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Chapter 5 Overview

 The principles of pipelining

 A pipelined design of SRC

 Pipeline hazards

 Instruction-level parallelism (ILP)
 Superscalar processors

 Very Long Instruction Word (VLIW) machines

 Microprogramming
 Control store and micro-branching

 Horizontal and vertical microprogramming
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Fig 5.1 Executing Machine Instructions vs. Manufacturing
Small Parts
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The Pipeline Stages

 5 pipeline stages are shown
 1. Fetch instruction

 2. Fetch operands

 3. ALU operation

 4. Memory access

 5. Register write

 5 instructions are executing
 shr r3, r3, 2 ;storing result in r3
 sub r2, r5, r1 ;idle, no mem. access needed
 add r4, r3, r2 ;adding in ALU
 st  r4, addr1 ;accessing r4 and addr1
 ld  r2, addr2 ;instruction being fetched
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Notes on Pipelining Instruction Processing

 Pipeline stages are shown top to bottom in order traversed by
one instruction

 Instructions listed in order they are fetched

 Order of insts. in pipeline is reverse of listed

 If each stage takes one clock:

    - every instruction takes 5 clocks to complete

    - some instruction completes every clock tick

 Two performance issues:  instruction latency, and instruction
bandwidth
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Dependence Among Instructions

 Execution of some instructions can depend on the completion of
others in the pipeline

 One solution is to “stall” the pipeline
 early stages stop while later ones complete processing

 Dependences involving registers can be detected and data
“forwarded” to instruction needing it, without waiting for register
write

 Dependence involving memory is harder and is sometimes
addressed by restricting the way the instruction set is used
 “Branch delay slot” is example of such a restriction

 “Load delay” is another example



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Branch and Load Delay Examples

Branch Delay

Load Delay

brz r2, r3
add r6, r7, r8
st  r6, addr1

This inst. always executed

Only done if r3 ≠ 0

ld  r2, addr
add r5, r1, r2
shr r1,r1,4
sub r6, r8, r2

This inst. gets “old”
value of r2

This inst. gets r2 value
loaded from addr

 Working of instructions not changed, but way they work together is
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Characteristics of Pipelined Processor Design

 Main memory must operate in one cycle
 This can be accomplished by expensive memory, but

 It is usually done with cache, to be discussed in Chap. 7

 Instruction and data memory must appear separate
 Harvard architecture has separate instruction & data memories

 Again, this is usually done with separate caches

 Few buses are used
 Most connections are point to point

 Some few-way multiplexers are used

 Data is latched (stored in temporary registers) at each pipeline
stage—called “pipeline registers.”

 ALU operations take only 1 clock (esp. shift)
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Adapting Instructions to Pipelined Execution

 All instructions must fit into a common pipeline stage structure

 We use a 5 stage pipeline for the SRC

     1) Instruction fetch

     2) Decode and operand access

     3) ALU operations

     4) Data memory access

     5) Register write

 We must fit load/store, ALU, and branch instructions into this
pattern
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Fig 5.2   ALU Instructions fit into 5
Stages

• Second ALU operand comes
either from a register or
instruction register c2 field

• Op code must be available
in stage 3 to tell ALU what to
do

• Result register, ra, is written
in stage 5

• No memory operation
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Figure 5.3 Logic Expressions Defining Pipeline Stage
Activity

branch := br ⁄ ∨ brl :
cond := (IR2〈2..0〉 = 1) ∨ ((IR2〈2..1〉=1)∧(IR2〈0〉⊕R[rb]=0)) ∨
         ((IR2〈2..1〉=2)∧(IR2〈0〉⊕R[rb]〈31〉) :
sh := shr ∨ shra ∨ shl ∨ shc :
alu := add ∨ addi ∨ sub ∨ neg ∨ and ∨ andi∨ or ∨ ori ∨ not ∨ sh :
imm := addi ∨ andi ∨ ori ∨ (sh ∧ (IR2〈4..0〉 ≠ 0) :
load := ld ∨ ldr :
ladr := la ∨ lar :
store := st ∨ str :
l-s := load ∨ ladr ∨ store :
regwrite := load ∨ ladr ∨ brl ∨ alu: ;these instructions write the register file
dsp := ld ∨ st ∨ la : ;instructions that use disp addressing
rl := ldr ∨ str ∨ lar : ;instructions that use rel addressing
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Notes on the Equations and Different Stages

