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Chapter 2: Machines, Machine
Languages, and Digital Logic

Instruction sets, SRC, RTN, and the mapping of register
transfers to digital logic circuits
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Chapter 2 Topics

 2.1 Classification of Computers and Instructions

 2.2 Kinds and Classes of Instruction Sets

 2.3 Informal Description of the Simple RISC Computer, SRC
 Students may wish to consult Appendix C, Assembly and

Assemblers for information about assemblers and assembly.

 2.4 Formal Description of SRC using Register Transfer Notation
(RTN)

 2.5 RTN Description of Addressing Modes

 2.6 Register Transfers and Logic Circuits: from Behavior to
Hardware
 Students may wish to consult Appendix A, Digital Logic for

additional information about Digital Logic circuits.
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What are the components of an ISA?

 Sometimes known as The Programmers Model of the machine

 Storage cells
 General and special purpose registers in the CPU

 Many general purpose cells of same size in memory

 Storage associated with I/O devices

 The Machine Instruction Set
 The instruction set is the entire repertoire of machine operations

 Makes use of storage cells, formats, and results of the fetch/execute cycle

 i. e. Register Transfers

 The Instruction Format
 Size and meaning of fields within the instruction

 The nature of the Fetch/Execute cycle
 Things that are done before the operation code is known
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Fig. 2.1  Programmer’s Models of Various
Machines

We saw in Chap. 1  a variation in number and type of storage cells
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What Must an Instruction Specify?

 Which operation to perform: add r0, r1, r3
 Ans: Op code: add, load, branch, etc.

 Where to find the operand or operands add r0, r1, r3
 In CPU registers, memory cells, I/O locations, or part of instruction

 Place to store result add r0, r1, r3
 Again CPU register or memory cell

 Location of next instruction add r0, r1, r3 
br endloop

 The default is usually memory cell pointed to by program counter—PC:
the next instruction in sequence

 Sometimes there is no operand, or no result, or no next instruction. Can
you think of examples?

Data Flow
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Fig. 2.2 Accessing Memory—Reading from Memory

For a Memory Read:
CPU applies desired address to Address lines A0-An-1
CPU issues Read command, R
Memory returns the value at that address on Data lines D0-Db-1 and asserts
the COMPLETE signal
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Figure 2.2 Accessing Memory—Writing to Memory

For a Memory Write:
CPU applies desired address to Address lines A0-An-1 and and data to be written on
Data lines D0-Db-1
CPU issues Write command, W
Memory asserts the COMPLETE signal when the data has been written to memory.
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Instructions Can Be Divided into 3 Classes

 Data movement instructions
 Move data from a memory location or register to another memory location

or register without changing its form

 Load—source is memory and destination is register

 Store—source is register and destination is memory

 Arithmetic and logic (ALU) instructions
 Changes the form of one or more operands to produce a result stored in

another location

 Add, Sub, Shift, etc.

 Branch instructions (control flow instructions)
 Any instruction that alters the normal flow of control from executing the

next instruction in sequence

 Br Loc, Brz Loc2,—unconditional or conditional branches
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Tbl. 2.1  Examples of Data Movement
Instructions

 Lots of variation, even with one instruction type

 Notice differences in direction of data flow left-to-right or right-to-left



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Tbl 2.2  Examples of ALU
(Arithmetic and Logic Unit) Instructions

Instruction Meaning Machine
MULF A, B, C multiply the 32-bit floating point values at VAX11

mem loc’ns. A and B, store at C
nabs r3, r1 Store abs value of r1 in r3 PPC601
ori $2, $1, 255 Store logical OR of reg $ 1 with 255 into reg $2 MIPS R3000
DEC R2 Decrement the 16-bit value stored in reg R2 DEC PDP11
SHL AX, 4 Shift the 16-bit value in reg AX left by 4 bits Intel 8086

Notice again the complete dissimilarity of both syntax and semantics
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Tbl 2.3  Examples of Branch Instructions

Instruction Meaning Machine
BLSS A, Tgt Branch to address Tgt if the least significant VAX11

bit of mem loc’n. A is set (i.e. = 1)
bun  r2 Branch to location in R2 if result of previous PPC601

 floating point computation was Not a Number (NAN)
beq $2, $1, 32 Branch to location (PC + 4 + 32) if contents MIPS R3000

of $1 and $2 are equal
SOB R4, Loop Decrement R4 and branch to Loop if R4  ≠ 0 DEC PDP11
JCXZ Addr Jump to Addr if contents of register CX  = 0. Intel 8086
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CPU Registers Associated with Flow of
Control—Branch Insts.

