
Algorithm for windowing the axis-parallel rectangles

Sergei Bezrukov

1 Problem statement

A problem arising in the 3-dim visualization of geographic maps is to select those map
cells that intersect the observer’s frustum. In a trivial approach one just checks all the
cells form a database for the intersection with the given frustum, which causes noticeable
hang-ups of the visualization. We present a faster algorithm here.

We assume that the map cells are given by their axis-parallel bounding rectangles. This
way we come to the following problem for a given set S of n axis-parallel rectangles

S = {Ri}n
i=1 = {[li, ri]× [ti, bi], i = 1, . . . , n}

represented by their left/right horizontal coordinates (li, ri) and their top/bottom vertical
coordinates (ti, bi). We are also given a query axis-parallel rectangle Q = [l, r] × [t, b]
representing the observer’s frustum. The objective is to report those rectangles from S
that have a non-empty intersection with Q.

2 Computing rectangles overlapping the query

To solve this problem efficiently we first preprocess the set S of rectangles and put them
is a new data structure S that we call Rectangle Tree. The preprocessing is as follows:

1. Compute the median (average value) of all the x-coordinates of the corner points

xmid =
1

2n

n∑
i=1

(li + ri).

2. Partition the set S into 3 groups:

Smid : rectangles that intersect the vertical line xmid

Sleft : rectangles that are to the left from the vertical line

Sright : rectangles that are to the right from the vertical line

There groups will form the nodes of the Rectangle Tree S. The node Smid is the
root of S. The nodes Sleft and Sright are its left and right childs, respectively, to be
processed recursively.

1

Each node v of the Rectangles Tree S contains the following information:

• the vertical midpoint x-value M(v)

• pointers Mptr(v) to the secondary Rectangle Tree S(v)

• pointers Lptr(v) and Rptr(v) to the child nodes corresponding to the sets Sleft and
Sright.

Let us see how the Rectangles Tree S can be used for our search. First note, that a
rectangle Ri = [li, ri]× [ti, bi] intersects Q = [l, r]× [t, b] if and only if the segment [li, ri]
intersects [l, r] AND the segment [ti, bi] intersects [t, b]. We distinguish the following
complimentary cases.

Case 1. Suppose the vertical line xmid intersects the segment [l, r] of the query rectangle
Q, that is l ≤ xmid ≤ r.

In this case every rectangle Ri ∈ Smid intersects the horizontal range of Q and we must
report those that intersect the vertical range of Q. For this we will do a search in the
secondary structure. In this search there is no limitation of the horizontal range of the
rectangles (so we pass to the search procedure the value [−∞,∞] for that range), but
their vertical range must intersect [t, b]. Also, we must process the rectangles from the
sets L and R recursively.

Case 2. Suppose the query rectangle Q is completely to the left from the line xmid, that
is r < xmid.

In this case we have to report those rectangles Ri ∈ Smid that intersect [l, r] and [t, b].
Since the right edge of these rectangles is to the right of xmid, we have to check that
li ≤ r. Since no rectangle from Sright intersects Q, we only need to process the set Sleft

recursively.

Case 3. Suppose the query rectangle Q is completely to the right from the line xmid, that
is xmid < l.

In this case we have to report those rectangles Ri ∈ Smid that intersect [l, r] and [t, b].
Since the left edge of these rectangles is to the left of xmid, we have to check that l ≤ ri.
Since no rectangle from Sleft intersects Q, we only need to process the set Sright recursively.

This leads to the following recursive search procedure. We invoke it from the main
program as QueryRectTree(Q, root(S)).

QueryRectTree(Q, v)
Input: query rectangle Q and a node v in the Rectangle Tree
Output: rectangles from S that overlap with Q

if v = nil then return /* termination condition for the recursion */
if (l ≤ M(v) ≤ r) then /* Case 1 */

QuerySecondaryTree(Mptr(v), [−∞,∞], [t, b])
QueryRectTree(Q,Lptr(v))

2

QueryRectTree(Q, Rptr(v))
else if (r < M(v)) then /* Case 2 */

QuerySecondaryTree(Mptr(v), [−∞, r], [t, b])
QueryRectTree(Q, Lptr(v))

else /* Case 3 */
QuerySecondaryTree(Mptr(v), [l,∞], [t, b])
QueryRectTree(Q, Rptr(v))

Note that the QuerySecondaryTree procedure is called for infinite horizontal ranges only
(l = −∞ or r = ∞ or both). This is a big deal and allows to decrease the storage
requirements from O(n log n) down to O(log n).