 The logic equations are based on the instruction in the stage
where they are used

 When necessary, we append a digit to a logic signal name to
specify it is computed from values in that stage

 Thus regwrite5 is true when the opcode in stage 5 is load5
∨ ladr5 ∨ brl5 ∨ alu5, all of which are determined from op5
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Fig 5.4  Load and
Store Instructions

 ALU computes
effective addresses

 Stage 4 does read
or write

 Result reg. written
only on load
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Fig 5.5 The Branch
Instructions

 The new program
counter value is known
in stage 2

   —but not in stage 1

 Only branch&link does a
register write in stage 5

 There is no ALU or
memory operation
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Fig 5.6  SRC Pipeline
Registers and RTN

Specification

 The pipeline
registers pass info.
from stage to
stage

 RTN specifies
output reg. values
in terms of input
reg. values for
stage

 Discuss RTN at
each stage on
blackboard
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Global State of the Pipelined SRC

 PC, the general registers, instruction memory, and data memory
is the global machine state

 PC is accessed in stage 1 (& stage 2 on branch)

 Instruction memory is accessed in stage 1

 General registers are read in stage 2 and written in stage 5

 Data memory is only accessed in stage 4
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Restrictions on Access to Global State by
Pipeline

 We see why separate instruction and data memories (or
caches) are needed

 When a load or store accesses data memory in stage 4,
stage 1 is accessing an instruction
 Thus two memory accesses occur simultaneously

 Two operands may be needed from registers in stage 2
while another instruction is writing a result register in stage
5
 Thus as far as the registers are concerned, 2 reads and a

write happen simultaneously

 Increment of PC in stage 1 must be overridden by a
successful branch in stage 2
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Fig 5.7  Pipeline
Data Path &

Control Signals

 Most
control
signals
shown and
given
values

 Multiplexer
control is
stressed in
this figure
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Example of Propagation of Instructions Through
Pipe

 It is assumed that R[11] contains 512 when the brl instruction is
executed

 R[6] = 4 and R[8] = 5 are the add operands

 R[5] =16 for the ld and R[12] = 23 for the str

100: add r4, r6, r8; R[4] ← R[6] + R[8];
104: ld r7, 128(r5); R[7] ← M[R[5]+128];
108: brl r9, r11, 001; PC ← R[11]: R[9] ← PC;
112: str r12, 32;    M[PC+32] ← R[12];
 . . . . . .
512: sub ...     next instruction
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Fig 5.8 Cycle 1
 add Enters Pipe

 Program
counter is
incremented to
104

512: sub ... 
 . . . . . .
112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8
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Fig 5.9  Cycle 2
ld Enters Pipe

 add
operands
are fetched
in stage 2

512: sub ... 
 . . . . . .
112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8
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Fig 5.10  Cycle 3
brl Enters Pipe

 add
performs its
arithmetic in
stage 3

512: sub ... 
 . . . . . .
112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8
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Fig 5.11  Cycle 4
str enters pipe

 add is idle in stage 4

 Success of brl changes
program counter to 512

512: sub ... 
 . . . . . .
112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8
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 add completes in
stage 5

 sub is fetched from
loc. 512 after
successful brl

512: sub ... 
 . . . . . .
112: str r12, #32
108: brl r9, r11, 001
104: ld r7, r5, #128
100: add r4, r6, r8

Fig 5.12  Cycle 5
sub Enters Pipe
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Functions of the Pipeline Registers in SRC

 Registers between stages 1 & 2:
 I2 holds full instruction including any reg. fields and constant;

 PC2 holds the incremented PC from instruction fetch

 Registers between stages 2 & 3:
 I3 holds op code and ra (needed in stage 5);

 X3 holds PC or a reg. value (for link or 1st ALU operand);

 Y3 holds c1 or c2 or a reg. value as 2nd ALU operand;

 MD3 is used for a register value to be stored in mem.
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Functions of the Pipeline Registers in SRC
(continued)

 Registers between stages 3 & 4:
 I4 has op code and ra;

