
S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Computer Systems
Design and Architecture

Vincent P. Heuring

and

Harry F. Jordan

Department of Electrical and Computer Engineering

University of Colorado - Boulder

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Course Goals: Understanding Structure and Function of Digital
Computer at 3 Levels

 Multiple levels of computer operation
 Application level
 High Level Language(s), HLL, level(s)
 Assembly/machine language level: instruction set
 System architecture level: subsystems & connections
 Digital logic level: gates, memory elements, buses
 Electronic design level
 Semiconductor physics level

 Interactions and relations between levels
 View of machine at each level
 Tasks and tools at each level

 Historical perspective
 Trends and research activities

This
course

Real Course Goal: No Mysteries

The goal of CSDA is to treat the design and
architecture of computer systems at a level of detail

that leaves “no mysteries” in computer systems design.

This “no mysteries” approach is followed throughout
the text, from instruction set design to the logic-gate-

design of the CPU data path and control unit out to the
memory, disk, and network.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Prerequisites

 Experience with a high level language
 Pascal

 C, etc.

 Assembly language programming

 Digital logic circuits
 Appendix A summarizes logic design in sufficient detail so the

text can be used in courses without digital logic circuits as a
prerequisite.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Text Overview

 1: The General Purpose Machine

 2: Machines, Machine Languages, and Digital Logic

 3: Some Real Machines

 4: Processor Design at the Gate Level

 5: Processor Design - Advanced Topics

 6: Computer Arithmetic and the Arithmetic Unit

 7: Memory System Design

 8: Input and Output

 9: Peripheral Devices

 10: Communications, Networking and the Internet

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Chapter 1 Summary

Views Views of the General Purpose Machine:

1.2 The User’s View

1.3 The Assembly/Machine Language Programmer’s View
Instruction set architecture - ISA

Registers, memory, and instructions

The stored program

The fetch execute cycle

1.4 The Computer Architect’s View
System design & balance

1.5 The Digital Logic Designer’s View
Realization of specified function—from concept to logic hardware

 Also discussed: Historical Perspective, Trends and Research,
Approach of the Text

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Looking Ahead - Chapter 2
Explores the nature of machines and machine languages

 Relationship of machines and languages

 Generic 32 bit Simple RISC Computer - SRC

 Register transfer notation - RTN
 The main function of the CPU is the Register Transfer

 RTN provides a formal specification of machine structure and function

 Maps directly to hardware

 RTN and SRC will be used for examples in subsequent chapters

 Provides a general discussion of addressing modes

 Covers quantitative estimates of system performance

 For students without digital logic design background Appendix A should be
covered at this point.

 Presents a view of logic design aimed at implementing registers and register
transfers, including timing considerations.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Looking Ahead - Chapter 3

 Treats two real machines of different types - CISC and RISC - in
some depth
 Discusses general machine characteristics and performance
 Differences in design philosophies of

 CISC (Complex instruction Set Computer) and
 RISC (Reduced Instruction Set Computer) architectures

 CISC machine - Motorola MC68000
 Applies RTN to the description of real machines

 RISC machine - SPARC

 Introduces quantitative performance estimation
 Java-based simulators are available for subsets of both

machines, MC68000 and SPARC subset, ARC.
 Run on PC, Mac OS X, Linux, and Unix

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Looking Ahead - Chapter 4
This keystone chapter describes processor design at the logic gate level

 Describes the connection between the instruction set and
the hardware

 Develops alternative 1- 2- and 3- bus designs of SRC at
the gate level

 RTN provides description of structure and function at low
and high levels

 Shows how to design the control unit that makes it all run

 Describes two additional machine features:
 implementation of exceptions (interrupts)

 machine reset capability

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Looking Ahead - Chapter 5
Important advanced topics in CPU design

 General discussion of pipelining—having more than one instruction
executing simultaneously
 requirements on the instruction set

 how instruction classes influence design

 pipeline hazards: detection & management

 Design of a pipelined version of SRC

 Instruction-level parallelism—issuing more than one instruction
simultaneously
 Superscalar and VLIW designs

 Design a VLIW version of SRC

 Microcoding as a way to implement control

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Looking Ahead - Chapter 6
The arithmetic and logic unit: ALU

 Impact of the ALU on system performance

 Digital number systems and arithmetic in an arbitrary radix
 number systems and radix conversion

 integer add, subtract, multiply, and divide

 Time/space trade-offs: fast parallel arithmetic

 Floating point representations and operations

 Branching and the ALU

 Logic operations

 ALU hardware design

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Looking Ahead - Chapter 7
The memory subsystem of the computer

 Structure of 1-bit RAM and ROM cells

 RAM chips, boards, and modules

 SDRAM and DDR RAM

 Concept of a memory hierarchy
 The nature and functioning of different levels

 The interaction of adjacent levels

 Virtual memory
 Temporal and spatial locality are what makes it work

 Cache design: matching cache & main memory

 Memory as a complete system

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Looking Ahead - Chapter 8
Computer input and output: I/O