The secondary Rectangle Tree S(v) is similar and stores the pointers to the rectangles
from the set Smid. We process them as follows:

1. Compute the median ymid of all the y-coordinates of the corner points.

2. Partition the set Smid into 3 groups

Scent : rectangles that intersect the horizontal line ymid

Sbot : rectangles that are below the horizontal line

Stop : rectangles that are above the horizontal line

These three groups will form the nodes of the secondary Rectangle Tree S(v). The
node Scent is the root vertex, while the nodes Sbot and Stop are its childs to be
processed recursively.

3. The rectangles from Scent are organized into four 2-dim dynamic arrays LT , LB,
RT , and RB (for left/right and top/bottom). The array LB lists the rectangles
from Scent ordered first in increasing order of their l-values (as rows) and for each
l-value the corresponding rectangles are ordered according to the increasing b-values
(as columns). This provides a kind of lexicographic ordering of the rectangle corner
points.

The array LT lists the same rectangles (the ones belonging to the set Scent ordered
first in increasing order of their l-values (as rows) and for each l-value the corre-
sponding rectangles are ordered according to the decreasing t-values (as columns).

Similarly, the arrays RT and RB store the rectangles from Scent, where the first
ordering is done according to the decreasing r-values of the corresponding rectangles.

Therefore, each rectangle from the original set S is represented 4 times in our data struc-
ture, so its size is about 4n. Note that each rectangle is actually stored in memory just
once, we only use the pointers to the rectangle objects in the data structures. A twice
larger storage for the rectangles compared to the known algorithm from [1] is the price
for a faster search. However, in our approach there is no need to build additional data
structures for line segments and points. We use just arrays to report the passing rectan-
gles and this additionally speed up the search. Each node w in the secondary Rectangle
Tree S(v) stores the following information:

3

• the horizonal midpoint y-coordinate M(w)

• pointers LB(w), LT (w), RB(w), and RT (w) to the lists LT , LB, RB, and RT .

• pointers Bptr(w) and Tptr(w) to the nodes corresponding to the sets Sbot and Stop,
respectively.

The call QuerySecondaryTree(w, [p, q], [t, b]) can now be processed similarly to the one
for the Rectangle Tree S. We only consider the case of the left-open first range here for
brevity, although the pseudocode below is free of this assumption. We split the analysis
into the same 3 complimentary cases as for the primary tree

Case a. Suppose the line ymid intersects the segment [t, b] of the query rectangle Q, that
is t ≤ ymid ≤ b.

In this case every rectangle Ri ∈ Scent intersects the vertical range of Q and we must
report them all in the order of increasing l-values to check all the time for the condition
li ≤ l. Also, we must process the rectangles from the sets B and T recursively.

Case b. Suppose the query rectangle Q is completely below the line ymid, that is t < ymid.

In this case we have to report those rectangles Ri ∈ Scent that satisfy the conditions li ≤ l
and bi ≤ t. But since the rectangles from Scent are double-ordered in B by increasing
l-value and increasing b-values, we can just loop through them in order and stop when
the above conditions are not satisfied. Since no rectangle from Stop intersects Q, we only
need to process the set Sbot recursively.

Case c. Suppose the query rectangle Q is completely above the line ymid, that is ymid < b.

In this case we have to report those rectangles Ri ∈ Scent that satisfy the conditions li ≤ l
and b ≤ ti. But since the rectangles from Scent are double-ordered in T by increasing
l-value and decreasing t-values, we can just loop through them in order and stop when
the above conditions are not satisfied. Since no rectangle from Sbot intersects Q, we only
need to process the set Stop recursively.

This leads to the following pseudocode, which we involve from the calling program as
QuerySecondaryTree(root(S(v)), [p, q], [t, b]).