 Z4 has mem. address or result reg. value

 MD4 has value to be stored in data memory

 Registers between stages 4 & 5:
 I5 has op code and destination register number, ra

 Z5 has value to be stored in destination register: from ALU result,
PC link value, or fetched data
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Functions of the SRC Pipeline Stages

 Stage 1: fetches instruction
 PC incremented or replaced by successful branch in stage 2

 Stage 2: decodes inst. and gets operands
 Load or store gets operands for address computation

 Store gets register value to be stored as 3rd operand

 ALU operation gets 2 registers or register and constant

 Stage 3: performs ALU operation
 Calculates effective address or does arithmetic/logic

 May pass through link PC or value to be stored in mem.
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Functions of the SRC Pipeline Stages
(continued)

 Stage 4: accesses data memory
 Passes Z4 to Z5 unchanged for non-memory instructions

 Load fills Z5 from memory

 Store uses address from Z4 and data from MD4(no longer needed)

 Stage 5: writes result register
 Z5 contains value to be written, which can be ALU result, effective

address, PC link value, or fetched data

 ra field always specifies result register in SRC
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Dependence Between Instructions in Pipe:
Hazards

 Instructions that occupy the pipeline together are being
executed in parallel

 This leads to the problem of instruction dependence, well
known in parallel processing

 The basic problem is that an instruction depends on the
result of a previously issued instruction that is not yet
complete

 Two categories of hazards

  Data hazards: incorrect use of old and new data

  Branch hazards: fetch of wrong instruction on a change in PC
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General Classification of Data Hazards
(Not Specific to SRC)

 A read after write hazard (RAW) arises from a flow dependence,
where an instruction uses data produced by a previous one

 A write after read hazard (WAR) comes from an anti-
dependence, where an instruction writes a new value over one
that is still needed by a previous instruction

 A write after write hazard (WAW) comes from an output
dependence, where two parallel instructions write the same
register and must do it in the order in which they were issued
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Detecting Hazards and Dependence Distance

 To detect hazards, pairs of instructions must be considered

 Data is normally available after being written to reg.

 Can be made available for forwarding as early as the stage
where it is produced
 Stage 3 output for ALU results, stage 4 for mem. fetch

 Operands normally needed in stage 2

 Can be received from forwarding as late as the stage in which
they are used
 Stage 3 for ALU operands and address modifiers, stage 4 for

stored register, stage 2 for branch target
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Data Hazards in SRC

 Since all data memory access occurs in stage 4, memory writes
and reads are sequential and give rise to no hazards

 Since all registers are written in the last stage, WAW and WAR
hazards do not occur
 Two writes always occur in the order issued, and a write always

follows a previously issued read

 SRC hazards on register data are limited to RAW hazards
coming from flow dependence

 Values are written into registers at the end of stage 5 but may
be needed by a following instruction at the beginning of stage 2
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Possible Solutions to the Register Data Hazard
Problem

 Detection:
 The machine manual could list rules specifying that a dependent

instruction cannot be issued less than a given number of steps
after the one on which it depends

 This is usually too restrictive

 Since the operation and operands are known at each stage,
dependence on a following stage can be detected

 Correction:
 The dependent instruction can be “stalled” and those ahead of it

in the pipeline allowed to complete

 Result can be “forwarded” to a following inst. in a previous stage
without waiting to be written into its register

 Preferred SRC design will use detection, forwarding and
stalling only when unavoidable
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RAW, WAW, and WAR Hazards

 RAW hazards are due to causality: one cannot use a value before it
has been produced.

 WAW and WAR hazards can only occur when instructions are
executed in parallel or out of order.
 Not possible in SRC.

 Are only due to the fact that registers have the same name.

 Can be fixed by renaming one of the registers or by delaying the updating of
a register until the appropriate value has been produced.
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Tbl 5.1  Instruction Pair Hazard Interaction

Class alu load ladr brl
  N/E 6/4 6/5 6/4 6/2Class N/L

alu 2/3
load 2/3
ladr 2/3
store 2/3
branch 2/2

4/1 4/2 4/1 4/1
4/1 4/2 4/1 4/1
4/1 4/2 4/1 4/1
4/1 4/2 4/1 4/1
4/2 4/3 4/2 4/1

Result Normally/Earliest available

Value
Normally/
Latest
needed

Instruction separation to eliminate
hazard, Normal/Forwarded

 Latest needed stage 3 for store is based on address modifier register. The
stored value is not needed until stage 4

 Store also needs an operand from ra. See Text Tbl 5.
 Instruction separation is used rather than bubbles because of the applicability

to multi-issue, multi-pipelined machines.