 Program counter usually contains the address of, or "points to" the
next instruction

 Condition codes may control branch
 Branch targets may be contained in separate registers

Processor State

C N V Z
Program Counter

Branch Targets

Condition Codes
•
•
•
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HLL Conditionals Implemented by Control Flow
Change

 Conditions are computed by arithmetic instructions

 Program counter is changed to execute only instructions
associated with true conditions

;the comparison
;conditional branch
;action if true
;action if false
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CPU Registers may have a “personality”

 Architecture classes are often based on how where the operands
and result are located and how they are specified by the
instruction.

 They can be in CPU registers or main memory

Top
Second

Stack Arithmetic
Registers

Address
Registers

General Purpose
Registers

Push Pop

•
•
•

•
•
•

•
•
••

•
•

Stack Machine Accumulator Machine General Register
Machine
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3, 2, 1, & 0 Address Instructions

 The classification is based on arithmetic instructions that have two
operands and one result

 The key issue is “how many of these are specified by memory
addresses, as opposed to being specified implicitly”

 A 3 address instruction specifies memory addresses for both operands
and the result: R ← Op1 op Op2

 A 2 address instruction overwrites one operand in memory with the
result: Op2 ← Op1 op Op2

 A 1 address instruction  has a register, called the accumulator register
to hold one operand & the result (no address needed):
Acc ← Acc op Op1

 A 0 address + uses a CPU register stack to hold both operands and
the result: TOS ← TOS op SOS where TOS is Top Of Stack, SOS is
Second On Stack)

 The 4-address instruction, hardly ever seen, also allows the address of
the next instruction to specified explicitly.
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Fig. 2.3  The 4 Address Instruction

 Explicit addresses for operands, result & next instruction

 Example assumes 24-bit addresses
 Discuss: size of instruction in bytes
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Fig 2.4  The 3 Address Instruction

 Address of next instruction kept in a processor state register—the PC
(Except for explicit Branches/Jumps)

 Rest of addresses in instruction
 Discuss: savings in instruction word size



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig. 2.5 The 2 Address Instruction

 Be aware of the difference between address, Op1Addr, and data stored at that address,
Op1.

 Result overwrites  Operand 2, Op2, with result, Res
 This format needs only 2 addresses in the instruction but there is less choice in placing data
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Fig. 2.6  1 Address Instructions

 Special CPU register, the accumulator, supplies 1 operand and stores result

 One memory address used for other operand

We now need
instructions to load
and store
operands:
LDA OpAddr
STA OpAddr
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Fig. 2.7  The 0 Address Instruction

 Uses a push down stack in CPU

 Arithmetic uses stack for both operands. The result replaces them on the TOS

 Computer must have a 1 address instruction to push and pop operands to and
from the stack
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Example 2.1  Expression evaluation for 3-0
address instructions.

 # of instructions & # of addresses both vary

 Discuss as examples: size of code in each case

Evaluate a = (b+c)*d-e for 3- 2- 1- and 0-address machines.
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Fig. 2.8  General Register Machines

 It is the most common choice in today’s general purpose computers
 Which register is specified by small “address” (3 to 6 bits for 8 to 64 registers)
 Load and store have one long & one short address: 1 1/2 addresses
 2-Operand arithmetic instruction has 3 “half” addresses
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Real Machines are Not So Simple

 Most real machines have a mixture of 3, 2, 1, 0, 1 1/2 address
instructions

 A distinction can be made on whether arithmetic instructions
use data from memory

 If ALU instructions only use registers for operands and result,
machine type is load-store
 Only load and store instructions reference memory

 Other machines have a mix of register-memory and  memory-
memory instructions
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Addressing Modes

 An addressing mode is hardware support for a useful way of
determining a memory address

 Different addressing modes solve different HLL problems
 Some addresses may be known at compile time, e.g.  global vars.