QuerySecondaryTree(w, [p, q], [t, b])
Input: a node w in the secondary Rectangle Tree, (semi)-infinite horizontal range [p, q],

and a vertical range [b, t]
Output: set of rectangles with the l- (resp. r-values) in [p, q] overlapping the range [b, t]

if w = nil then return /* termination condition for the recursion */
if (b ≤ M(w) ≤ t) then /* Case a */

if (p == −∞) then /* first range is [−∞, q] */
ReportRectangles(LB(w), [p, q], [−∞,∞])

else if (q == ∞) then /* first range is [p,∞] */
ReportRectangles(RB(w), [p, q], [−∞,∞])

QuerySecondaryTree(Bptr(w), [p, q], [t, b])

4

QuerySecondaryTree(Tptr(w), [p, q], [t, b])
else if (t < M(w)) then /* Case b */

if (p == −∞) then /* first range is [−∞, q] */
ReportRectangles(LB(w), [p, q], [−∞, t])

else if (q == ∞) then /* first range is [p,∞] */
ReportRectangles(RB(w), [p, q], [−∞, t])

QuerySecondaryTree(Bptr(w), [p, q], [t, b])
else /* Case c */

if (p == −∞) then /* first range is [−∞, q] */
ReportRectangles(LT (w), [p, q], [b,∞])

else if (q == ∞) then /* first range is [p,∞] */
ReportRectangles(RT (w), [p, q], [b,∞])

QuerySecondaryTree(Tptr(w), [p, q], [t, b])

Note that the procedure ReportRectangles is called only for (semi)-infinite ranges. This
is one of the key points to speed up the entire search, since the rectangles are organized
in a pre-sorted dynamic 2-dim arrays and we just need to loop through these arrays to
report the rectangles. For example, the rectangles in the set LB(w) are ordered in the
2-dim structure as follows. The first row in the structure stores all the rectangles with the
minimum x-coordinate in the order of increasing y-coordinate. The next row stores all
the rectangles with the next smallest value of the x-coordinate in the order of increasing
y-coordinate. Thus, all the rectangles in one row have the same y-coordinate, and the
rows are ordered in the increasing order of the y-coordinates.

ReportRectangles(M, [p, q], [c, d])
Input: set of ordered rectangles M and (semi)-infinite ranges [p, q] and [c, d]
Output: rectangles from M with the l-values (resp. r-values) in [p, q]

and the b-values (resp. t-values) in [c, d]

if (p == −∞) then /* the first range is [−∞, q] */
if (c == −∞) then /* the second range is [−∞, d] */

for (i = 1; i < length(M) && M [i][0].l ≤ q; i++)
for (j = 1; j < length(M [i]) && M [i][j].b ≤ d; j++)

report rectangle M [i][j]
else if (d == ∞) then /* the second range is [c,∞] */

for (i = 1; i < length(M) && M [i][0].l ≤ q; i++)
for (j = 1; j < length(M [i]) && M [i][j].t ≥ c; j++)

report rectangle M [i][j]
else if (q == ∞) then /* the first range is [p,∞] */

if (c == −∞) then /* the second range is [−∞, d] */
for (i = 1; i < length(M) && M [i][0].r ≥ p; i++)

for (j = 1; j < length(M [i]) && M [i][j].b ≤ d; j++)
report rectangle M [i][j]

else if (d == ∞) then /* the second range is [c,∞] */
for (i = 1; i < length(M) && M [i][0].r ≥ p; i++)

for (j = 1; j < length(M [i]) && M [i][j].t ≥ c; j++)
report rectangle M [i][j]

5

The involved Rectangle Tree can be constructed by the following algorithm:

ConstructRectTree(S)
Input: set of 2-dim rectangles S
Output: the root of the Rectangle Tree for S
1. if (S = ∅) then return null
2. Create a node v
3. Compute and store xmid with v
4. Compute Smid, Sleft, Sright

5. Mptr(v) = ConstructSecondaryTree(Smid)
6. Lptr(v) = ConstructRectTree(Sleft)
7. Rptr(v) = ConstructRectTree(Sright)

The construction of the secondary tree follows the same pattern. Note that only the
secondary tree actually stores pointers to the rectangles.

