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1 The problem

Assume that we are given a set of points on a 2-dimensional plane along with a rectangle
associated with each point. The points represent some objects on a map, such that cities or
light houses, etc. The labels usually represent some text assigned to a point, such that name
of the city, altitude of a hill, period and parameters of a light house flash. We model a label
by a rectangle and throughout the paper assume that a label is nothing else as a rectangle of
a given size.

Furthermore, it is usually assumed that the labels can appear on a specific positions around the
point object. Usually, there is a number of discrete positions which have weights according to
a preference of putting a label at that position. The goal is to place as much labels as possible
so that the labels do not overlap.

2 Preliminaries

We will be dealing with the following label positioning models:

2-position model: In this model, a label of each point can be placed in one of two given
positions. Examples of the label placement are shown in Fig. 1.
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Figure 1: Examples of label placement in the 2-position model

4-position model: In this model a label can be placed in one of the 4 positions around the
point object shown in Fig. 2.

For each of these models, the positions may get some weight according to the label placement
preferences. The weights may be just integer numbers in the range [0..4]. The smaller numbers
correspond to higher priorities. The value 4 of the weight corresponds to a not shown label.

We will be using the intersection graph defined below. The vertex set of the intersection graph is
formed by the point labels. Thus, if N points have to be labeled, this graph has 2N vertices for
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Figure 2: Label placement in the 4-position model

the 2-position model and 4N vertices for the 4-position model. Two vertices of the intersection
graphs are adjacent if the corresponding labels overlap.

Since for our application about 400 points have to be labeled, the intersection graph can be
constructed by using a trivial approach: for each label L scan all other labels and check whether
they intersect with L. This results in an O(N2) running time, which for the considered range
of N is acceptable.

3 Label placement for the 2-position model

For this model the placement algorithms are particularly fast and simple. We associate a
Boolean variable xi to each point pi and arbitrarily assign the literals xi and xi with its label
positions. Now, if two label placements corresponding to the literals, say xi and xj overlap, we
form a clause

(xi ∧ xj) = xi ∨ xj.

This gives us a set of clauses C1, . . . , Cm. Joining them together by using the logical AND
operation results in a conjunctive normal form (CNF) C = C1 ∧ C2 ∧ · · · ∧ Cm.

The problem of maximization of the number of displayed labels is now equivalent to the problem
of finding a truth assignment to the boolean variables {xi} that satisfies the maximum number
of clauses in the CNF C. A clause is called satisfied if its truth value in the assignment is TRUE.
This problem is known as a MAX-2-SAT problem. The decision version of this problem (that
is to check whether or not it is possible to display all the point labels) is polynomially solvable.
The maximization version is, however, NP-hard. Nevertheless, there exist fast polynomial
approximation algorithms for the MAX-2-SAT problem, see [1] for a survey. Below we describe
the approximation algorithm of Johnson.

The algorithm uses a greedy approach and at each step selects a literal that occurs in the
maximum number of clauses. If the literal corresponds to the Boolean negation of some variable
xi, then set xi =FALSE, otherwise set xi =TRUE. The clauses satisfied by this literal are then
deleted from the CNF and the algorithm stops when all clauses are satisfied or all variables
have been assigned values.

Input: A set of clauses C = {C1, . . . , Cm}.
Output: Truth assignment U .

//For a literal l, denote by u(l) the corresponding variable
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Set S = ∅, Left = C, V = { set of variables}
do

Find l with u(l) ∈ V , which is in max. number of clauses in Left.
Resolve the ties arbitrarily.
Let {Cl1 , . . . , Clk} be the clauses in which l occurs.
Update S = S ∪ {Cl1 , . . . , Clk} and Left = Left \{Cl1 , . . . , Clk}.
Assign the truth value to u(l) as mentioned above.
Update V = V \ {u(l)}.

until no literal l with u(l) ∈ V is contained in any clause of Left.
if V 6= ∅ then for all u ∈ V do u = TRUE
return U = set of truth values {u(l)}.

In our case, when each clause consists of exactly 2 literals, this algorithm provides approxima-
tion rate 2/3. If some other map objects would prevent placing one of the two point labels, then
some of the clauses in the CNF C would consist of one variable. In this case the approximation
rate of the Johnson algorithm is 1/2.

4 Label placement for the 4-position model

We apply the following gradient-descent approach, which would also work for the 2-placement
model. A general algorithm description can be found in a survey [2], we extend this description
by providing more implementation details.