 Others may not be known until run time, e.g. pointers

 Addresses may have to be computed: Examples include:
 Record (struct) components:

 variable base(full address) + const.(small)

 Array components:
 const. base(full address) + index var.(small)

 Possible to store constant values w/o using another memory cell by
storing them with or adjacent to the instruction itself.
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HLL Examples of Structured Addresses

 C language:  rec -> count
 rec is a pointer to a record: full address variable

 count is a field name: fixed byte offset, say 24

 C language:  v[i]
 v is fixed base address of array: full address constant

 i is name of variable index: no larger than array size

 Variables must be contained in registers or memory cells

 Small constants can be contained in  the instruction

 Result: need for “address arithmetic.”
 E.g. Address of Rec -> Count is address of Rec + offset of

count.

Rec →
Count

V →
V[i]
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Fig 2.9  Common Addressing Modes a-d
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Fig 2.9  Common Addressing Modes e-g
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Fig. 2.10a Example Computer, SRC
Simple RISC Computer

 32 general purpose registers of 32 bits

 32 bit program counter, PC and instruction reg., IR

 232 bytes of memory address space
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SRC Characteristics

 (=) Load-store design: only way to access memory is through load and store
instructions

 (–) Operation on 32-bit words only, no byte or half-word operations.
 (=) Only a few addressing modes are supported
 (=) ALU Instructions are 3-register type
 (–) Branch instructions can branch unconditionally or conditionally on whether

the value in a specified register is = 0,  <> 0,  >= 0, or < 0.
 (–) Branch-and-link instructions are similar, but leave the  value of current PC

in any register, useful for subroutine return.
 (–) Can only branch to an address in a register, not to a direct address.
 (=) All instructions are 32-bits (1-word) long.

     (=) – Similar to commercial RISC machines
     (–) – Less powerful than commercial RISC machines.
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SRC Basic Instruction Formats

 There are three basic instruction format types

 The number of register specifier fields and length of the
constant field vary

 Other formats result from unused fields or parts

• Details of formats:



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 2.10 cont'd.  SRC
instructions
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Tbl 2.4 Example Load & Store Instructions:
Memory Addressing

 Address can be constant, constant+register, or constant+PC

 Memory contents or address itself can be loaded

(note use of la  to load a  constant)

Instruction op ra rb c1 Meaning Addressing Mode
ld r1, 32 1 1 0 32 R[1] ← M[32] Direct
ld r22, 24(r4) 1 22 4 24 R[22] ← M[24+R[4]] Displacement
st r4, 0(r9) 3 4 9 0 M[R[9]] ← R[4] Register indirect
la r7, 32 5 7 0 32 R[7] ← 32 Immediate
ldr r12, -48 2 12 – -48 R[12] ← M[PC -48] Relative
lar r3, 0 6 3 – 0 R[3] ← PC Register (!)
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Assembly Language Forms of Arithmetic and
Logic Instructions

 Immediate subtract not needed since constant in addi may be
negative

Format Example Meaning
neg ra, rc neg r1, r2 ;Negate (r1 = -r2)
not ra, rc not r2, r3 ;Not  (r2 =  r3´ )
add ra, rb, rc add r2, r3, r4 ;2’s complement addition
sub ra, rb, rc ;2’s complement subtraction
and ra, rb, rc ;Logical and
or ra, rb, rc ;Logical or
addi ra, rb, c2 addi r1, r3, 1 ;Immediate 2’s complement add
andi ra, rb, c2 ;Immediate logical and
ori ra, rb, c2 ;Immediate logical or
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Branch Instruction Format

There are actually only two branch op codes:
br rb, rc, c3<2..0> ;branch to R[rb] if R[rc] meets

