
Micrium OS Kernel Training



Upon completing this class, you will …

§ Understand how applications that incorporate a real-time kernel differ from foreground/background, 
or super-loop, applications

§ Have experience with one of Micrium’s real-time kernels

§ Have a solid understanding of Micrium OS Kernel’s API

§ Know how to utilize many of the services that Micrium OS Kernel provides

Class Objectives
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Introduction
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An Overview of Micrium

§ Incorporated in 1999. Acquired by Silicon Labs 
in 2016.

§ Headquarters in South Florida, with an 
additional office in Montreal

§ Provider of high-quality embedded software

§ Known for:
§ Remarkably clean code
§ Thorough documentation
§ Top-notch technical support
§ A full lineup of products, including real-time 

kernels, protocol stacks, file system and debug 
tools.
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§ An Embedded Software Company

§ Proven - Shipping µC/OS For Over 25 Years

§ Most Widely Deployed RTOS (UBM 2015 Survey)

§ Strong in Safety Critical Applications

§ High Quality and Robust Code

Who Are We?

Debug ToolsRTOS Education



Micrium OS
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§ Based off the extremely successful µC/OS-III kernel
§ Updated error handling

§ A reliable kernel with an efficient, preemptive scheduler
§ Supports round-robin scheduling at each task priority level

§ Supports an unlimited number of tasks and other kernel objects

§ Highly configurable
§ Gives the ability to enable and disable most parts of the kernel to save space
§ ROM size ranges from 6-24 kBytes
§ RAM size is typically 3-4 kBytes

§ Delivered in source-code form, and its thorough documentation helps to ensure a smooth user 
experience

§ Built-in performance measurement capabilities

Micrium OS Kernel



§ Network
§ Features dual IPv4 and IPv6 support, an SSL/TLS socket option

§ Supports DHCP, DNS, HTTP, MQTT, SNTP, Telnet, SMTP, TFTP, FTP

§ USB Device
§ Support for Audio, CDCACM, CDCEEM, HID, MSC, and Vendor classes

§ USB Host
§ A USB host stack for embedded systems equipped with a USB host or OTG controller. 

§ Includes support for MSC, HID, CDC ACM, USB2Ser and AOAP classes

Micrium OS: Communication Software



§ File System
§ A FAT file system compatible with a wide range of storage devices. An optional journaling component provides fail-

safe operation

§ Graphical User Interface
§ A graphical user interface solution capable of satisfying a variety of display needs, from simple monochrome text 

to rich, full-color images and touch-screen functionality

Micrium OS: Storage and Display Software



§ Windows-based Universal Dashboard
§ Gauges, Graphs, Indicators, LEDs, Sliders, 

§ Buttons, Oscilloscope, Kernel Awareness, etc.

§ Works with ANY CPU 

§ 8-, 16, 32-, 64-bit and DSPs

§ Interface to target:

§ J-Link, CMSIS-DAP, 

§ Proxy through Debuggers,

§ RS232C, TCP/IP, USB

§ Integrated with Simplicity Studio
§ Windows-only

µC/Probe
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µC/Probe
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Micrium Press

§ µC/OS-III Books (7 books)

§ µC/TCP-IP Books (5 books)

§ µC/USB-Device Book (1 book)

§ 5 Books Translated to Mandarin

§ All Books Available as Free PDFs
§ Printed Versions Available on Amazon.com
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Foreground / Background Systems
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Foreground/Background Model
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Background

Foreground #1

Foreground #2

Time

Task #1 Task #2 Task #3

Infinite loop

ISR #1 ISR #1

ISR #2



Background
int main (void)

{

Perform initializations;

while (1) {

ADC_Read();

SPI_Read();

USB_Packet();

LCD_Update();

Audio_Decode();

File_Write();

}

}

Foreground
void  USB_ISR (void)

{

Clear interrupt;

Read packet;

}

Pseudo-Code



§ No upfront cost

§ Minimal training required
§ Developers don’t need to learn a kernel’s API

§ No extra memory resources to accommodate a kernel
§ There is a small amount of overhead associated with a kernel

Benefits
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Drawbacks: Simplistic Scheduling

Background
§ Fixed sequence of operations
§ Functions must wait their turn

Foreground
§ On demand scheduling
§ ISRs execute when urgent events occur

§ Preferred for high-priority code but can 
become difficult to manage
§ Each ISR typically leaves at least a portion 

of a system’s interrupts disabled
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while (1) {
ADC_Read();
SPI_Read();
USB_Packet();
LCD_Update();

}



§ Performance requirements may dictate extensive use of ISRs
§ Porting code to a new interrupt controller, with a different prioritization scheme, can be challenging
§ Debugging ISRs presents many potential problems

§ It can be difficult to make additions (of ISRs or background calls) without negatively impacting 
existing code
§ Upgrades or improvements may require moving code between foreground and background
§ Development teams must be closely coordinated

Drawbacks: Maintenance and Upgrade Difficulties
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Drawbacks: Polling
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while (1) {
ADC_Read();
SPI_Read();
USB_Packet();
LCD_Update();
Audio_Decode();
File_Write();

}

void ADC_Read(void) {
while((ADC_ConvComplete()) == 0) {

;
}
Process analog value;

}

void File_Write(void) {
while((File_DevRdy()) == 0) {

;
}
Write to device;

}CPU cycles are wasted waiting for 
hardware events



Drawbacks: Counters
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void main (void) 
{

unsigned short i;

i = 0;
while (1) {

ADC_Read();
if ((i % 8192) == 0) {

SPI_Read();
}
USB_Packet();
LCD_Update();
if ((i % 1024) == 0) {

Audio_Decode();
}
File_Write();
i++;    

}
}

Within the background there 
are multiple rates of execution

All rates are based on the 
execution time of the loop



Drawbacks: Repetitive Function Calls
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while (1) {
ADC_Read();
LCD_Update();
SPI_Read();
USB_Packet();
LCD_Update();
Audio_Decode();
File_Write();
LCD_Update();

}

Duplicate calls to a single function must 
be made during just one iteration of the 
main loop



§ Any application could be written without a kernel

§ In the absence of a kernel, scheduling decisions are made when the code is written
§ The aforementioned issues must be considered anew for each version of an application

§ A kernel can be seen as a portable and intelligent scheduling framework that simplifies the 
scheduling decisions application developers must make

The Bottom Line: Is a Kernel Absolutely Necessary?
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Kernel-Based Applications
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§ The terms operating system and kernel are often used interchangeably

§ A kernel is actually a subset of an operating system
§ It can be viewed as the glue that holds the other components together

§ Micrium OS Kernel is a real-time preemptive kernel!

Operating System vs Kernel
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§ If a task must be completed within a given time, it is said to be a real-time task
§ In other words a real-time task is one that has a deadline

§ There are three different categories of real-time tasks 
§ Hard
§ If a task misses a deadline, it is considered a catastrophic or irrecoverable error
§ Avionics, medical, control systems

§ Firm
§ Infrequency misses of a task’s deadline are tolerable but value of task’s completion is useless
§ Manufacturing systems

§ Soft real-time tasks 
§ Frequent misses of a task’s deadline are ok but usefulness of task’s completion degrade after the deadline
§ Weather monitoring station, video streaming

Real-Time
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§ Fast software is not necessarily real-time software

§ Determinism is a desirable quality in real-time software

§ Software that is deterministic has a bounded response time to events

Determinism
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§ Developers who use a real-time kernel don’t have to implement a scheduler and related services

§ Typically, applications that incorporate a kernel are much easier to expand than 
foreground/background systems
§ Adding low-priority tasks generally don’t impact higher priority tasks.
§ Kernels help teams of multiple developers.

§ The best kernels have undergone thorough testing
§ Formal testing is performed by the software’s developers, while its users may engage in informal testing
§ Unlike ad-hoc scheduling code, kernels are highly unlikely to introduce bugs into an application

Real-Time Kernel Benefits
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§ When you want to build a framework for your application

§ When you have some time-sensitive tasks

§ When you use one or more 32-bit CPUs

§ When you have multiple programmers

§ When you need complex OS services
§ Protocol stacks, GUI, File System, etc.