ConstructSecondaryTree(S)
Input: set of 2-dim rectangles S intersecting a straight line
Output: the root of the secondary Rectangle Tree for S
1. if (S = ∅) then return null
2. Create a node w
3. Compute and store ymid with w
4. Compute Scent, Sbot, Stop

5. Create four 2-dim arrays LT , LB, RT , and RB as follows:
LB: order the rectangles of Scent according to the increasing x and increasing

y-coordinates of their bottom left corner points in the lex. order
RB: order the rectangles of Scent according to the decreasing x and increasing

y-coordinates of their bottom right corner points in the lex. order
LT : order the rectangles of Scent according to the increasing x and decreasing

y-coordinates of their top left corner points in the lex. order
RT : order the rectangles of Scent according to the decreasing x and decreasing

y-coordinates of their top right corner points in the lex. order
Store the pointers to these arrays in w.

6. Bptr(v) = ConstructSecondaryTree(Sbot)
7. Tptr(v) = ConstructSecondaryTree(Stop)

3 The algorithmic complexity of the method

Proposition 1 The Rectangle Tree of n rectangles can be built in O(n log n) time.

Proof.
Finding the median of a set of points takes a linear time. To sort the rectangles from
Scent takes O(|Scent| · log(|Scent|)) time. We need to do 4 different sorting of this set, but
this all will take the same time up to the multiplicative constant. Since the sets Scent are

6

disjoint, the entire processing time is
∑

Scent
O(|Scent|·log |Scent|) =

∑
Scent

O(|Scent| log n) =
O(

∑
Scent

|Scent|) log n = O(n log n). 2

Proposition 2 The Rectangle Tree of n rectangles uses O(n) storage.

Proof.
Due to the splitting of the rectangles in the primary and the secondary trees, the usage
of medians ensures that the number of rectangles in each of the left and right subtrees
does not exceed n. Indeed, there are at most p/2 values that are below the median of p
numbers. The same argument is also valid for the values exceeding the median. Applying
this observation to p = 2n (each rectangle constitutes 2 points in the computation of the
mid-values), we come to the above conclusion.

Therefore, the depth of the primary search tree is O(log n). Hence, the number of nodes
in this tree is O(n), because each node stores just a constant (up to 5) values. The same
holds for the secondary tree with ni nodes: its space complexity of O(ni). Note that the
secondary trees store disjoint sets of rectangles, so

∑
i ni = n. Finally, a pointer to each

rectangle is stored 4 times, in the 2-dim dynamic arrays, so the total space complexity is∑
i(O(ni)) = O(

∑
i ni) = O(n). 2

Proposition 3 Algorithm QueryRectTree reports the rectangles overlapping a given query
in O(log2 n + k) time, where k is the number of reported rectangles.

Proof.
A rather complicated analysis presented in [1] shows that a search in the standard Inter-
val Tree structure takes O(log n) time. The same argument can also be applied to our
Rectangle Tree. So, the overall search time in the primary tree takes O(log n) time. For
each node in the primary tree the save amount of time is taken for the search in every
secondary subtree on the search path. Finally, since each rectangle is reporting just once,
the total report time is O(k). Taking this all into account, the total running time of
the algorithm is

∑
i O(log n(O(log n + ki)) = O(log2 n + k), where ki is the number of

rectangles reported at the i-th call of the ReportRectangles procedure.

4 Implementation

4.1 Preliminaries

The algorithm is implemented in Java language, version 5. The implementation con-
sists of 4 source files: Wind.java, WindTest.java, SBrect.java, RectTree.java, and
SecondaryTree.java. Additionally, a manifest file Wind.mf is needed for creating the
Java Archive JAR file for the compactness. This file is also needed to run the application
over the network by using the JNLP (Java Network Launch Protocol) technology.

The first two files Wind.java and WindTest.java contain the Java API calls for creating
the application graphics window and user interface. There are well commented and are
not described here, because their irrelevance to the algorithm implementation.