Read from 
Reg. File

Write to Reg. File
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Delays Unavoidable by Forwarding

 In the column headed by load, we see the value loaded cannot
be available to the next instruction, even with forwarding
 Can restrict compiler not to put a dependent instruction in the next

position after a load (next 2 positions if the dependent instruction is
a branch)

 Target register cannot be forwarded to branch from the
immediately preceding instruction
 Code is restricted so that branch target must not be changed by

instruction preceding branch (previous 2 instructions if loaded from
mem.)

 Do not confuse this with the branch delay slot, which is a
dependence of instruction fetch on branch, not a dependence of
branch on something else
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Stalling the Pipeline on Hazard Detection

 Assuming hazard detection, the pipeline can be stalled by
inhibiting earlier stage operation and allowing later stages to
proceed

 A simple way to inhibit a stage is a pause signal that turns off
the clock to that stage so none of its output registers are
changed

 If stages 1 & 2, say, are paused, then something must be
delivered to stage 3 so the rest of the pipeline can be cleared

 Insertion of nop into the pipeline is an obvious choice
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Example of Detecting ALU Hazards and Stalling
Pipeline

 The following expression detects hazards between ALU
instructions in stages 2 & 3 and stalls the pipeline

( alu3∧alu2∧ ((ra3=rb2) ∨ (ra3=rc2)∧¬imm2 ) ) →
( pause2: pause1: op3 ← 0 ):

 After such a stall, the hazard will be between stages 2 & 4,
detected by

( alu4∧alu2∧((ra4=rb2) ∨ (ra4=rc2) ∧¬imm2 ) ) →
( pause2: pause1: op3 ← 0 ):

 Hazards between stages 2 & 5 require
( alu5∧alu2∧ ((ra5=rb2) ∨ (ra5=rc2) ∧¬imm2 ) ) →

( pause2: pause1: op3 ← 0 ):

Fig 5.13
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Fig 5.14  Stall Due to a Dependence Between
Two alu Instructions
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Data Forwarding:
from alu Instruction to alu Instruction

 The pair table for data dependencies says that if forwarding is done,
dependent alu instructions can be adjacent, not 4 apart

 For this to work, dependences must be detected and data sent from
where it is available directly to X or Y input of ALU

 For a dependence of an alu inst. in stage 3 on an alu inst. in stage 5
the equation is

        alu5∧alu3 → ((ra5=rb3) → X3 ← Z5:

                             (ra5=rc3)∧¬imm3 → Y3 ← Z5 ):
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Data Forwarding:
alu to alu Instruction (continued)

 For an alu inst. in stage 3 depending on one in stage 4, the equation is
        alu4∧alu3 → ((ra4=rb3) → X3 ← Z4:

                             (ra4=rc3)∧¬imm3 → Y3 ← Z4 ):

 We can see that the rb and rc fields must be available in stage 3 for
hazard detection

 Multiplexers must be put on the X and Y inputs to the ALU so that Z4 or
Z5 can replace either X3 or Y3 as inputs
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Fig 5.15  alu to alu Data
Forwarding Hardware

 Can be from
either Z4 or Z5 to
either X or Y
input to ALU

 rb & rc needed in
stage 3 for
detection
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Restrictions Left If Forwarding Done Wherever
Possible

1) Branch delay slot
• The instruction after a branch is always executed, whether the

branch succeeds or not.
2) Load delay slot
• A register loaded from memory cannot be used as an operand

in the next instruction.
• A register loaded from memory cannot be used as a branch

target for the next two instructions.
3) Branch target
• Result register of alu or ladr instruction cannot be used as

branch target by the next instruction.

br r4
add . . .
 • • •

ld r4, 4(r5)
nop
neg r6, r4

ld r0, 1000
nop
nop
br r0

not r0, r1
nop
br r0
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Questions for Discussion

 How and when would you debug this design?

 How does RTN and similar Hardware Description
Languages fit into testing and debugging?