§ When you have excessive polling loops

When is a Real-Time Kernel Needed?
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§ Context Switch Support (PendSV)

§ Typically a timer or some other source of periodic interrupts
§ Not mandatory in Micrium OS Kernel

§ A small amount of ROM and RAM 
§ The memory footprint of Micrium OS Kernel is configuration-dependent
§ ROM size ranges from 6-24 kBytes
§ RAM size is typically 3-4 kBytes

§ RAM usage can be monitored with µC/Probe

Kernel Hardware Requirements
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§ A kernel’s primary function is to schedule the various tasks comprising an application

§ Micrium OS Kernel, like the Micrium kernels that came before it, is a pre-emptive kernel
§ Scheduler always attempts to run the highest priority task that is in the ready state

§ Round-robin scheduling is also an option in Micrium OS Kernel
§ Each task is run for a designated period of time

Scheduling



What is a Task?

33

Task
(Priority)

CPU
Registers

Variables
Arrays

Structures
(RAM)

I/O
Devices

Stack
(RAM)

(Optional)



Tasks in a Kernel-Based Application
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High Priority Task

Low Priority Task

Task

Task

Task

Task

Task

Event Event

Each Task

Task

Infinite Loop

Importance



Tasks
void  AppTaskADC (void *p_arg)

{

while (1) {

ADC_Read();

Sleep for 1 ms;

}

}

void  AppTaskUSB (void *p_arg)

{

while (1) {

Wait for signal from ISR;

USB_Packet();

}

}

ISRs
void  AppISRUSB (void)

{

Clear interrupt;

Signal USB Task;

}

A Kernel-Based Application



Preemptive Scheduling

36

Low-priority task 

Time

Interrupt Occurs

The kernel switches back 
to the low-priority task

ISR

Via a kernel call, the ISR makes 
the high priority task ready

ISR completes and the kernel 
switches to the high-priority task

ISR Start

High-priority task 

Task waits for next ISR



Cooperative Scheduling
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Task B

Task A

ISR

Time

Interrupt signals the 
availability of Task A’s 
data

Task A cannot run 
until Task B 
completes

Micrium kernels do NOT do Cooperative Scheduling!



A Typical Micrium OS Kernel Based Application
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Application Code

Micrium’s Modules
(Portable Code)

Micrium’s Modules
(Hardware-Specific Code)

Hardware

Micrium 
OS 

Kernel

Application Code

CommonCPU

Micrium 
OS 

Kernel
BSPCPU

Hardware



Source Code Comments

§ The Micrium OS Kernel source code is 
thoroughly commented
§ Code on the left
§ Comments on the right

§ A block of descriptive comments precedes 
every function

§ The comment blocks are a convenient 
means of learning how each function 
works
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§ A kernel is a subset of an RTOS

§ Kernel is code and provides a set of APIs
§ Micrium OS Kernel has ~70 APIs, 20 or so are commonly used

§ The primary service of a kernel is task management
§ Micrium OS Kernel supports and unlimited number of tasks
§ Each task needs a priority, a stack, variables and optional I/Os

§ Micrium OS Kernel is a Real-Time Preemptive Kernel
§ Will always run the ‘Highest-Priority Task’ ready
§ Supports Round Robin scheduling at every priority level

Section Summary - Kernels

40



Lab #1
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main()
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§ The first function executed following startup

§ Typically, main()initializes Micrium OS Kernel via a standard sequence of three API calls
§ OSInit()
§ OSTaskCreate()
§ OSStart()

§ The implementations of main()in Micrium’s example projects are fairly consistent across hardware 
platforms

The Role of main()
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Typical main()
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void  main (void)
{

RTOS_ERR  err;

OSInit(&err);                                               /* Init Micrium OS Kernel.              */

OSTaskCreate((OS_TCB     *)&AppTaskStart_TCB,               /* Create the start task                */
(CPU_CHAR   *)"Start Task",
(OS_TASK_PTR )AppTaskStart,
(void       *)0,
(OS_PRIO     )APP_TASK_START_PRIO,
(CPU_STK    *)&AppTaskStart_Stk[0],
(CPU_STK_SIZE)APP_TASK_START_STK_SIZE / 10,
(CPU_STK_SIZE)APP_TASK_START_STK_SIZE,
(OS_MSG_QTY  )10,
(OS_TICK     )0,
(void       *)0,
(OS_OPT      )(OS_OPT_TASK_STK_CHK | OS_OPT_TASK_STK_CLR),
(RTOS_ERR   *)&err);

OSStart(&err);                                              /* Start multitasking                   */
}



§ Must be invoked before any Micrium OS Kernel services are used

§ Responsible for initializing kernel data structures

§ System tasks are created by OSInit()

§ The extent of initializations performed by OSInit() depends on configuration constants

§ Constants can be found in os_cfg.h

OSInit()
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§ Micrium OS Kernel is highly configurable
§ Memory footprint is configuration-dependent
§ All configuration files are located in the cfg directory

§ There are a few configuration header files that a developer needs to modify
§ os_cfg.h
§ Allows application developers to scale the kernel’s services

§ rtos_description.h
§ Defines what modules are enabled in a Micrium OS application
§ Must enable RTOS_MODULE_KERNEL_AVAIL

§ common_cfg.h
§ Modify the size of the internal Micrium heap

§ May be used by the system tasks, kernel objects and other Micrium OS modules

Configuring Micrium OS Kernel
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§ Number of system tasks created by OSInit()ranges from 0 to 4
§ Tick Task
§ Idle Task
§ Timer Task
§ Statistics Task

§ System task allotment for a given application is determined by configuration parameters

§ Stack sizes, and in some cases priorities, must be configured for system tasks 

Micrium OS Kernel’s SystemTasks
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§ Automatically assigned the lowest possible priority
§ Priority is assigned via OS_CFG_PRIO_MAX – 1

§ No other task may be given this priority

§ Runs when all other tasks are unable to do so

§ Repeatedly invokes a hook function, OSIdleTaskHook()
§ Can be used to put the CPU to sleep when idling

§ If disabled, it is replaced by a loop in the kernel’s scheduler

The Idle Task
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void OS_IdleTask (void)
{

while (1) {
OSIdleTaskCtr++;
OSIdleTaskHook();

}
}



§ Needed to implement time-based services
§ OSTimeDly(), OSTimeDlyHMSM(),all timeouts on Pend()calls

§ Is synchronized with a periodic interrupt (the tick interrupt)

§ Has a configurable priority

§ Can be disabled for applications that don’t require the use of time delays and timeouts

The Tick Task
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The Statistics Task

§ Keeps track of run-time statistics
§ Current and peak CPU usage
§ Current and peak per-task CPU usage
§ Per-task stack usage
§ And more!