; the condition defined by c3<2..0>
brl ra, rb,  rc, c3<2..0> ; R[ra] ← PC; branch as above

lsbs condition Assy language form Example
000 never brlnv brlnv r6
001 always br, brl br r5, brl r5
010 if rc = 0 brzr, brlzr brzr r2, r4
011 if rc ≠ 0 brnz, brlnz
100 if rc ≥ 0 brpl, brlpl
101 if rc < 0 brmi, brlmi

• It is c3<2..0>, the 3 lsbs of c3,  that governs what the branch condition is:

• Note that branch target address is always in register R[rb]. 
•It must be placed there explicitly by a previous instruction.
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Tbl. 2.6  Branch Instruction Examples

Ass’y
lang.

Example instr. Meaning op ra rb rc c3
〈2..0〉

Branch
Cond’n.

brlnv brlnv r6 R[6] ← PC 9 6 — — 000 never
br br r4 PC ← R[4] 8 — 4 — 001 always
brl brl r6,r4 R[6] ← PC;

PC ← R[4]
9 6 4 — 001 always

brzr brzr r5,r1 if (R[1]=0)
PC ← R[5]

8 — 5 1 010 zero

brlzr brlzr r7,r5,r1 R[7] ← PC; 9 7 5 1 010 zero
brnz brnz r1, r0 if (R[0]≠0) PC← R[1] 8 — 1 0 011 nonzero
brlnz brlnz r2,r1,r0 R[2] ← PC;

if (R[0]≠0) PC← R[1]
9 2 1 0 011 nonzero

brpl brpl r3, r2 if (R[2]≥0) PC← R[3] 8 — 3 2 100 plus
brlpl brlpl r4,r3,r2 R[4] ← PC;

if (R[2]≥0) PC← R[3]
9 4 3 2 plus

brmi brmi r0, r1 if (R[1]<0) PC← R[0] 8 — 0 1 101 minus
brlmi brlmi r3,r0,r1 R[3] ← PC;

if (r1<0) PC← R[0]
9 3 0 1 minus
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Branch Instructions—Example

C: goto Label3

SRC:

 lar  r0,  Label3 ; put branch target address into tgt reg.

br r0 ; and branch

 •  •  •

Label3 • • •
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Example of conditional branch

in C: #define Cost 125

if (X<0) then X = -X;

in SRC:

Cost .equ 125 ;define symbolic constant

.org 1000 ;next word will be loaded at address 100010

X: .dw 1 ;reserve 1 word for variable X

.org 5000 ;program will be loaded at location 500010

lar r31, Over ;load address of “false” jump location

ld r1, X ;load value of X into r1

brpl r31, r1 ;branch to Else if r1≥0

neg r1, r1 ;negate value

Over: • • • ;continue
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RTN (Register Transfer Notation)

 Provides a formal means of describing machine structure
and function

 Is at the “just right” level for machine descriptions

 Does not replace hardware description languages.

 Can be used to describe what a machine does (an
Abstract RTN) without describing how  the machine does
it.

 Can also be used to describe a particular hardware
implementation (A Concrete RTN)
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RTN Notation (Cont’d.)

 At first you may find this “meta description” confusing, because it
is a language that is used to describe a language.

 You will find that developing a familiarity with RTN will aid
greatly in your understanding of new machine design concepts.

 We will describe RTN by using it to describe SRC.
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Some RTN Features—
Using RTN to describe a machine’s static properties

 Static Properties

 Specifying registers
 IR〈31..0〉 specifies a register named “IR” having 32 bits numbered 31 to 0

 “Naming” using the := naming operator:
 op〈4..0〉 := IR〈31..27〉 specifies that the 5 msbs of IR be called op, with bits 4..0.