 What tools would you use, and which stage?

 What kind of software test routines would you use?

 How would you correct errors at each stage in the design?
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Instruction Level Parallelism

 A pipeline that is full of useful instructions completes at most
one every clock cycle

Sometimes called the Flynn limit
 If there are multiple function units and multiple instructions

have been fetched, then it is possible to start several at
once

 Two approaches are: superscalar
 Dynamically issue as many prefetched instructions to idle

function units as possible

 and Very Long Instruction Word (VLIW)
 Statically compile long instruction words with many operations

in a word, each for a different function unit
 Word size may be 128 or 256 or more bits.
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Character of the Function Units in Multiple Issue
Machines

 There may be different types of function units
 Floating point

 Integer

 Branch

 There can be more than one of the same type

 Each function unit is itself pipelined

 Branches become more of a problem
 There are fewer clock cycles between branches

 Branch units try to predict branch direction

 Instructions at branch target may be prefetched, and even
executed speculatively, in hopes the branch goes that way
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Example 5.2: Dual Issue VLIW version of SRC

 Two instructions per word. Word size 2x32 (64) bits

 Two pipelines, each almost the same as the previous pipeline design.

 Only pipeline 1 can execute memory-access instructions: ld, ldr, st, and
str
 Thus only one memory access per cycle.

 Only pipeline 2 can execute shr shra shl shc, br, and brl
 Assumes that a barrel shifter for the shift instructions is expensive and

needed only in one pipeline, located in stage 4 replacing the memory
access stage.

 Limits the execution unit to one branch instruction per word.

 Either pipeline can execute the other instructions: la, lar, add, addi, sub,
and, andi, or, ori, neg, not, nop, and stop.
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Figure 5.16: Structure of the Dual-Pipeline SRC
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Other features

 Register file may have 4 reads and two writes per cycle.
 Either provide more read and write ports, or incorporate two

register files, each an identical "shadow" copy of the other.

 No branch delay slot

 Instruction forwarding wherever possible.
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Figures 5.17a and b: SRC Programs to Compute the
Fibonacci Series on Single- and Dual-issue machines
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Fibonacci Program on the Dual-Issue Machine

 Total program length has been reduced from 11 lines to 9.
 The loop, where the program will spend most of its time, has been reduced

but only from 7 lines to 6 due to the imposed limitation that pipeline 2
cannot do memory accesses.

 If this limitation were removed, both loads could take place at line 3.

  The addi at line 3 would then be moved down to line 4, and line 5 could be
eliminated.

 These loads still need to be separated by two from the sum of the two
fibs in line 6 because of the hazard between load as writer and alu as
reader. See Table 5.1.

 The store at line 7 needs to be separated by one from the add in line 6
because of the undefined semantics of computing a value and using it
in an instruction in the same wide word.
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Figure 5.19: Dual-Issue SRC Pipelines and
Forwarding Paths
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Figure 5.20: Dynamic Information in Dual-Issue
SRC
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Figure 5.21: Operand Flow of st r8, 4(r7)
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Getting Specific: Some Commercial
Superscalar Processors

 PowerPC G4: Eleven pipelined functional units: 4 IUs, an FPU
with a separate floating point register file, a BPU, an LSU, and 4
VPUs. It is capable of executing sixteen instructions
simultaneously.

 Intel P6: Five functional units: 14-stage pipeline, 2 IUs, separate
load and store units, FPU and BPU. Since the P6 must execute
the CISC-like 80X86 instruction set, instructions entering the
pipeline are decoded and fragmented into simpler RISC-like
micro-ops, as they are called, which are dispatched to one of
the five functional units. Instructions may be executed out of
order, provided that doing so does not cause hazards.

 HP Alpha 21164: This processor has a 7-stage pipeline, 2 IUs,
and 2 FPUs: one for add/subtract, and one for multiply/divide,
branch prediction.
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The Superscalar IBM PowerPC 970

Figure courtesy Arstechnica
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Microprogramming: Basic Idea

 Control unit job is to generate the sequence of control signals

 How about building a computer to do this?