§ Has a configurable priority

§ Can be removed if is not needed
§ Some developers opt to enable statistics during 

debugging only

§ Requires additional initializations in 
application code
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§ Manages all software timers
§ Supports an unlimited number of timers
§ Timers can be one-shot or cyclic
§ Each timer can call a ‘callback function’ when it expires

§ Can be removed from applications that don’t use software timers

§ Synchronized with the same interrupt as the tick task

The Timer Task
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§ After OSInit()has completed, application tasks can be created via calls to OSTaskCreate()

§ Micrium recommends creating just one task in main()
§ Creating multiple tasks in main() causes problems for the statistics task
§ The first application task can create any other needed tasks 

§ Any task in a Micrium OS Kernel application can create other tasks

§ Task creation is prohibited in ISRs

Creating the First Task
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OSStart()

§ The last call in main()must be OSStart() 
§ This is what starts multitasking

§ OSStart() is a very short function
§ Determines the highest priority task
§ Calls OSStartHighRdy()
§ Assembly function to perform first context switch

§ OSStart()does not return
§ Following the call to this function, execution 

proceeds in tasks and ISRs
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Error Handling
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Error Handling in Micrium OS

typedef struct rtos_err {    
RTOS_ERR_CODE     Code;         /**< Err code enum val. */

#if (RTOS_ERR_CFG_EXT_EN == DEF_ENABLED)
#if (RTOS_ERR_CFG_STR_EN == DEF_ENABLED)    

CPU_CHAR const *CodeText; /**< Err code in string fmt. */
CPU_CHAR const *DescText; /**< Err desc string. */

#endif
CPU_CHAR         *FileName; /**< File name where error occurred. */ 
CPU_INT32U        LineNbr; /**< Line nbr where error occurred. */

#ifdef PP_C_STD_VERSION_C99_PRESENT  /*   Only present if C99 enabled. */
const CPU_CHAR  *FnctName; /**< Fnct name where err occurred. */

#endif
#endif
} RTOS_ERR;

§ The last parameter in any Micrium OS API is reserved for the error value
§ This is true for not just the Kernel, but all modules

§ The error parameter is defined as RTOS_ERR
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Error Handling in Micrium OS

Micrium OS RTOS_ERR Macros:
RTOS_ERR_CODE_GET(err_val)

RTOS_ERR_STR_GET(err_code)

RTOS_ERR_DESC_STR_GET(err_code)

RTOS_ERR_SET(err_var, err_code)

RTOS_ERR_COPY(err_dst, err_src)

§ Micrium OS provides a number of macros to assist 
developers when working with RTOS_ERR

§ After making a Micrium OS API call, you should always 
check the code
§ RTOS_ERR_CODE_GET(err) == RTOS_ERR_NONE

§ err.Code == RTOS_ERR_NONE is not recommended

§ Use the string and description GET() macros for logging

§ Use RTOS_ERR_COPY()to copy an RTOS_ERR state

§ RTOS_ERR_SET()may set the following
§ Error Code
§ Error Code Text
§ Error Description
§ File Name
§ Line Number
§ Function Name
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§ The APP_RTOS_ASSERT_CRITICAL() and APP_RTOS_ASSERT_DBG() macros check if a 
given expression is evaluated with a positive result. If the result is not positive, the macro will do one 
of the following operations:
§ If RTOS_CFG_RTOS_ASSERT_CRITICAL_FAILED_END_CALL(ret_val) and/or RTOS_CFG_RTOS
_ASSERT_DBG_FAILED_END_CALL(ret_val) are defined, the macro will call these.

§ If they are not defined, CPU_SW_EXCEPTION(ret_val) will be called.

§ The debug asserts typically check for conditions that are caused by invalid parameters or invalid 
configurations. They are used to notify the developer that something is not correct with the way the 
code is being used. Those can and should be disabled once development is completed.

§ The critical asserts typically check for conditions from which it is practically impossible to recover at 
run-time. Therefore, if such a condition is detected, the program's execution should be suspended 
before any more damage occurs.

Asserts
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Asserts
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§ In addition to the application assert macros, Micrium OS has its own internal assert macros
§ RTOS_ASSERT_CRITICAL(expr, err_code, ret_val)
§ RTOS_ASSERT_DBG(expr, err_code, ret_val)

§ These macros should only be used by Micrium OS code, not your application

§ Both APP_RTOS_ASSERT and RTOS_ASSERT rely on the definitions in rtos_cfg.h to define 
the behavior of those macros. 
§ Default definition for APP_RTOS_ASSERT_DBG() and RTOS_ASSERT_DBG()
§ while(1) {;}

§ Default definition for APP_RTOS_ASSERT_CRITICAL() and RTOS_ASSERT_CRITICAL()
§ CPU_SW_EXCEPTION(ret_val)

Asserts
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Tasks
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What makes up a Task?

§ There are few required components
§ Task Control Block (TCB)
§ Stack space
§ Priority

§ Normally, a task involves an infinite loop
§ Tasks must not return

§ Initialization might precede the loop

61

Task
(Priority)

CPU
Registers

Variables
Arrays

Structures
(RAM)

I/O
Devices

Stack
(RAM)

(Optional)
TCB
(RAM)



void  App_TaskExample (void *p_arg)
{

Task initialization;
for (;;) {

Work toward task’s goals;
Wait for event;    

}
}

A Task Template
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Tasks that do not occasionally 
give up the CPU will starve out 
lower-priority tasks



Task States
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Interrupted

Dormant Running

Pending

Ready
Task creation

Task deletion

Context switch

Interrupt

Return from interrupt

Context switch

Delay or pend call

Occurrence of event 
or timeout

Task deletion

Nested interrupt

Task deletion



§ Information relating to each task must be passed to the kernel

§ This information includes the following:
§ The starting address of the task
§ A reference to the task’s TCB
§ A reference to the task’s stack
§ The task’s priority
§ Optionally, an argument to pass to the task

§ Application code provides this information to the kernel via a call to a task creation function

Creating a Task
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void  OSTaskCreate (OS_TCB        *p_tcb,
CPU_CHAR      *p_name,
OS_TASK_PTR    p_task,
void          *p_arg,
OS_PRIO        prio,
CPU_STK       *p_stk_base,
CPU_STK_SIZE   stk_limit,
CPU_STK_SIZE   stk_size,
OS_MSG_QTY     q_size,
OS_TICK        time_quanta,
void          *p_ext,
OS_OPT         opt,
RTOS_ERR      *p_err)

OSTaskCreate()

65



§ Compilers use a stack to implement subroutine (function) calls

§ In Micrium OS Kernel, each task has a stack
§ Stacks must be declared in application code
§ CPU_STK  AppTaskStartStk[stack_size]

§ The kernel uses the task stacks to save context
§ Context is the state of the CPU at a given time, as defined by register values

The Role of Stacks

66



A Newly Initialized Task Stack
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R14(OS_TaskReturn)

R11(p_stk_limit)

PSR(0x01000000)
R15(p_task)

R12(0x12121212)
R3(0x03030303)
R2(0x02020202)
R1(0x01010101)

R0(p_arg)

R10(0x10101010)
R9(0x09090909)
R8(0x08080808)
R7(0x07070707)
R6(0x06060606)
R5(0x05050505)
R4(0x04040404)

Higher Memory 
Addresses

Lower Memory 
Addressesp_stk

&p_stk_base[stk_size – 1u]



§ Stack requirements vary from task to task
§ A simple task may use 200 bytes of stack space, while a complex task can require 2 kBytes or more of space

§ Each task’s stack is used by both the compiler and the kernel
§ Function calls, context switches, and local variables all consume task stack space

§ Application developers are responsible for sizing their stacks

§ Tools are available but do not always provide a complete picture

Sizing a Task’s Stack
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§ Stack overflows are a problem that can occur when working with multitasking systems
§ Can be extremely difficult to debug

§ There are several ways to prevent or detect stack overflows.
§ MMU/MPU
§ Stack Limit Register
§ Software-based Stack Limits
§ Software-based Stack Checking
§ Red Zone Stack Checking

Stack Overflows
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§ Memory Management Unit (MMU)
§ Typically seen in higher end processors
§ All memory references pass through the MMU
§ Tasks are each assigned their own virtual memory space
§ Prevents one task from affecting another task’s memory space

§ Can also help prevent memory fragmentation

§ Memory Protection Unit (MPU)
§ Has a subset of an MMU’s features
§ Has the ability to define memory regions for specific tasks
§ Monitors memory access and throws faults when it detects an access violation

§ Micrium OS Kernel does not currently support either of these features
§ MPU is on the roadmap

MMU/MPU
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Stack Limit Register
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CPU

Stack Pointer

Stack Limit0x40000110

0x40000118

Higher Memory 
Addresses

Lower Memory 
Addresses

Task Stack

0x400001140x40000110

Overflow 
Exception



§ Kernel compares stack pointer with stack limit each time a task is given control of the CPU