 Notice that this does not create a new register, it just generates another name,
or “alias” for an already existing register or part of a register.
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Using RTN to describe
Dynamic Properties

 Dynamic  Properties
• Conditional expressions:

(op=12) → R[ra] ← R[rb] + R[rc]:    ; defines the add instruction

“if” condition   “then”    RTN Assignment Operator

This fragment of RTN describes the SRC add instruction. It says,
 “when the op field of IR = 12, then store in the register specified 
   by the ra field, the result of adding the register specified by the 
   rb field to the register specified by the rc field.”
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Using RTN to describe the SRC (static)
Processor State

Processor state
     PC〈31..0〉: program counter 

 (memory addr. of next inst.)
     IR〈31..0〉: instruction register
     Run: one bit run/halt indicator
     Strt: start signal
     R[0..31]〈31..0〉: general purpose registers
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RTN Register Declarations

 General register specifications shows some features of the
notation

 Describes a set of 32 32-bit registers with names R[0] to R[31]

R[0..31]〈31..0〉:
Name of
registers

Register #
in square
brackets

.. specifies
a range of
indices

msb #

lsb# Bit # in
angle
brackets

Colon separates
statements with
no ordering
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Memory Declaration:
RTN Naming Operator

 Defining names with formal parameters is a powerful
formatting tool

 Used here to define word memory (big endian)

Main memory state
     Mem[0..232 - 1]〈7..0〉: 232 addressable bytes of memory
     M[x]〈31..0〉 := Mem[x]#Mem[x+1]#Mem[x+2]#Mem[x+3]:

Dummy
parameter

Naming
operator

Concatenation
operator

All bits in
register if no
bit index given
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RTN Instruction Formatting Uses Renaming of
IR Bits

Instruction formats
     op〈4..0〉 := IR〈31..27〉: operation code field
     ra〈4..0〉 := IR〈26..22〉: target register field
     rb〈4..0〉 := IR〈21..17〉: operand, address index, or
                                                  branch target register
     rc〈4..0〉 := IR〈16..12〉: second operand, conditional
                                                  test, or shift count register
     c1〈21..0〉 := IR〈21..0〉: long displacement field
     c2〈16..0〉 := IR〈16..0〉: short displacement or
                                                  immediate field
     c3〈11..0〉 := IR〈11..0〉: count or modifier field
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Specifying dynamic properties of SRC:
RTN Gives Specifics of Address Calculation

 Renaming defines displacement and relative addrs.

 New RTN notation is used
 condition → expression  means  if condition then expression

 modifiers in { } describe type of arithmetic or how short numbers are
extended to longer ones

 arithmetic operators (+ - * / etc.) can be used in expressions

 Register R[0] cannot be added to a displacement

Effective address calculations (occur at runtime):

     disp〈31..0〉 := ((rb=0) → c2〈16..0〉 {sign extend}:          displacement
(rb≠0) → R[rb] + c2〈16..0〉 {sign extend, 2's comp.} ):      address

     rel〈31..0〉 := PC〈31..0〉 + c1〈21..0〉 {sign extend, 2’s comp.}:    relative
address
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Detailed Questions Answered by the RTN for
Addresses

 What set of memory cells can be addressed by direct
addressing (displacement with rb=0)
 If c2〈16〉=0 (positive displacement) absolute addresses range from

00000000H to 0000FFFFH
 If c2〈16〉=1 (negative displacement) absolute addresses range from

FFFF0000H to FFFFFFFFH

 What range of memory addresses can be specified by a relative
address
 The largest positive value of C1〈21..0〉 is 221-1 and its most

negative value is -221, so addresses up to 221-1 forward and 221

backward from the current PC value can be specified

 Note the difference between rb and R[rb]
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Instruction Interpretation: RTN Description of
Fetch/Execute

 Need to describe actions (not just declarations)

 Some new notation

instruction_interpretation := (
¬Run∧Strt → Run ← 1:
Run → (IR ← M[PC]: PC ← PC + 4; instruction_execution) );

Logical NOT
Logical AND

Register transfer Separates statements
that occur in sequence
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RTN Sequence and Clocking

 In general, RTN statements separated by  :  take place during
the same clock pulse

 Statements separated by  ;  take place on successive clock
pulses

 This is not entirely accurate since some things written with one
RTN statement can take several clocks to perform

 More precise difference between : and ;
 The order of execution of statements separated by  :  does not

matter

 If statements are separated by  ;  the one on the left must be
complete before the one on the right starts
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 More about  Instruction Interpretation RTN

 In the expression IR ← M[PC]: PC ← PC + 4;  which value of
PC applies to M[PC] ?