Step Concrete RTN Control Sequence
T0. MA ← PC: C ← PC+4; PCout, MAin, Inc4, Cin, Read
T1. MD ← M[MA]: PC ← C; Cout, PCin, Wait
T2. IR ← MD; MDout, IRin
T3. A ← R[rb]; Grb, Rout, Ain
T4. C ← A + R[rc]; Grc, Rout, ADD, Cin
T5. R[ra] ← C; Cout, Gra, Rin, End

• Recall control sequence for 1-bus SRC
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The Microcode Engine

 A computer to generate control signals is much simpler than an
ordinary computer

 At the simplest, it just reads the control signals in order from a
read only memory

 The memory is called the control store

 A control store word, or microinstruction, contains a bit pattern
telling which control signals are true in a specific step

 The major issue is determining the order in which
microinstructions are read



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 5.22  Block Diagram of a Microcoded
Control Unit

 Microinstruction has
branch control, branch
address, and control
signal fields

 Micro-program counter
can be set from several
sources to do the
required sequencing
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Parts of the Microprogrammed Control Unit

 Since the control signals are just read from memory, the main
function is sequencing

 This is reflected in the several ways the µPC can be loaded
 Output of incrementer—µPC+1

 PLA output—start address for a macroinstruction
 Branch address from µinstruction

 External source—say for exception or reset

 Micro conditional branches can depend on condition codes, data
path state, external signals, etc.
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Contents of a Microinstruction

 Main component is list of 1/0 control signal values

 There is a branch address in the control store

 There are branch control bits to determine when to use the
branch address and when to use µPC+1
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Figure 5.23: Layout of the Control Store

Microaddress

0

2n-1

µCode for instruction fetch

µCode for add

µCode for br

µCode for shr

a1

a2

a3

  m bits wide

  k µbranch
control bits

 n branch
addr. bits

  c control
signals

 Common inst.
fetch
sequence

 Separate
sequences for
each (macro)
instruction

 Wide words
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Size and Shape of System RAM vs Control Store

 System RAM is one
byte wide x 232 bytes
deep.

 Assume control store has 128
instructions, 128 bits wide, with
8 steps each.

 Control store would be 16 bytes
wide, but only 128x8 or 1024
words deep.

1024

16

232

1
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Table 5.2: Microinstruction Control Signals for
the add Instruction

 Addresses 101–103 are the instruction fetch

 Addresses 200–202 do the add
 Change of µcontrol from 103 to 200 uses a kind of µbranch

.

1 01
102
103
200
201
202

• • •
• • •
• • •
• • •
• • •
• • •

1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0
0
0

0 0 1 1 10 0 0 0 0 0 0 0 0 0 0 0
1 1 1 10 0 0 0 0 0 0 00 0 0 0 0

1 0 0 0 0 0 0 0 1 0 0 0 0 0 01 1
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Uses for µbranching in the Microprogrammed
Control Unit

 1) Branch to start of µcode for a specific inst.

 2) Conditional control signals, e.g. CON → PCin

 3) Looping on conditions, e.g. n≠0 → ... Goto6

 Conditions will control µbranches instead of being ANDed
with control signals

 Microbranches are frequent and control store addresses are
short, so it is reasonable to have a µbranch address field in
every µ instruction
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Illustration of µbranching Control Logic

 We illustrate a µbranching control scheme by a machine having
condition code bits N & Z

 Branch control has 2 parts:
 1) selecting the input applied to the µPC and

 2) specifying whether this input or µPC+1 is used

 We allow 4 possible inputs to µPC
 The incremented value µPC+1

 The PLA lookup table for the start of a macroinstruction

 An externally supplied address
 The branch address field in the µinstruction word
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Fig 5.24  Branching Controls in the Microcoded
Control Unit

 5 branch
conditions
 NotN

 N

 NotZ

 Z

 Uncondit.

 To 1 of 4 places
 Next µinst.

 PLA

 Extern. addr.

 Branch addr.
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Some Possible µbranches Using the Illustrated
Logic

 If the control signals are all zero, the µinst. only does a test

 Otherwise test is combined with data path activity

.