§ Overflows are not detected immediately
§ The space between the stack limit and the end of the stack must be relatively large

§ Few assumptions can be made about the extent of damage once an overflow is detected

§ Micrium OS Kernel’s hook functions allow developers to implement software-based stack limits

Software-Based Stack Limit
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§ Micrium OS Kernel provides a stack-checking function, OSTaskStkChk()

§ Stack checking is enabled through two OSTaskCreate()options
§ OS_OPT_TASK_STK_CHK and OS_OPT_TASK_STK_CLR
§ Goes through and checks the number of elements that are unused (set to 0)

§ The statistics task can be configured to periodically check each task’s stack usage

Software-Based Stack Checking
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Software-Based Stack Checking Implementation
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CPU_INT32U OSTaskStkChk (prio) 
{

#elements = 0;
p_bos = Point at bottom of task stack;
p_tos = Point at top    of task stack;
while (*p_bos == 0x00 && p_bos != p_tos)

#elements++;
p_bos++;

return (#elements);
}

0x00
0x00
0x00
0x00

BOS

TOS

Used

Free

Stack
Size

Stack
Growth



§ Entries at end of stack filled with known value (0xABCD2345)
§ Number of entries specified through configuration constant, 
OS_CFG_TASK_STK_REDZONE_DEPTH

§ If the red zone feature is enabled through 
OS_CFG_TASK_STK_REDZONE_EN, the kernel checks the red zone 
area upon each context switch 

Red-Zone Stack Checking
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Red Zone

Growth

SP

Task
Stack



§ Within the kernel, a task control block (TCB) is used to keep track of each task

§ Application code must declare TCBs for all of the tasks that it creates
§ OS_TCB  App_TaskExampleTCB;

§ The fields of a TCB should never be directly manipulated by application code

§ A Micrium OS Kernel TCB has anywhere from 26 to 50 fields, depending on the kernel’s configuration

§ A TCB can include the following:
§ A pointer to the associated task’s stack
§ The task’s state
§ The task’s priority
§ Data relating to event flags, message queues, and other kernel objects

Task Control Blocks
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Assign default values to TCB fields

OSTaskCreate() Implementation
Cortex-M
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StkPtr

ExtPtr

StkLimitPtr

NextPtr

PrevPtr

Additional
TCB Entries

TCB StackOSRdyList

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x00000000

0x01000000

p_task

OS_TaskReturn

0x12121212

0x03030303

0x02020202

p_stk_limit

p_arg

0x11111111

0x10101010

0x09090909

0x08080808

0x07070707

0x06060606

0x05050505

0x04040404

0x01000000

p_task

OS_TaskReturn

0x12121212

0x03030303

0x02020202

p_stk_limit

p_arg

0x11111111

0x10101010

0x09090909

0x08080808

0x07070707

0x06060606

0x05050505

0x04040404

p_extp_ext

Initialize the stackInitialize the TCBCall OSTaskCreateHook()Update kernel structuresRun the scheduler



void  OSTaskDel (OS_TCB   *p_tcb,
RTOS_ERR *p_err);

§ A deleted task is returned to the dormant state

§ Even after the deletion is complete the task’s code still exists in ROM

§ The task’s stack and TCB can be reused after deletion

Deleting a Task
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void  OSTaskChangePrio (OS_TCB    *p_tcb,  
OS_PRIO    prio_new,
RTOS_ERR  *p_err);

§ A task can change its own priority or the priority of another task

§ Any priority that can be assigned to a new task can also be passed to OSTaskChangePrio()

Changing the Priority of a Task
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§ The total number of priorities in a Micrium OS Kernel application is established by the configuration 
constant OS_CFG_PRIO_MAX (see os_cfg.h)

§ The lowest priority (OS_CFG_PRIO_MAX – 1) is automatically assigned to the idle task
§ Assuming the idle task is enabled

§ The highest priority (0) is given to your most important task

Valid Priorities
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§ A set of task registers is optionally included in each TCB

§ The registers are simply array entries
§ The size of the array of registers is determined by the 

configuration constant OS_CFG_TASK_REG_TBL_SIZE

§ Task-specific data can be stored in the registers
§ Allows you to create a “global” on a per-task basis

Task Registers

81

RegTbl[]

TCB Task Registers



§ The job of dividing an application into tasks is rarely trivial

§ A poorly partitioned application may fail to meet performance requirements

§ To determine what portions of an application warrant separate tasks, developers should look for 
activities that can execute in parallel
§ For example, an LCD driver can update a display while file system code waits for data

§ Problems can be created both by excessively large tasks and tasks that are too small
§ Large, complex tasks can behave like foreground/background systems

§ Excessively small tasks increase the amount of time spent context switching
§ Generally, developers should make sure that the execution time of each task is significantly larger than twice 

the context-switch time
§ Task-Execution Time should be much greater than 2 x Context-Switch Time 

Partitioning an Application
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Excessive inter-task communication often reflects a poor design

Partitioning an Application
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Task
A

Task
BISR Task

C

Task
ABCISR
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§ Application developers must assign a priority to each of their tasks

§ If priorities are assigned arbitrarily, the benefits of using a real-time kernel may not be realized

§ When multiple tasks have important deadlines, assigning priorities can be particularly difficult

§ Its important that developers remember to consider the priorities of any system tasks when 
assigning priorities to their application tasks

Assigning Task Priorities
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§ With RMS, task priorities are set according to a simple rule
§ The tasks with the highest frequencies are given the highest priorities

§ RMS is optimal
§ There is no better scheme for assigning priorities

§ Developers can use RMS to determine how many of the tasks in a given application will actually be 
able to meet their deadlines

§ There are a few key assumptions that underlie RMS:
§ Each task runs periodically
§ A given task always completes its work within a fixed amount of time
§ Tasks do not interact

§ In order to assign priorities according to RMS, developers must calculate the execution time of each 
of their tasks

Rate Monotonic Scheduling (RMS)
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A Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time 
Systems, by Mark Klein, Thomas Ralya, Bill Pollak, Ray Obenza, and Michael Gonzales Harbour

Multiple articles covering RMS are available from Embedded.com

RMS References
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§ A task must be created to be managed by Micrium OS Kernel

§ You need to assign a priority, a stack and a TCB

§ Micrium OS Kernel has up to 4 internal tasks

§ The Idle task is always the lowest priority (if present)

§ Tasks are infinite loops

§ A task must wait for an ‘Event to Occur’

§ Configuration allows you to turn ON/OFF services

§ Reduces Code Space and RAM

Section Summary - Tasks
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Lab #2
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Scheduling and Context Switching

89



§ Control of the CPU is passed from one task to another based on the actions of Micrium OS Kernel’s 
scheduler

§ The scheduler is called by many of the kernel’s API functions

§ Micrium OS Kernel has a priority-based scheduler but also supports round-robin scheduling

§ The scheduler is not a separate task or ISR, but rather a function that is called

The Scheduler
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Micrium OS Kernel’s Scheduling Algorithm

91

Only tasks that are in the Ready state can be given 
control of the CPU
The scheduler uses priority to distinguish these tasksThe task with the highest priority is given control of the 
CPU
Since Micrium OS Kernel allows tasks to share priorities, 
the scheduler may not always be able to identify a 
single, high-priority task 

If round-robin scheduling is enabled, Micrium OS Kernel 
can share the CPU amongst multiple tasks having the 
same priority

Task A

State: Ready

Priority: 5

Task B Task C Task D Task E

State: Ready State: Pending State: Ready State: Pending

Priority: 3 Priority: 8Priority: 3



§ The kernel uses two data structures to make scheduling decisions

Scheduling Data Structures

92

OSPrioTbl[] OSRdyList[]



§ Each priority level from 0 to (OS_CFG_PRIO_MAX – 1) is represented by a bit in OSPrioTbl[]

§ The data type of an OSPrioTbl[] entry is CPU_DATA
§ This type is defined in the CPU module

§ A set bit indicates that at least one task at the corresponding priority is in the Ready state