 The rule in RTN is that all right hand sides of   “:” - separated
RTs are evaluated before any LHS is changed
 In logic design, this corresponds to “master-slave” operation of

flip-flops

 We see what happens when Run is true and when Run is
false but Strt is true. What about the case of Run and Strt
both false?
 Since no action is specified for this case, the RTN implicitly says

that no action occurs in this case
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Individual Instructions

 instruction_interpretation contained a forward reference to
instruction_execution

 instruction_execution is a long list of conditional operations
 The condition is that the op code specifies a given inst.

 The operation describes what that instruction does

 Note that the operations of the instruction are done after (;) the
instruction is put into IR and the PC has been advanced to the
next inst.
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RTN Instruction Execution for Load and Store
Instructions

 The in-line definition (:= op=1) saves writing a separate definition
ld := op=1  for the ld mnemonic

 The previous definitions of disp and rel are needed to understand
all the details

instruction_execution := (
     ld (:= op= 1) → R[ra] ← M[disp]: load register
     ldr (:= op= 2) → R[ra] ← M[rel]: load register relative
     st (:= op= 3) → M[disp] ← R[ra]: store register
     str (:= op= 4) → M[rel] ← R[ra]: store register relative
     la (:= op= 5 ) → R[ra] ← disp:load displacement address
     lar (:= op= 6) → R[ra] ← rel: load relative address
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SRC RTN—The Main Loop

ii := (  ¬Run∧Strt → Run ← 1:
Run → (IR ← M[PC]: PC ← PC + 4; 
ie) );

ii := instruction_interpretation: 
ie :=  instruction_execution : 

ie := (
     ld (:= op= 1) → R[ra] ← M[disp]: Big switch
     ldr (:= op= 2) → R[ra] ← M[rel]: statement
     . . . on the opcode
     stop (:= op= 31) → Run ← 0:
);  ii

Thus ii and ie invoke each other, as coroutines.
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Use of RTN Definitions:
Text Substitution Semantics

 An example:
 If IR = 00001 00101 00011 00000000000001011
 then ld → R[5] ←  M[ R[3] + 11 ]:

 ld (:= op= 1) → R[ra] ← M[disp]:
disp〈31..0〉 := ((rb=0) → c2〈16..0〉 {sign extend}:

(rb≠0) → R[rb] + c2〈16..0〉 {sign extend, 2's comp.} ):

 ld (:= op= 1) → R[ra] ← M[
                           ((rb=0) → c2〈16..0〉 {sign extend}:

              (rb≠0) → R[rb] + c2〈16..0〉 {sign extend, 2's comp.} ):
                                                              ]:
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RTN Descriptions of SRC Branch Instructions

 Branch condition determined by 3 lsbs of inst.

 Link register (R[ra]) set to point to next inst.

cond := ( c3〈2..0〉=0 → 0: never
c3〈2..0〉=1 → 1: always
c3〈2..0〉=2 → R[rc]=0: if register is zero
c3〈2..0〉=3 → R[rc]≠0: if register is nonzero
c3〈2..0〉=4 → R[rc]〈31〉=0: if positive or zero
c3〈2..0〉=5 → R[rc]〈31〉=1 ): if negative

br (:= op= 8) → (cond → PC ← R[rb]): conditional branch
brl (:= op= 9) → (R[ra] ← PC: 

  cond → (PC ← R[rb]) ): branch and link
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RTN for Arithmetic and Logic

 Logical operators: and ∧ or ∨ and not ¬

add (:= op=12) → R[ra] ← R[rb] + R[rc]:
addi (:= op=13) → R[ra] ← R[rb] + c2〈16..0〉 {2's comp. sign ext.}:
sub (:= op=14) → R[ra] ← R[rb] - R[rc]:
neg (:= op=15) → R[ra] ← -R[rc]:
and (:= op=20) → R[ra] ← R[rb] ∧ R[rc]:
andi (:= op=21) → R[ra] ← R[rb] ∧ c2〈16..0〉 {sign extend}:
or (:= op=22) → R[ra] ← R[rb] ∨ R[rc]:
ori (:= op=23) → R[ra] ← R[rb] ∨ c2〈16..0〉 {sign extend}:
not (:= op=24) → R[ra] ←  ¬R[rc]:
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RTN for Shift Instructions