Control
Signals

Branch
Address Branching action

00
01
10
11
11
11

0
1

0 0 0 0
0 0 0 0

0 0 1
1

1
1

0 0
0 0 0 0
0 0 0 0

0 0 0 0
0•••0

•••
•••
•••
•••

•••

XXX
XXX
XXX
300
206
204

None—next instruction
Branch to output of PLA
Br if Z to Extern. Addr.
Br if N to 300 (else next)
Br if N to 206 (else next)
Br to 204
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 In horizontal microcode, each control signal is represented by a
bit in the µinstruction

 In vertical microcode, a set of true control signals is represented
by a shorter code

 The name horizontal implies fewer control store words of more
bits per word

 Vertical µcode only allows RTs in a step for which there is a
vertical µinstruction code

 Thus vertical µcode may take more control store words of fewer
bits

Horizontal Versus Vertical Microcode Schemes
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Fig 5.25  A Somewhat Vertical Encoding

 Scheme would save (16+7) - (4+3) = 16 bits/word in the case
illustrated
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Fig  5.26  Completely Horizontal and Vertical
Microcoding
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Saving Control Store Bits With Horizontal
Microcode

 Some control signals cannot possibly be true at the same time
 One and only one ALU function can be selected

 Only one register out gate can be true with a single bus

 Memory read and write cannot be true at the same step

 A set of m such signals can be encoded using log2m bits
(log2(m+1) to allow for no signal true)

 The raw control signals can then be generated by a k to 2k

decoder, where 2k ≥ m (or 2k ≥ m+1)

 This is a compromise between horizontal and vertical
encoding
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A Microprogrammed Control Unit for the 1-bus
SRC

 Using the 1-bus SRC data path design gives a specific set of
control signals

 There are no condition codes, but data path signals CON and
n=0 will need to be tested

 We will use µbranches BrCON, Brn=0, & Brn≠0

 We adopt the clocking logic of Fig. 4.9 on p. 4-20

 Logic for exception and reset signals is added to the
microcode sequencer logic

 Exception and reset are assumed to have been synchronized
to the clock
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Table 5.4 Microinstructions for SRC add

 Microbranching to the output of the PLA is shown at 102

 Microbranch to 100 at 202 starts next fetch

..

Addr.
Other
Control
Signals

B r
Addr. Actions

100

101

102

200

201

202

• • •

• • •

• • •

• • •

• • •

• • •

XXX

XXX

XXX

XXX

XXX

100 R[ra] ← C: µPC ← 100;

MA ← PC: C ← PC+4;

MD ← M[MA]: PC ← C;

IR ← MD; µPC ← PLA;

A ← R[rb];

C ← A + R[rc];

00 0 0 0 0 0 1 1

00 0 0 0 0 0 0 0

01 1 0 0 0 0 0 0

00

00

11

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 001 1



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Getting the PLA Output in Time for the
Microbranch

 So that the input to the PLA is correct for the µbranch in 102,
it has to come from MD, not IR

 An alternative is to use see-thru latches for IR so the op code
can pass through IR to PLA before the end of the clock cycle
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See-thru Latch Hardware for IR So µPC Can
Load Immediately

 Data must have
time to get from
MD across Bus,
through IR,
through the PLA,
and satisfy µPC
set up time before
trailing edge of S
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Fig 5.27  Microcode Sequencer Logic for SRC
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Table 5.6 A Somewhat Vertical Encoding of the
SRC Microinstruction
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Other Microprogramming Issues

 Multi-way branches: often an instruction can have 4-8 cases,
say address modes
 Could take 2-3 successive µbranches, i.e. clock pulses

 The bits selecting the case can be ORed into the branch address
of the µinstruction to get a several way branch

 Say if 2 bits were ORed into the 3rd & 4th bits from the low end, 4
possible addresses ending in 0000, 0100, 1000, and 1100 would
be generated as branch targets

 Advantage is a multi-way branch in one clock

 A hardware push-down stack for the µPC can turn repeated
µsequences into µsubroutines

 Vertical µcode can be implemented using a horizontal µengine,
sometimes called nanocode
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Chapter 5 Summary

 This chapter has dealt with some alternative ways of designing a
computer

 A pipelined design is aimed at making the computer fast—target
of one inst. per clock

 Forwarding, branch delay slot, and load delay slot are steps in
approaching this goal

 A static multiissue SRC design shows some of the strengths and
limitations of this architecture.

 Microprogramming is a design method with a target of easing the
design task, and allowing for easy design change or multiple
compatible implementations of the same instruction set