OSPrioTbl[]
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OSPrioTbl[]
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OS_PRIO  OS_PrioGetHighest (void)
{

CPU_DATA  *p_tbl;
OS_PRIO    prio; 0p_tbl

1

0 0 0 0 0 00 0 0000 00 0

1 11 10 0 0 0 0 000 00 0

OSPrioTbl[]

prio 0

prio = (OS_PRIO)0;
p_tbl = &OSPrioTbl[0];

while (*p_tbl == (CPU_DATA)0) {
prio += sizeof(CPU_DATA) * 8u;

p_tbl++;
}
prio += (OS_PRIO)CPU_CntLeadZeros(*p_tbl);
return (prio);

} = 016

p_tbl

16

1

2020

1



§ CPU_CntLeadZeros() is declared by the CPU module

§ There are a couple of ways to optimize CPU_CntLeadZeros()
§ Assembly language
§ Look-up table

§ In most CPU ports, CPU_CntLeadZeros() is optimized

CPU_CntLeadZeros()
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OSRdyList[]
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OSRdyList[] allows the kernel quick access to TCBs

Priority

5

6

7

NbrEntries

TCB TCB TCB
HeadPtr

TailPtrOSRdyList[]

Each entry in OSRdyList[] corresponds to a priorityA linked list of TCBs can be referenced by the HeadPtr and TailPtr
fields of an OSRdyList[] entry
The TCBs in a list represent tasks that are in the Ready state and 
that have been assigned the priority that is associated with their 
OSRdyList[] entry

33



§ OSTaskCreate()updates OSPrioTbl[]and OSRdyList[]
§ Tasks enter the Ready state when they are created

§ Numerous other API functions update the data structures
§ These functions cause tasks to transition to either the Ready or Pending state 

§ The kernel’s scheduler runs after the data structures have been updated

Updating OSPrioTbl[] and OSRdyList[]
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OSSched()
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The kernel determines the highest priority at which 
there is at least one Ready task

OSPrioHighRdy = OS_PrioGetHighest();

A reference to the TCB of a task having the chosen priority is obtained by 
the kernel

OSTCBHighRdyPtr = OSRdyList[OSPrioHighRdy].HeadPtr;

The kernel determines whether a context switch is needed
OSTCBHighRdyPtr = OSRdyList[OSPrioHighRdy].HeadPtr;

A context switch is performed
OS_TASK_SW();

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1

OSPrioCur

OSTCBCurPtr

OSPrioHighRdy

OSTCBHighRdyPtr

22

OSPrioTbl[]

11

1818

OSRdyList[18]

2

1818



§ Round-robin scheduling must be enabled via a call to OSSchedRoundRobinCfg()
§ Additionally, the configuration constant OS_CFG_SCHED_ROUND_ROBIN_EN must be defined as 1

§ Time quanta can be assigned through OSTaskCreate()
§ OSTaskTimeQuantaSet() allows for changes after task creation

§ Round-robin scheduling takes place alongside priority-based scheduling

Round-Robin Scheduling
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Round-Robin Scheduling
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TCB TCB TCB

OSRdyList[]

33

OS_SchedRoundRobin()periodically decrements the leading TCB’s TimeQuantaCtr field

10 15 5



Delay Functions
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void  OSTimeDly (OS_TICK     dly,
OS_OPT      opt,
RTOS_ERR   *p_err);

void  OSTimeDlyHMSM (CPU_INT16U  hours,
CPU_INT16U  minutes,
CPU_INT16U  seconds,
CPU_INT32U  milli,
OS_OPT      opt,
RTOS_ERR   *p_err);



Example Use of Delay Function
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void App_TaskKbd (void *p_arg)
{

RTOS_ERR err;
Initialize keyboard;

while (1) {
Scan keyboard;
OSTimeDlyHMSM(0u, 0u, 0u, 100u, 

OS_OPT_TIME_HMSM_STRICT, 
&err); 

}
}



§ Recent addition to Micrium’s kernels
§ Tick rate is adjusted to match period of highest-frequency delayed task

§ Example: Two tasks using time delays

Dynamic Tick Rate

103

OSTimeDlyHMSM(0,0,
0,50,…); 

OSTimeDlyHMSM(0,0,
0,100,…); 

Task 1 Task 2
50 ms

Task 1 
delay call

Task 2 
delay call Tick



§ A context switch is the process via which control of the CPU is passed from one task to another

§ “Context” is state information associated with a task
§ CPU registers

§ What, exactly, needs to be done during a context switch varies from architecture to architecture

Context Switch
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Context Switch
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xPSR
PC
LR
r12
r3
r2
r1
r0

r11
r10
r9
r8
r7
r6
r5
r4 r4

r5
r6
r7
r8
r9
r10
r11
r0
r1
r2
r3
r12
LR
PC
xPSR

xPSR
PC
LR

r12

r3
r2
r1
r0

r11
r10
r9
r8
r7
r6
r5
r4

PSP

Task A’s Stack Task B’s Stack1. Save CPU registers2. Save the stack pointer

OSTCBCur->OSTCBStkPtr

3. Update RTOS variables

OSPrioCur OSTCBCur

4. Load new stack pointer5. Load CPU registers



Interrupts and Exceptions
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§ In a preemptive kernel, interrupts can result in context switches

Context Switch from ISRs

107

ExampleISR:
Save CPU registers;
OSIntEnter();
App_ISR();
OSIntExit();
Restore CPU registers;
Return from interrupt;

void  App_ISR (void) 
{

/* Clear interrupt */
/* Signal task     */

}

Determine 
whether a 
context 
switch is 
needed



Interrupts on the Cortex-M

§ Vectored interrupt controller

§ Each peripheral handler invokes a generic 
Micrium OS Kernel handler, passing the 
generic function an ID

§ Generic handler takes care of kernel-specific 
operations

108



On some CPUs, it is possible to remove kernel overhead
from select ISRs
§ http://www.electronicproducts.com/Software/System/Microsecon

ds_matter_reducing_interrupt_latency_in_industrial_control_sys
tems.aspx?terms=interrupt%20latency

Non-Kernel Aware ISRs (NKA)
§ Higher priority than Kernel Aware ISRs
§ Cannot make kernel API calls
§ Kernel critical sections don’t affect NKAs

Kernel Aware ISRs
§ Have lower priority than non-kernel aware
§ Kernel critical sections done within the range of kernel aware 

ISR range

Non-Kernel Aware vs Kernel Aware ISRs
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9
10

11
12
13
14
15

8
7

6
5

4
3
2
1
0

Non
Kernel
Aware
ISRs

Kernel
Aware
ISRs

IPLs

http://www.electronicproducts.com/Software/System/Microseconds_matter_reducing_interrupt_latency_in_industrial_control_systems.aspx?terms=interrupt%20latency


§ Micrium OS Kernel always runs the highest-priority task ready-to-run
§ Interrupts are more important than tasks
§ An ISR can cause a more important to run after the ISR returns

§ You can use the Tick ISR as an example on how to implement ISRs under Micrium OS Kernel

§ Non-Kernel Aware ISRs cannot make kernel API calls

Section Summary – ISRs
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Lab #3
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Synchronization
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§ The tasks in a Micrium OS Kernel application are not necessarily self-contained

§ Tasks may need to interact with each other 
§ A typical kernel will provide mechanisms that facilitate such interaction
§ Semaphores
§ Mutexes
§ Event Flags
§ Message Queues

Task/Task Interaction
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§ Most applications must manage a collection of peripheral devices

§ UART, I2C, SPI, USB, etc.