 Count may be 5 lsbs of a register or the instruction
 Notation: @ - replication, # - concatenation

n := ( (c3〈4..0〉=0) → R[rc]〈4..0〉:
(c3〈4..0〉≠0) → c3〈4..0〉 ):

shr (:= op=26) → R[ra]〈31..0〉 ← (n @ 0) # R[rb]〈31..n〉:
shra (:= op=27) → R[ra]〈31..0〉 ← (n @ R[rb]〈31〉) # R[rb]〈31..n〉:
shl (:= op=28) → R[ra]〈31..0〉 ← R[rb]〈31-n..0〉 # (n @ 0):
shc (:= op=29) → R[ra]〈31..0〉 ← R[rb]〈31-n..0〉 # R[rb]〈31..32-n〉:
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Example of Replication and Concatenation in
Shift

 Arithmetic shift right by 13 concatenates 13 copies of the sign bit
with the upper 19 bits of the operand

shra  r1, r2, 13

1001 0111 1110 1010 1110 1100 0001 0110

13@R[2]〈31〉 R[2]〈31..13〉
100 1011 1111 0101 0111

R[2]=

#
1111 1111 1111 1R[1]=



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Assembly Language for Shift

 Form of assembly language instruction tells whether to set c3=0

shr ra, rb, rc ;Shift rb right into ra by 5 lsbs of rc
shr ra, rb, count ;Shift rb right into ra by 5 lsbs of inst
shra ra, rb, rc ;AShift rb right into ra by 5 lsbs of rc
shra ra, rb, count ;AShift rb right into ra by 5 lsbs of inst
shl ra, rb, rc ;Shift rb left into ra by 5 lsbs of rc
shl ra, rb, count ;Shift rb left into ra by 5 lsbs of inst
shc ra, rb, rc ;Shift rb circ. into ra by 5 lsbs of rc
shc ra, rb, count;Shift rb circ. into ra by 5 lsbs of inst
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End of RTN Definition of instruction_execution

 We will find special use for nop in pipelining

 The machine waits for Strt after executing stop

 The long conditional statement defining instruction_execution
ends with a direction to go repeat instruction_interpretation,
which will fetch and execute the next instruction (if Run still =1)

nop (:= op= 0) → : No operation
stop (:= op= 31) → Run ← 0: Stop instruction 
); End of instruction_execution
 instruction_interpretation.
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Confused about RTN and SRC?

 SRC is a Machine Language
 It can be interpreted by either hardware or software simulator.

 RTN is a Specification Language
 Specification languages are languages that are used to

specify other languages or systems—a metalanguage.

 Other examples: LEX, YACC, VHDL, Verilog

Figure 2.10 may help clear this up...
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Fig 2.11   The Relationship of RTN to SRC
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A Note about Specification Languages

 They allow the description of what without having to specify how.

 They allow precise and unambiguous specifications, unlike natural language.

 They reduce errors:
 errors due to misinterpretation of imprecise specifications written in natural language

 errors due to confusion in design and implementation - “human error.”

 Now the designer must debug the specification!

 Specifications can be automatically checked and processed by tools.
 An RTN specification could be input to a simulator generator that would produce a

simulator for the specified machine.