7

The file SBrect.java described a class for representing the rectangles. Its implementation
is straightforward:

public class SBrect

{

public int l; // left coordinate

public int r; // right coordinate

public int b; // bottom coordinate

public int t; // top coordinate

public SBrect(int l, int r, int b, int t)

{

this.l = l; // constructor of the SBrect object

this.r = r;

this.b = b;

this.t = t;

}

public SBrect(SBrect r) // copy constructor

{

this(r.l, r.r, r.b, r.t);

}

}

4.2 Constructing and querying the Rectangle Tree

The file RectTree.java describes a node structure in the Rectangle Tree. Each node of
this tree is made a leaf by the node constructor and contains the following information,
according to the algorithm:

public class RectTree

{

private double median; // mid value of x-coordinates

private SecondaryTree mPtr; // pointer to the secondary tree

private RectTree lPtr; // pointers to the left and right

private RectTree rPtr; // primary subtrees

public void RectTree() // default constructor

{ // information stored in each node

median = 0; // mid value of all x-coordinates

mPtr = null; // pointer to the secondary tree

lPtr = rPtr = null; // pointers to the left/right subtrees

}

The method constructing the tree is pretty much the same as the pseudocode described
above. It is assumed that the set of rectangles is given as a linked list of the SBrect

8

classes. The method is declared as static because it does not use the underlying class
members. First, we compute the mid value of the x-coordinates of the rectangle vertical
sides:

RectTree pT = new RectTree(); // create a new tree node

for (ListIterator<SBrect> lI=lList.listIterator(0); lI.hasNext();)

{

SBrect rect = lI.next();

pT.median += rect.l + rect.r;

}

pT.median /= 2*lList.size(); // ... and put the median there

After that the set of all rectangles is partitioned in 3 disjoint classes (see the algorithm)
represented in the linked lists:

LinkedList<SBrect> sMid = new LinkedList<SBrect>();

LinkedList<SBrect> sLeft = new LinkedList<SBrect>();

LinkedList<SBrect> sRight = new LinkedList<SBrect>();

for (ListIterator<SBrect> lI=lList.listIterator(0); lI.hasNext();)

{

SBrect rect = lI.next();

if (rect.r < pT.median) sLeft.add(rect);

else if (rect.l > pT.median) sRight.add(rect);

else sMid.add(rect);

}

Finally, we apply the recursive calls to the constructed sets of rectangles:

// create the secondary tree for that node

pT.mPtr = SecondaryTree.constructSecondaryTree(sMid);

pT.lPtr = constructRectTree(sLeft); // proceed recursively with

pT.rPtr = constructRectTree(sRight); // the left and right subtrees

return(pT);

The Rectangle Tree querying algorithm is also practically identical to its pseudocode.
It also does not use the underlying class members, hence is declared as static for the
efficiency. To query the secondary tree, we send there the vertical and horizontal ranges
combined for the convenience in one SBrect structure. The coordinates of all the in-
volved points in our application are non-negative integers, so the predefined Java values
Integer.MIN VALUE and Integer.MAX VALUE serve as −∞ and ∞, respectively.

public static void queryRectTree(SBrect query, RectTree v)

{

if (v == null) return; // terminating condition

9

SBrect range = new SBrect(query); // search range for the secondary tree

if (query.l <= v.median && v.median <= query.r) // Case 1

{

range.l = Integer.MIN_VALUE;

range.r = Integer.MAX_VALUE;

SecondaryTree.querySecondaryTree(v.mPtr, range);

queryRectTree(query, v.lPtr);

queryRectTree(query, v.rPtr);

}

else if (query.r < v.median) // Case 2

{

range.l = Integer.MIN_VALUE;

SecondaryTree.querySecondaryTree(v.mPtr, range);

queryRectTree(query, v.lPtr);

}

else // Case 3

{

range.r = Integer.MAX_VALUE;

SecondaryTree.querySecondaryTree(v.mPtr, range);

queryRectTree(query, v.rPtr);

}

}

4.3 Constructing and querying the secondary tree

Each node of the secondary tree stores the information shown below and is constructed
by the following constructor:

public class SecondaryTree

{

private double median; // mid value of y-coordinates

private SBrect[][] lb, lt, rb, rt; // pointers the rect. lists

private SecondaryTree bPtr; // pointers to the bottom and top

private SecondaryTree tPtr; // secondary subtrees

public void SecondaryTree() // constructor

{

median = 0.0; // mid value of the y-coords.

