

= An alternative is to use see-thru latches for IR so the op code
can pass through IR to PLA before the end of the clock cycle
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- See-thru Latch Hardware for IR So uPC Can

S .
D Load Immediately
A
2/e IR(31..27) - " uPC(9..0)
Bus —#—D Q—»— PLA #A—D Q
5 5 10 = Data must have
time to get from
S Cl ®
p MD across Bus,
through IR,
through the PLA,
Clock and satisfy uPC
cycle - > set up time before
Strobe S | trailing edge of S
Bus <Bus Ay VAl data )
Data at P L Valid data i
Data at R valid

Latchdelay /
PLA delay

PLA output strobed into uPC
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S| Fig 5.27 Microcode Sequencer Logic for SRC
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Table 5.6 A Somewhat Vertical Encoding of the

S
D SRC Microinstruction
A
2/e
F1 F2 F3 F4 F5 F6 F7 F8 FO
Mux| Branch Out In _ Gate Branch
End | _. : Misc. ALU
Ctl | control signals [signals regs. address
00 [ 000 BrUn [0Cont.|000 PCy,t 1000 MA;, [000 Read [00 Gra [0000 ADD .
01 | 001 Br-CON[1End |001Cy,; (001 PGy, [001 Wait (01 Grb 0001 C=B | 10 bits
10 1010 BrCON 010 Ld 10 Grc 0010 SHR
010 MDgt [010 IRj,
11 |011Br n=0 011 R 011 A 011 Decr |11 None 0011 Inc4
100 Br n=0 out In {100 CONjp °
101 None 100BAout {100 Rin 1101 ¢,
101 cloyt (101 MDjn f110 stop .
110 c2qyt (110 None 111 None 1111 NOT
111 None
2bits| 3 bits 1 bit 3 bits 3 bits 3 bits 2 bits 4 bits 10 bits
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S Other Microprogramming Issues

= Multi-way branches: often an instruction can have 4-8 cases,
say address modes

= Could take 2-3 successive ubranches, i.e. clock pulses

= The bits selecting the case can be ORed into the branch address
of the uinstruction to get a several way branch

= Say if 2 bits were ORed into the 3rd & 4th bits from the low end, 4
possible addresses ending in 0000, 0100, 1000, and 1100 would
be generated as branch targets

= Advantage is a multi-way branch in one clock
= A hardware push-down stack for the uPC can turn repeated
usequences into usubroutines

= Vertical ucode can be implemented using a horizontal uengine,
sometimes called nanocode
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Chapter 5 Summary

This chapter has dealt with some alternative ways of designing a
computer

A pipelined design is aimed at making the computer fast—target
of one inst. per clock

Forwarding, branch delay slot, and load delay slot are steps in
approaching this goal

A static multissue SRC design shows some of the strengths and
limitations of this architecture.

Microprogramming is a design method with a target of easing the
design task, and allowing for easy design change or multiple
compatible implementations of the same instruction set
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