§ The interrupt service routines (ISRs) associated with a system’s peripheral devices should be kept 

brief

§ In applications that incorporate a real-time kernel, ISRs can use synchronization primitives to signal 

tasks

Task/ISR Interaction
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Synchronizing a Task to an ISR
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Via a synchronization primitive, the 
ISR signals a high-priority task

ISR

Low-priority task 

High-priority task 

ISR

Interrupt occurs
ISR completes and 
the kernel switches 
to the high-priority 
task

The kernel switches to 
the low-priority task

Time



§ On many architectures, a long ISR can significantly increase interrupt latency

§ Excessively large stacks may be needed in order to support lengthy ISRs

§ Debugging interrupt handlers can be difficult

§ Many kernel functions cannot be invoked by ISRs

Problems with Lengthy ISRs
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§ Developers with foreground/background systems may need to write signaling code themselves

Signaling in Foreground / Background Systems
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while (1) {
ADC_Read();
SPI_Read();
USB_Packet();
LCD_Update();
Audio_Decode();
File_Write();

}

void  USB_ISR (void) {
USB_Packet++;
Clear interrupt;

}

void  USB_Packet (void) {
while (USB_Packet == 0){

;
}
Process packet;

}



§ Using a semaphore, a task can synchronize to another task or to an ISR

§ Semaphores are based on counters

§ A semaphore can be classified as either binary or counting

§ Pend 
§ While the semaphore’s counter has a value of zero, allow other tasks to run
§ One of the parameters accepted by Micrium OS Kernel’s pend functions is a timeout value that indicates how long the 

calling task is willing to wait

§ Post 
§ Increment the semaphore’s counter
§ If a task is waiting on the semaphore, that task will be placed in the Ready state when the post operation occurs

Semaphores
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Semaphore API
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void  OSSemCreate (OS_SEM      *p_sem,
CPU_CHAR    *p_name,
OS_SEM_CTR   cnt,
RTOS_ERR    *p_err);

OS_SEM_CTR  OSSemPend (OS_SEM     *p_sem,
OS_TICK     timeout,
OS_OPT      opt,
CPU_TS     *p_ts,
RTOS_ERR   *p_err);

OS_SEM_CTR  OSSemPost (OS_SEM    *p_sem,
OS_OPT     opt,
RTOS_ERR  *p_err);



Semaphore Example
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ISR

ADC
TaskMUX

ADC

Analog Inputs

void  App_TaskADC (void *p_arg)
{

Perform initializations;
while (1) {    

Start conversion;           
OSSemPend((OS_SEM *)&App_SemADC,

(OS_TICK )0,
(OS_OPT  )OS_OPT_PEND_BLOCKING,
(CPU_TS *)&ts,
(OS_ERR *)&err);

Process converted value;
}

}

OS_SEM  App_SemADC;

/* Initialization Code */

OSSemCreate((OS_SEM   *)&App_SemADC,
(CPU_CHAR *)”ADC Sem”,
(OS_SEM_CTR)0,
(OS_ERR   *)&err);

void  App_ISRADC (void)
{   

Clear interrupt;
OSSemPost((OS_SEM *)&App_SemADC,

(OS_OPT  )OS_OPT_POST_1,
(OS_ERR *)&err);

}



§ Micrium OS Kernel’s semaphores are counting semaphores
§ The kernel does not limit the semaphore state to 1 or 0

§ It is not possible to set an upper limit for the count value of the semaphore
§ Because of this, in the previous example the potential for the semaphore’s value to rise above 1 could actually 

be detrimental

§ If a binary semaphore would be more advantageous than a counting semaphore, there are other 
kernel objects that can be used instead
§ Event Flags

Counting Semaphores
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Task Semaphores

§ Built-in to all Micrium OS Kernel tasks
§ Uses the OS_TCB to store the semaphore data 

rather than an OS_SEM object

§ Any task or ISR can call 
OS_TaskSemPost()
§ Calling task or ISR just needs the TCB pointer

§ Only the task referenced by the TCB can Pend
§ No need to pass the TCB when calling 
OS_TaskSemPend()
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Semaphores vs. Task Semaphores

123

• Very common to signal a task
• No need for wait list
• Less overhead - faster



§ Using event flags, a task can easily wait for multiple events to take place

§ A single 8-, 16-, or 32-bit variable, contained in a structure known as an event flag group, represents 
a collection of events
§ Each bit in the variable corresponds to a single event
§ Application code determines whether a set or cleared bit indicates the occurrence of an event

Event Flags
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Conjunctive Synchronization
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TaskISR

AND Task

Set or clear

Wait



Disjunctive Synchronization
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TaskISR

OR Task

Set or clear

Wait



Event Flags API
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void  OSFlagCreate (OS_FLAG_GRP  *p_grp,
CPU_CHAR     *p_name,
OS_FLAGS      flags,
RTOS_ERR     *p_err);

OS_FLAGS  OSFlagPend (OS_FLAG_GRP *p_grp,
OS_FLAGS     flags,
OS_TICK      timeout,
OS_OPT       opt,
CPU_TS      *p_ts,
RTOS_ERR    *p_err);

OS_FLAGS  OSFlagPost (OS_FLAG_GRP  *p_grp,
OS_FLAGS      flags,
OS_OPT        opt,
RTOS_ERR     *p_err);



Event Flags – Engine Control Example
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AI
Task

Abort
Task

Start
Task

Wait

Wait
User
I/F

Task

RPM
Task

Abort ISR

Event
Flag

Group

Start

Stop

Fuel > 1%

Temp < 200

RPM == 0

RPM > 3000

Abort

OR

AND



Event Flags – Watchdog Example
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Task

Watchdog
Task

OSFlagPend()

Task

Task

ISR n

Event
Flag

Group

OSFlagPost()

OSFlagPost()

OSFlagPost()

OSFlagPost()

AND
(i.e. ALL)

- Tasks and ISR need to ‘report in’ before timeout
- Timeout time depends on the application
- Might not include ALL tasks and ISRs

Timeout



§ Semaphores and Event Flags are used to signal a task that an event occurred.
§ Semaphores are counting (i.e. 0..N)
§ Event Flags are binary (i.e. 0 or 1)

§ Only tasks can wait for a signal
§ ISRs cannot wait on a semaphore or event flags

§ Signaling is so common that Micrium OS Kernel’s tasks have a built-in semaphore

§ Event Flags allows tasks to wait for any or multiple events to occur

Section Summary - Synchronization
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Mutual Exclusion
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§ A global variable or data structure that is used by multiple tasks is considered a shared resource
§ Variables accessed by both tasks and ISRs are also shared resources

§ Oftentimes, peripheral devices are shared resources
§ For example, an Ethernet controller that is accessed by multiple tasks  

Shared Resources
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Shared Resource Example
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typedef struct app_pressure {
INT32U  A;
INT32U  B;

} APP_PRESSURE;

APP_PRESSURE  Pressure;

void  App_TaskDisplay (void *p_arg)
{

RTOS_ERR err;

while (1) {
if (Pressure.A > Pressure.B) {

Open valve;
}
OSTimeDlyHMSM(0u, 0u, 0u, 100u, 

OS_OPT_TIME_HMSM_STRICT, 
&err); 

}
}

void  App_ISRSensor (void)
{

Pressure.A = SensorA;
Pressure.B = SensorB;
Clear interrupt;

}

Pressure is a shared 
resource



§ While one task is manipulating a shared resource, other tasks should not be able to gain access to 
that resource
§ Remember, tasks can always be preempted by interrupts or higher tasks

§ If this rule is not enforced, tasks might read corrupt data
§ The kernel provides mechanisms to protect resources but it is up to the application developer to protect the 

shared resource

§ Bugs resulting from the corruption of shared resources can be highly frustrating
§ Typically erratic errors due to corruption from context switching while accessing the resource
§ Extremely hard to track down 

Problems Created by Shared Resources
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What needs to be protected?

q Read-modify-write passages are notorious sources of data corruption

Short pieces of code that simply read or write 
global variables can cause problems too
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C
App_FileCnt++;

Assembly
LDR.N  r0, ??DataTable2
LDR    r0, [r0]
ADDS   r0, r0, #1
LDR.N  r1, ??DataTable2
STR    r0, [r1]



§ Interrupts are disabled before each shared resource is accessed and then re-enabled afterwards

§ Micrium OS CPU provides macro functions for disabling and enabling interrupts
§ CPU_CRITICAL_ENTER() and CPU_CRITICAL_EXIT()
§ Macro definitions are part of the CPU port

Disabling Interrupts
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Disabling Interrupts
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void  App_TaskExample (void *p_arg)
{

CPU_SR_ALLOC();

while (1) {
CPU_CRITICAL_ENTER();
Access shared resource;
CPU_CRITICAL_EXIT();

}
}



Disabling Interrupts
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§ Micrium OS Kernel, like other kernels, uses this method to protect its own global variables
§ Application code can disable interrupts for short periods of time without negatively impacting 

interrupt latency

§ Below is an excerpt from OSTaskCreate()



§ Locking the scheduler is another means of protecting shared resources

§ This technique cannot be used for variables that are accessed by interrupt handlers

§ Application code that locks the scheduler for extended periods of time might experience 
performance problems

§ Micrium OS Kernel provides scheduler-locking functions via two API calls
§ OSSchedLock()
§ OSSchedUnlock()

§ Locking the scheduler is the same idea as making the current task the only task in the system.