 Kinds of system buses, signals and timing

 Serial and parallel interfaces

 Interrupts and the I/O system

 Direct memory access - DMA

 DMA, interrupts, and the I/O system

 The hardware/software interface: device drivers

 Encoding signals with error detection and correction capabilities

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Looking Ahead - Chapter 9
Structure, function and performance of peripheral devices

 Disk drives
 Organization
 Static and dynamic properties
 Disk system reliability–SMART disk systems
 RAID disk arrays

 Video display terminals
 Memory mapped video
 Printers
 Mouse and keyboard
 Interfacing to the analog world

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Looking Ahead - Chapter 10
Computer communications, networking, and the Internet

 Communications protocols; layered networks
 The OSI layer model
 Point to point communication: RS-232 & ASCII
 Local area networks - LANs

 Example: Ethernet, including Gigabit Ethernet

 Modern serial buses: USB and FireWire
 Internetworking and the Internet

 TCP/IP protocol stack
 Packet routing and routers
 IP addresses: assignment and use
 Nets and subnets: subnet masks
 Reducing wasted IP address space: CIDR, NAT, and DHCP

 Internet applications and futures

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Appendices

 Appendix A: Digital logic circuits

 Appendix B: Complete SRC documentation

 Appendix C: Assembly and assemblers

 Appendix D: Selected problems and solutions

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Problem Solving

There are four steps to problem solving:

1. UNDERSTAND THE PROBLEM!

2. Have an idea about how to go about solving it (pondering)

3. Show that your idea works

4. Then and only then work on the solution

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Chapter 1 - A Perspective

 Alan Turing showed that an abstract computer, a Turing
machine, can compute any function that is computable by any
means

 A general purpose computer with enough memory is
equivalent to a Turing machine

 Over 50 years, computers have evolved
 from memory size of 1 kiloword (1024 words) and clock periods

of 1 millisecond (0.001 s.)

 to memory size of a terabyte (240 bytes) and clock periods of 100
ps. (10-12 s.) and shorter

 More speed and capacity is needed for many applications,
such as real-time 3D animation, various simulations

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Scales, Units, and Conventions

Term

K (kilo-)

M (mega-)

G (giga-)

T (tera-)

10 3

10 6

10 9

10 12

2 10 = 1024

2 20 = 1,048,576

2 30 = 1,073,741,824

2 40 = 1,099,511,627,776

Normal Usage As a power of 2

Term Usage
m (milli-)
µ (micro-)

n (nano-)
p (pico-)

10 -3

10 -6

10 -9

10 -12

Units: Bit (b), Byte (B), Nibble, Word (w), Double Word, Long Word
 Second (s), Hertz (Hz)

Powers of 2 are
used to describe
memory sizes.

Note the
differences
between usages.
You should commit
the powers of 2 and
10 to memory.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 1.1 The User’s View of a Computer

The user sees software, speed, storage capacity,
and peripheral device functionality.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Machine/assembly Language Programmer’s
View

 Machine language:
 Set of fundamental instructions the machine can execute

 Expressed as a pattern of 1’s and 0’s

 Assembly language:
 Alphanumeric equivalent of machine language

 Mnemonics more human oriented than 1’s and 0’s

 Assembler:
 Computer program that transliterates (one-to-one mapping)

assembly to machine language

 Computer’s native language is assembly/machine language

 “Programmer”, as used in this course, means
assembly/machine language programmer

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Machine and Assembly Language

 The assembler converts assembly language to machine language. You
must also know how to do this.

Table 1.2 Two Motorola MC68000 instructions

MC68000 Assembly Language Machine Language

0011 101 000 000 100

ADDI.W #9, D2 0000 000 010 111 100
0000 0000 0000 1001

MOVE.W D4, D5

Op code Data reg. #5 Data reg. #4

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

The Stored Program Concept

 It is the basic operating principle for every computer.

 It is so common that it is taken for granted.

 Without it, every instruction would have to be initiated manually.

The stored program concept says that the program
is stored with data in the computer’s memory. The
computer is able to manipulate it as data—for
example, to load it from disk, move it in memory,
and store it back on disk.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 1.2 The Fetch-Execute Cycle

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Programmer’s Model:
Instruction Set Architecture (ISA)

 Instruction set: the collection of all machine operations.

 Programmer sees set of instructions, along with the machine
resources manipulated by them.

 ISA includes
 instruction set,

 memory, and

 programmer accessible registers of the system.

 There may be temporary or scratch-pad memory used to
implement some function is not part of ISA.
 “Non Programmer Accessible.”