lb = lt = rb = rt = null; // pointers to 2-dim arrays

bPtr = tPtr = null; // pointers to subtrees

}

This class also contains four comparators to be used for sorting. We apply the standard
Java API sorting algorithm for arrays that implements the merge-sort algorithm. The
comparators are needed for the sorting method. We show only one of them here, they all

10

are similar and appear as inner Java classes implementing the Comparator interface of
Java API:

private static Comparator<SBrect> ltComparator = new Comparator<SBrect>()

{

public int compare(SBrect r1, SBrect r2) // sort the rectangles

{ // in increasing order of their

if (r1.l < r2.l) return(-1); // l-values and decreasing order

else if (r1.l > r2.l) return(1); // of the t-values

else return(r2.t - r1.t);

}

};

The constructor of the secondary tree starts similarly as for the Rectangle Tree:

public static SecondaryTree constructSecondaryTree(LinkedList<SBrect> lList)

{

if (lList == null || lList.size() == 0) // terminating condition

return(null); // empty list

SecondaryTree sT = new SecondaryTree(); // create a new node

for (ListIterator<SBrect> lI=lList.listIterator(0); lI.hasNext();)

{

SBrect rect = lI.next();

sT.median += rect.b + rect.t;

}

sT.median /= 2*lList.size(); //.. and put the median there

// split the rectangles in 3 disjoint sets

LinkedList<SBrect> sCent = new LinkedList<SBrect>();

LinkedList<SBrect> sBot = new LinkedList<SBrect>();

LinkedList<SBrect> sTop = new LinkedList<SBrect>();

for (ListIterator<SBrect> lI=lList.listIterator(0); lI.hasNext();)

{

SBrect rect = lI.next();

if (rect.t < sT.median) sBot.add(rect);

else if (rect.b > sT.median) sTop.add(rect);

else sCent.add(rect);

}

In the next code segment we create the dynamic 2-dim arrays (see the algorithm descrip-
tion). For this we need to sort the Java linked list. It turns out that the implementation of
the Java sort method first converts the linked list into an array, sorts it and then converts
it back to the linked list. To speed up the processing, we first convert the linked list into
the array just once and use the Java sorting methods available for the arrays. We will
later need to convert the sorted structures into a 2-dim arrays, so it does not matter how
to represent them:

11

if (sCent.size() > 0) // create 2-dim structures

{ // and attach then to the new node

SBrect[] sCentArray = sCent.toArray(new SBrect[sCent.size()]);

Arrays.sort(sCentArray, lbComparator);

sT.lb = create2DimArrayL(sCentArray);

Arrays.sort(sCentArray, ltComparator);

sT.lt = create2DimArrayL(sCentArray);

Arrays.sort(sCentArray, rbComparator);

sT.rb = create2DimArrayR(sCentArray);

Arrays.sort(sCentArray, rtComparator);

sT.rt = create2DimArrayR(sCentArray);

}

We use two procedures for creating the 2-dim dynamic arrays created from the corre-
sponding presorted 1-dim arrays. The procedures are practically identical and differ just
in three lines. One of them works with the left coordinates of the rectangles, and the
second one with the right ones. Here is one of them:

private static SBrect[][] create2DimArrayL(SBrect[] arr)

{

LinkedList<SBrect[]> rows = new LinkedList<SBrect[]>();

LinkedList<SBrect> row = null;

int x = Integer.MIN_VALUE; // here is the difference

for (int i=0; i<arr.length; i++)

{

SBrect rect = arr[i];

if (x != arr[i].l) // ... here

{

x = rect.l; // ... and here

if (row != null)

rows.add(row.toArray(new SBrect[row.size()]));

row = new LinkedList<SBrect>();

}

row.add(rect);

}

if (row != null && row.size() > 0) // add the last row

rows.add(row.toArray(new SBrect[row.size()]));

return(rows.toArray(new SBrect[rows.size()][]));

}

The rows in the created 2-dim array store all the rectangles that have the same x-
coordinate (left or right, respectively). We use the initial value for x = ±∞ to construct
the first row of the array.