Locking the Scheduler
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Schedule Locking Example
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void  App_TaskExample (void *p_arg)
{

RTOS_ERR  err;

while (1) {
OSSchedLock(&err);
Access shared resource;
OSSchedUnlock(&err);

}
}

Interrupts can occur 
while resource is 
being accessed



§ In addition to being well suited for synchronization, semaphores can be used for protecting shared 
resources

§ Semaphores were originally designed for this purpose

§ The same semaphore API functions are used for both synchronization and resource protection

§ When a semaphore is used for protecting a shared resource, tasks must pend on the semaphore 
before accessing the resource
§ This method cannot be used for resources that are accessed by ISRs

§ If the value of the semaphore’s counter is 0, the resource is unavailable

§ Interrupts and context switches can occur while shared resources are being accessed

Semaphores

142



§ There is a well documented problem associated with the use of semaphores for resource protection

§ The problem, known as priority inversion, can arise when a low priority task is in the midst of 
accessing a resource that is needed by a higher priority task

Priority Inversions
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Priority Inversion
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Low-priority task

Medium-priority task

High-priority task

The kernel executes a low-priority taskVia a semaphore, the task gains access to a shared resourceA high-priority task pre-empts the low-priority taskThe high-priority task attempts to access the shared resourceThe kernel switches to the low-priority taskA medium-priority task pre-empts the low-priority taskEventually, the medium-priority task cedes the CPUThe low-priority task finishes using the shared resourceThe high-priority task gains access to the resource



Priority Inheritance
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Low-priority task

Medium-priority task

High-priority task

The kernel executes a low-priority taskVia a semaphore, the task gains access to a shared resourceA high-priority task pre-empts the low-priority taskThe high-priority task attempts to access the shared resourceThe kernel gives a new, higher priority to the low-priority taskThe kernel switches to the promoted low-priority taskThe low-priority task finishes using the resourceThe high-priority task gains access to the resourceThe high-priority task finishes using the resourceThe high-priority task continues to executeThe high-priority task cedes the CPUMedium- and low-priority tasks are able to run



§ A Mutex is another mechanism for protecting shared resources

§ In Micrium OS Kernel, Mutexes provide built-in protection from priority inversion
§ Priority inheritance 

§ Unlike a semaphore, a Micrium OS Kernel Mutex does not incorporate a counter
§ The mutex is either available or in use

Mutexes
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Mutex API
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void  OSMutexCreate (OS_MUTEX    *p_mutex,
CPU_CHAR    *p_name,
RTOS_ERR    *p_err);

void  OSMutexPend (OS_MUTEX   *p_mutex,
OS_TICK     timeout,
OS_OPT      opt,
CPU_TS     *p_ts,
RTOS_ERR   *p_err);

void  OSMutexPost (OS_MUTEX  *p_mutex,
OS_OPT     opt,
RTOS_ERR  *p_err);



Mutex Example
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void  App_TaskFS (void *p_arg)
{

while (1) {
Create file;
OSMutexPend((OS_MUTEX *)&App_MutexClk,

(OS_TICK   )0,
(OS_OPT    )OS_OPT_PEND_BLOCKING,
(CPU_TS   *)&ts,
(RTOS_ERR *)&err);

Read clock;
OSMutexPost((OS_MUTEX *)&App_MutexClk,

(OS_OPT    )OS_OPT_POST_NONE,
(RTOS_ERR *)&err);

Add timestamp to file;
}

}

void  App_TaskClk (void *p_arg)
{

while (1) {
Wait for signal from timer ISR;
OSMutexPend((OS_MUTEX *)&App_MutexClk,

(OS_TICK   )0,
(OS_OPT    )OS_OPT_PEND_BLOCKING,
(CPU_TS   *)&ts,
(RTOS_ERR *)&err);

Update clock;
OSMutexPost((OS_MUTEX *)&App_MutexClk,

(OS_OPT    )OS_OPT_POST_NONE,
(RTOS_ERR *)&err);

}
}

Clock
Task

Seconds
Minutes
Hours
Days
DOW
Month
Year

Clock
Variables

FS
Task

OS_MUTEX  App_MutexClk;

/* Initialization Code */

OSMutexCreate((OS_MUTEX *)&App_MutexClk,
(CPU_CHAR *)”Clk Mutex”,
(RTOS_ERR *)&err);

Get time of day

Update clock

Mutex



§ Shared resources that are accessed by ISRs can only be protected by disabling interrupts

§ Application code should not disable either interrupts are the scheduler for extended periods of time

§ Semaphores should only be used for synchronization

§ Mutexes protect against priority inversion

Choosing How to Protect Shared Resources
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§ ISR <-> Tasks:
§ Shared resources that are accessed by ISRs can only be protected by disabling interrupts

§ Task <-> Task
§ Application code should not disable either interrupts or the scheduler for extended periods of time
§ Avoid locking the scheduler unless absolutely necessary

§ Use Mutexes (eliminate unbounded priority inversions)
§ DO NOT use Semaphores … only use them for synchronization

Which resource sharing method is best?
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§ What’s a resource?
§ Shared variable, structure, table or I/O device

§ It is the developer’s responsibility to protect shared resources
§ Micrium OS Kernel only gives you services to help you

§ Methods:
§ Disable/Enable interrupts (Affects interrupt latency – ISRs/Tasks)
§ Lock the Scheduler (Defeats the task priority)
§ Semaphore (Should not be used – Priority Inversion)
§ Mutex (Preferred)

Section Summary – Sharing Resources
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Inter-Task Communication & Dynamic Memory 
Pools

153



§ Tasks in a Micrium OS Kernel application can send and receive messages using services that the 
kernel provides 

§ Application developers determine the contents of these messages

§ Micrium OS Kernel’s message passing services (or more formally, its inter-task communication 
services) have much in common with its synchronization and mutual exclusion services

Inter-Task Communication Services
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Inter-Task Communication Example
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void  App_TaskFIR (void *p_arg)
{

while (1) {
Read next sample;
Calculate filter output;
Send output value to App_TaskLog();

}
}

void  App_TaskLog (void *p_arg)
{

while (1) {
Receive output from App_TaskFIR();
Write filter output to file;

}
}



§ In Micrium OS Kernel, a message queue is a list of OS_MSG structures
§ The kernel manages the list
§ Through API functions, tasks can request the insertion or removal of messages

§ A message is a void pointer
§ The sender and the receiver must agree on the meaning of the message

§ Tasks or ISRs can send messages
§ Only tasks can receive messages

§ When a task is waiting on a message, the kernel runs other tasks

Message Queues
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Message Queue API
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void  OSQCreate (OS_Q        *p_q,
CPU_CHAR    *p_name,
OS_MSG_QTY   max_qty,
RTOS_ERR    *p_err);

void  *OSQPend (OS_Q         *p_q,
OS_TICK       timeout,
OS_OPT        opt,
OS_MSG_SIZE  *p_msg_size,
CPU_TS       *p_ts,
RTOS_ERR     *p_err);

void   OSQPost (OS_Q        *p_q,
void        *p_void,
OS_MSG_SIZE  msg_size,
OS_OPT       opt,
RTOS_ERR    *p_err);