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 1.3 Programmer’s Models of 4 commercial
machines

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Machine, Processor, and Memory State

 The Machine State: contents of all registers in system,
accessible to programmer or not

 The Processor State: registers internal to the CPU

 The Memory State: contents of registers in the memory system

 “State” is used in the formal finite state machine sense

 Maintaining or restoring the machine and processor state is
important to many operations, especially procedure calls and
interrupts

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Data Type: HLL Versus Machine Language

 HLL’s provide type checking
 Verifies proper use of variables at compile time

 Allows compiler to determine memory requirements

 Helps detect bad programming practices

 Most machines have no type checking
 The machine sees only strings of bits

 Instructions interpret the strings as a type: usually limited to signed
or unsigned integers and FP #s

 A given 32 bit word might be an instruction, an integer, a FP #, or
four ASCII characters

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Tbl 1.3 Examples of HLL to Assembly
Language Mapping

 This compiler:
 Maps C integers to 32 bit VAX integers

 Maps C assign, *, and + to VAX MOV, MPY, and ADD

 Maps C goto to VAX BR instruction

 The compiler writer must develop this mapping for each
language-machine pair

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Tools of the Assembly Language Programmer’s
Trade

 The assembler

 The linker

 The debugger or monitor

 The development system

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Who Uses Assembly Language

 The machine designer
 must implement and trade-off instruction functionality

 The compiler writer
 must generate machine language from a HLL

 The writer of time or space critical code
 Performance goals may force program specific optimizations of the

assembly language

 Special purpose or imbedded processor programmers
 Special functions and heavy dependence on unique I/O devices

can make HLL’s useless

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

The Computer Architect’s View

 Architect is concerned with design & performance

 Designs the ISA for optimum programming utility and optimum
performance of implementation

 Designs the hardware for best implementation of the instructions

 Uses performance measurement tools, such as benchmark
programs, to see that goals are met

 Balances performance of building blocks such as CPU, memory,
I/O devices, and interconnections

 Meets performance goals at lowest cost

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Buses as Multiplexers

 Interconnections are very important to computer

 Most connections are shared

 A bus is a time-shared connection or multiplexer

 A bus provides a data path and control

 Buses may be serial, parallel, or a combination
 Serial buses transmit one bit at a time

 Parallel buses transmit many bits simultaneously on many wires

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 1.4 One and Two Bus Architecture
Examples

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 1.5 Getting Specific:
The Apple PowerMac G4 Bus (simplified)

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 1.6 The Memory Hierarchy

 Modern computers have a hierarchy of memories
 Allows tradeoffs of speed/cost/volatility/size, etc.

 CPU sees common view of levels of the hierarchy.

CPU Cache
Memory Main Memory Disk Memory

Tape
Memory

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Tools of the Architect’s Trade

 Software models, simulators and emulators

 Performance benchmark programs

 Specialized measurement programs

 Data flow and bottleneck analysis

 Subsystem balance analysis

 Parts, manufacturing, and testing cost analysis

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Logic Designer’s View

 Designs the machine at the logic gate level

 The design determines whether the architect meets cost
and performance goals

 Architect and logic designer may be a single person or
team

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Implementation Domains

 VLSI on silicon

 TTL or ECL chips

 Gallium Arsenide chips

 PLA’s or sea-of-gates arrays

 Fluidic logic or optical switches

An implementation domain is the collection of
devices, logic levels, etc. which the designer uses.

Possible implementation domains:

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Fig 1.7 Three Different Implementation
Domains

 2 to 1 multiplexer in three different implementation domains
 generic logic gates (abstract domain)

 National Semiconductor FAST Advanced Schottky TTL (vlsi on Si)

 Fiber optic directional coupler switch (optical signals in LiNbO3)

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

The Distinction between Classical Logic Design
and Computer Logic Design

 The entire computer is too complex for traditional FSM
design techniques
 FSM techniques can be used “in the small”

 There is a natural separation between data and control
 Data path: storage cells, arithmetic, and their connections

 Control path: logic that manages data path information flow

 Well defined logic blocks are used repeatedly
 Multiplexers, decoders, adders, etc.

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Two Views of the CPU PC Register

31 0
PCProgrammer:

D Q
3232

PCout

PCinCK

PC
A BusB Bus

Logic Designer
(Fig 1.8):

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Tools of the Logic Designer’s Trade

 Computer aided design tools
 Logic design and simulation packages

 Printed circuit layout tools

 IC (integrated circuit) design and layout tools

 Logic analyzers and oscilloscopes

 Hardware development system

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Historical Generations

 1st Generation: 1946-59 vacuum tubes, relays, mercury
delay lines

 2nd generation: 1959-64 discrete transistors and magnetic
cores

 3rd generation: 1964-75 small and medium scale
integrated circuits

 4th generation: 1975-present, single chip microcomputer

 Integration scale: components per chip
 Small: 10-100

 Medium: 100-1,000

 Large: 1000-10,000

 Very large: greater than 10,000

S

2/e

C

D
A

Computer Systems Design and Architecture Second Edition © 2004 Prentice Hall

Summary

 Three different views of machine structure and function

 Machine/assembly language view: registers, memory cells,
instructions.
 PC, IR,

 Fetch-execute cycle

 Programs can be manipulated as data

 No, or almost no data typing at machine level

 Architect views the entire system
 Concerned with price/performance, system balance

 Logic designer sees system as collection of functional logic
blocks.
 Must consider implementation domain

 Tradeoffs: speed, power, gate fanin, fanout