Finally, the secondary tree creating procedure end up with two recursive calls for creating
the left and right subtrees:

12

sT.bPtr = constructSecondaryTree(sBot); // proceed recursively with the

sT.tPtr = constructSecondaryTree(sTop); // left and right subtrees

return(sT);

The involved methods for querying the secondary structure and reporting the rectan-
gles are practically identical to their pseudocodes in the algorithm description and are
omitted here. The only minor difference is that we also represent two ranges in the
reportRectangles procedure as a single SBrect structure. We also use the Java values
Integer.MIN VALUE and Integer.MAX VALUE for −∞ and ∞, respectively.

The reportRectangles procedure creates a linked list of rectangles overlapping the query
rectangle. This linked list overlap is declared in class WindTest and has a package access
there.

5 Profiling the algorithm

Recall, that by the trivial algorithm we mean a linear-time algorithm that checks each
rectangle in sequence for the intersection with the query rectangle. In order to compute
the actual running time of our algorithm and compare it with the trivial algorithm, we
performed a series of 1000 tests. The number 1000 can be changed by the user.

During these tests we generated a random placement of n rectangles, 1, 000 ≤ n ≤
1, 000, 000 which was fixed in all the tests. Then we place randomly the query rectangle
and compute the total running time. The total elapsed time was normalized by dividing
it by the number of experiments (1000). We used the following code:

int n = getNumber(tf1); // # of rectanges to generate

int m = getNumber(tf2); // # of tests to perform

if (n<0 || m<0) return;

drawPanel.generateRects(n);

algoTime.setText("");

trivTime.setText("");

overlapCnt.setText("");

StopWatch sWatch = new StopWatch(); // profiling the algorithm

drawPanel.randGen.setSeed(1000);

sWatch.start();

double cntr = 0;

for (int i=0; i<m; i++)

{

drawPanel.moveQuery(); // new query position

drawPanel.computeOverlap(); // run the algorithm

cntr += WindTest.overlap.size();

}

sWatch.stop();

algoTime.setText("Algo: " + 1.0*sWatch.getElapsedTime()/m + " ms");

13

A similar code was used to profile the trivial algorithm. To make both algorithms to
work with the same set of queries, we set up the seed for the random numbers generator,
responsible for placement the random query rectangles. This way the sets of queries for
both methods are the same.

sWatch.reset();

drawPanel.randGen.setSeed(1000);

sWatch.start();

for (int i=0; i<m; i++) // profiling the trivial alg.

{

drawPanel.moveQuery();

drawPanel.computeTrivialOverlap();

}

sWatch.stop();

trivTime.setText("Triv: " + 1.0*sWatch.getElapsedTime()/m + " ms");

overlapCnt.setText("Overlap: " + (long)(cntr/m));

The results of the running time (in msec) are shown in the following table:

of rect. 1000 5000 10,000 50,000 100,000 500,000 1,000,000
Our alg: 0.01 0.04 0.080 0.370 0.701 3.686 5.959
Trivial: 0.05 0.27 1.322 6.209 10.436 35.993 73.719
Overlap: 18 91 182 908 1815 9090 17666

Table 1: The running time (msec) and number of overlapping rectangles

It follows from this table, that our algorithm is about 10-20 times faster than the trivial
one. The difference becomes more noticeable as n grows.

To perform the test for n = 106, we ran the Java application form the command line:
java -Xmx512M -jar Wind.jar

The reason for this is that it needs more memory than the default heap size provided by
the settings of JVM of the JNLP technology.

Note that our algorithm is very stable in terms of running time. Repeating the series of
tests returns almost the same average running time. The difference is minor and usually
affects the second or the third sign after the decimal comma. In contrast to this, the
running time of the trivial algorithm can differ up to a factor of 2. This is explained by
the way how the trivial algorithm computes the intersection of rectangles. It checks up
to 4 conditions per rectangle. So, sometimes 1 or checks are done to reject a rectangle.
The computations in our algorithm are more uniform and are less affected by the actual
set of rectangles.

References

[1] M. de Berg, M. van Krefeld, M. Overmars, O. Schwarzkopf Computational Geometry:
Algorithms and Applications, Springer-Verlag 1997.

14