Message Queue Example
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USB TaskUSB ISR

Message
Queue

void  App_Task_USB (void *p_arg)
{

while (1) {
p_buf = OSQPend((OS_Q        *)&App_QUSB, 

(OS_TICK      )0,
(OS_OPT)OS_OPT_PEND_BLOCKING,
(OS_MSG_SIZE *)&msg_size,
(CPU_TS      *)&ts,
(RTOS_ERR    *)&err);

Process packet;
Free buffer back to pool;

}
}

OS_Q  App_QUSB; /* Initialization Code */

OSQCreate((OS_Q    *)&App_QUSB,
(CPU_CHAR *)”USB Queue”,
(OS_MSG_QTY)20,
(RTOS_ERR *)&err);

void  App_ISR_USB (void)
{

Clear USB (or DMA) interrupt;
p_buf = Get Buffer from pool;
OSQPost((OS_Q      *)&App_QUSB,

(void      *)p_buf,
(OS_MSG_SIZE)buf_size,
(OS_OPT     )OS_OPT_POST_FIFO,
(RTOS_ERR  *)&err);

}



Type Casting Messages

#define APP_STATUS_OFF 0
#define APP_STATUS_ON  1

typedef OS_MSG_SIZE APP_STATUS;

OS_Q       AppQ;
CPU_INT32U AppCount = 10;
APP_STATUS AppStatus = APP_STATUS_ON;

OSQPost(             &AppQ,
(void*)       count,
(OS_MSG_SIZE) status,

OS_OPT_POST_FIFO,
&err);

§ By casting messages, developers can 
sometimes avoid dealing with shared data

§ Micrium OS Kernel Queues actually provide 
two variables that can be casted
§ void*
§ msg_size

§ It is imperative that the sending task and 
receiving task agree on the message being 
sent when typecasting
§ If not, receiving task my try to dereference the 

value, resulting in a hard fault
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§ Queues can be used to regulate access to controlled resources

§ Only one task directly accesses the resource and that task receives messages from others

§ “Using design patterns to identify and partition RTOS tasks: Part 2,” Michael C. Grischy and David E. 
Simon, Embedded.com, 
www.embedded.com/columns/technicalinsights/179103020?_requestid=206440

Message Queues for Resource Protection

160

http://www.embedded.com/search?keyword=using%20design%20patterns%20to%20identify%20and%20partition%20RTOS%20tasks


§ Similar to the Task Semaphores, message queues are so common they’ve been added to Micrium OS 
Kernel Tasks
§ Low-overhead message queue contained in TCB

§ Task queue size is specified during OSTaskCreate()

§ Other tasks and ISRs can post to the task queue
§ Need the OS_TCB pointer rather than an OS_Q object

Task Message Queue
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Dynamic Memory Pools
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§ Dynamic memory pools are a pool of memory blocks that can be dynamically allocated from either 
the general-purpose heap or a specific memory segment.

§ Pools are configured to an initial number of blocks specified at the creation of the pool
§ You have the option to set a maximum or to allow it to expand into the general heap

§ Dynamic memory pools can allocate the following:
§ General-purpose memory blocks
§ Persistent blocks that keep the data stored in them even when freed
§ Hardware memory blocks

Dynamic Memory Pools



§ Most kernels provide fixed-sized memory block management (buffer pools)
§ Prevents fragmentation
§ Allows messages to be in scope

§ Multiple pools can be created with each having a different block size

§ You must ensure that you return blocks to the proper partition

§ Services:
§ Mem_DynPoolCreate() Create a memory pool
§ Mem_DynPoolBlkGet() Get a block from a pool
§ Mem_DynPoolBlkFree() Return a block to a partition

Dynamic Memory Pools
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Dynamic Memory Pool API

void Mem_DynPoolCreate (const CPU_CHAR *p_name,
MEM_DYN_POOL *p_pool,
MEM_SEG *p_seg,
CPU_SIZE_T blk_size,
CPU_SIZE_T blk_align,
CPU_SIZE_T blk_qty_init,
CPU_SIZE_T blk_qty_max,
RTOS_ERR *p_err)

void* Mem_DynPoolBlkGet (MEM_DYN_POOL *p_pool,
RTOS_ERR *p_err)

void Mem_DynPoolBlkFree (MEM_DYN_POOL *p_pool,
void *p_blk,
RTOS_ERR *p_err)



Message Queue and Memory Pool – Non Blocking
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Message Queue and Memory Pool- Blocking
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§ ISRs and Tasks can send messages to other tasks
§ Sender and recipient need to agree on the meaning of the message

§ A Micrium OS Kernel message queue message is a pointer
§ Can point to data or a function

§ The message needs to remain in scope
§ Sender: Allocate a buffer, populate it, send the address of buffer
§ Recipient: Receive address, process, return buffer to pool

§ Micrium OS Kernel Tasks have built-in message queues

Summary – Inter-Task Communication & Dynamic Memory Allocation
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Lab #6
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Software Timers
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§ Timers are a relatively recent addition to Micriµm’s kernels
§ Not part of µC/OS or earlier versions of µC/OS-II

§ Managed by a separate timer task

§ Periodic and one-shot timers can be created

§ Functionality somewhat different from that of time delays
§ Starting a timer does not result in a task state change

Timer Overview
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§ Timer implementation intended to minimize overhead

§ The timer code does not utilize critical sections for protecting shared resources
§ Either schedule-locking functions or mutexes are used, depending on configuration

§ As a result of the approach to resource protection, timer functions cannot be invoked from ISRs

Timer Restrictions
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void OSTmrCreate (OS_TMR              *p_tmr,
CPU_CHAR            *p_name,
OS_TICK              dly,
OS_TICK              period,
OS_OPT               opt,
OS_TMR_CALLBACK_PTR  p_callback,
void                *p_callback_arg,
RTOS_ERR            *p_err);

Software Timer API
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CPU_BOOLEAN  OSTmrStart (OS_TMR    *p_tmr,
RTOS_ERR  *p_err);

CPU_BOOLEAN  OSTmrStop  (OS_TMR    *p_tmr,
OS_OPT     opt,
void      *p_callback_arg,
RTOS_ERR  *p_err);

Software Timer API
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Timer Implementation
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Execute callbacks

Update TickRemain field

Update Remain field

Make tasks ready
Tick 
Task

Timer 
Task

Tick ISR

OS_TMR OS_TMR

OS_TCB OS_TCB OS_TCB



Timer Example
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void  AppTmrADC_Callback (void *p_tmr, void *p_arg)
{

Read ADC value;  
}

OS_TMR  AppTmrADC; 

/* Initialization Code */

OSTmrCreate(        &AppTmrADC,
“ADC Timer",
0,
OS_CFG_TMR_TASK_RATE_HZ,
OS_OPT_TMR_PERIODIC,
AppTmrADC_Callback,

(void *) 0,
&err);

OSTmrStart(&AppTmrADC, 
&err);

SD Card ADC
Task

ADC



§ High priority tasks should avoid using services implemented by lower priority tasks

Task Priorities
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Medium-priority task prevents 
Timer task from executing 
callback

High-priority 
task preempts 
Timer task

High-priority task pends on 
semaphore that timer callback 
posts

Low-priority task 
(Timer task)

Medium-priority
task 

High-priority
task 



Lab #7
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Conclusion
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Summary (Cont.)

qThe primary function of a kernel is task management, and µC/OS 5 offers a highly efficient scheduler

qThere is often a need for task interaction in multi-task systems, so kernels like µC/OS 5 offer services for 
synchronization, resource protection, and inter-task communication

qAdditional services from µC/OS 5 include dynamic memory allocation and software timers
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Thank You!
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