 An RTN specification could be input to a compiler generator that would generate a
compiler for the language, whose output could be run on the simulator.
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Addressing Modes Described in RTN (Not SRC)

Mode name      Assembler RTN meaning    Use
                                Syntax
Register               Ra R[t] ← R[a] Tmp. Var.
Register indirect        (Ra) R[t] ← M[R[a]] Pointer
Immediate       #X       R[t] ← X Constant
Direct, absolute           X       R[t] ← M[X] Global Var.
Indirect                    (X) R[t] ← M[ M[X] ] Pointer Var.
Indexed, based,        X(Ra) R[t] ← M[X + R[a]] Arrays, structs
or displacement
Relative                     X(PC) R[t] ← M[X + PC] Vals stored w pgm
Autoincrement         (Ra)+ R[t] ← M[R[a]]; R[a] ← R[a] + 1 Sequential
Autodecrement        - (Ra) R[a] ← R[a] - 1; R[t] ← M[R[a]] access.

Target register
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Fig. 2.12  Register transfers can be mapped to Digital
Logic Circuits.

 Implementing the RTN statement  A ← B
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Fig. 2.13 Multiple Bit Register Transfer

 Implementing  A〈m..1〉 ← B〈m..1〉
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Fig. 2.14  Data Transmission View of Logic
Gates

 Logic gates can be used to control the transmission of data:
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Fig. 2.15  Multiplexer as a 2 Way Gated Merge

 Data from multiple sources can be selected for transmission
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Fig. 2.16  m-bit Multiplexer and Symbol

 Multiplexer gate signals Gi may be produced by a binary to one-out-of-n decoder
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Fig. 2.17  Separating Merged Data

 Merged data can be separated by gating at the right time
 It can also be strobed into a flip-flop when valid
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Fig. 2.18   Multiplexed Register Transfers using
Gates and Strobes

 Selected gate and strobe determine which Register is Transferred to where.
 A←C, and B←C can occur together, but not A←C, and B←D



S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig. 2.19  Open-Collector NAND Gate Output
Circuit
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Fig. 2.20  Wired AND Connection of Open-
Collector Gates
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Fig. 2.21  Open Collector Wired OR Bus

 DeMorgan’s OR by not of AND of nots

 Pull-up resistor removed from each gate - open collector

 One pull-up resistor for whole bus

 Forms an OR distributed over the connection
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Fig. 2.22 Tri-state Gate Internal Structure and
Symbol
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Fig. 2.23  Registers Connected by a
Tri-state Bus

 Can make any register transfer R[i]←R[j]

 Can’t have Gi = Gj = 1 for i≠j

 Violating this constraint gives low resistance path from power supply to
ground—with predictable results!
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Fig. 2.24  Registers and Arithmetic Connected
by One Bus

Combinational
Logic—no
memory

Example
Abstract RTN
R[3] ← R[1]+R[2];

 Concrete RTN
Y ← R[2];
Z ← R[1]+Y;
R[3] ← Z;

Control Sequence
R[2]out, Yin;
R[1]out, Zin;
Zout, R[3]in;

Notice that what could be described in one step in the abstract RTN took
three steps on this particular hardware
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Figure 2.25 Timing of the Register Transfers

 Discuss: difference
between gating
signals and strobing
signals

 Discuss factors
influencing
minimum clock
period.
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RT’s Possible with the One Bus Structure

 R[i] or Y can get the contents of anything but Y

 Since result different from operand, it cannot go on the bus that is
carrying the operand

 Arithmetic units thus have result registers

 Only one of two operands can be on the bus at a time, so adder has
register for one operand

 R[i] ← R[j] + R[k] is performed in 3 steps: Y←R[k]; Z←R[j] + Y; R[i]←Z;

 R[i] ← R[j] + R[k] is high level RTN description

 Y←R[k]; Z←R[j] + Y; R[i]←Z; is concrete RTN

 Map to control sequence is: R[2]out, Yin; R[1]out, Zin; Zout, R[3]in;
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From Abstract RTN to Concrete RTN to Control
Sequences

 The ability to begin with an abstract description, then describe
a hardware design and resulting concrete RTN and control
sequence is powerful.

 We shall use this method in Chapter 4 to develop various
hardware designs for SRC
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Chapter 2 Summary

 Classes of computer ISAs

 Memory addressing modes

 SRC: a complete example ISA

 RTN as a description method for ISAs

 RTN description of addressing modes

 Implementation of RTN operations with digital logic circuits

 Gates, strobes, and multiplexers