We assume that one is given n points p1, . . . , pn to be labeled, each by one of 4 rectangles lij
(1 ≤ i ≤ n, 1 ≤ j ≤ 4) from the set r1, . . . , r4n (see Fig. 1) of all point labels.

Input: A set of points {(x, y)} to be labeled.
Output: Label assignment.

For each point, place its label randomly in any of the available candidate positions
(alternatively, put it into the highest preferable position)

Compute the initial label placement cost.
do

Set m = 10 ∗ n; imin = 0
for each point pi do

move its label to each of the alternative positions
for each position, calculate the change in the placement cost
Let deltai be the minimum cost of repositioning the i-the label
if (deltai < m) then m =deltai and imin = i

Reposition the label of pimin

Recompute the new placement cost
while no cost improvement occurs

4.1 Initialization

The initial label placement cost can be evaluated during the construction of the intersection
graph. We assume that the set of rectangles (bounding boxes for labels) are ordered.

3



We assign a cost to each point pi according to its label position and possible intersection of this
label with other labels. The label placement cost ci is a number in the range [0..4]. If the label
of pi intersects another label, we additionally add 5 to ci. This way we achieve the property
that positioning of a label so that it intersects another label leads to a larger placement cost.

We maintain a binary characteristic vector v = (v1, . . . , v4n) of a placement (initialized to
(0, . . . , 0)), where an entry is one iff the corresponding rectangle (label position) is actually
used in the placement.

Input: A set of rectangles {r1, . . . , r4n}.
Output: Characteristic vector v and cost c of the placement.

Set c = 0 and v = (0, . . . , 0).
for i = 0; i < n; i++

select (randomly) one of 5 possible positions j ∈ [0..4] for a label of pi

update the corresponding entry of v
update c = c + ci

for j = 0; j < n; j++
if (ri ∩ rj) 6= ∅

form an edge (i, j) in the intersection graph
if (vi 6= 0 && vj 6= 0)

update c = c + 5

Since we will need to access the neighbors of a vertex in the intersection graph, it is beneficial
to represent this graph in the adjacency list form.

4.2 Moving a label and recomputing the replacement cost

First, we remove a label and recompute the cost change by visiting all labels that it intersects
(if any). Next, we make a loop over all four label positions of pi, for each of them compute the
resulting change in the cost placement and take the minimum.

Input: A set of rectangles {r1, . . . , r4n} and index i of repositioning label
Output: A new label position i′ and change deltai of the replacement cost i 7→ i′.

Set deltai = −ci and i′ = 0
for every neighbor rj of ri in the intersection graph do

if (vj 6= 0) then deltai = deltai − 10
Set min= 10 ∗ n
for every label position k of pi do

d = ck

for every neighbor rj of rk in the intersection graph do
if (vj 6= 0) then d = d + 10

if (d < min) then min = d and i′ = k
Update deltai = deltai + min
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4.3 Updating the placement and its cost

At this step the index imin and a new position i′
min of the point label is used to actually modify

the label placement. The corresponding label is moved to a new place, followed by updating
the characteristic vector v and the placement cost c.

Input: Indices imin and i′
min and the cost difference deltai

Output: Update of the characteristic vector v and the placement cost c.

for every neighbor rj of rimin
in the intersection graph do

if (vj 6= 0) then c = c− 10
Update c = c− cimin

+ ci′min

Update vimin
= 0 and vi′min

= 1
for every neighbor rj of ri′min

in the intersection graph do
if (vj 6= 0) then c = c + 10

The entire gradient algorithm is over if after a run over all points no improvement caused by
replacement of a single label occurs. In our terms, we do the loop while deltai < 0.

4.4 Local optimization

One can add a local optimization at each step of the algorithm. The optimization consists of
checking each not labeled point and trying to find an admissible position for it. This feature
allocates up to 20 labels which were originally not shown (out of 150 objects to be labeled).

Optionally, one can do even a deeper optimization: for each position of a not shown label
l by trying to reallocate the labels of those points whose current labels intersect l. In the
implementation we do this optimization at the very end of the procedure to save the running
time. In our tests this optimization allocated 1-3 labels (out of 150 objects to be labeled).

4.5 Not overlapping objects

In many practical applications some objects on the map must not be overlapped by labels.
We call such objects forbidden objects. To extend the algorithm to take such objects into
consideration, just a few changes are necessary.

First of all, assuming there are m forbidden objects and each of them is a rectangle, we extend
the characteristic vector of the placement by adding to it m entries. These entries will be
initially set to 1 and won’t be modified in the coarse of the algorithm.

Next, building the intersection graph we additionally check for intersection the i-th label (i =
0, . . . , 4n − 1) and the j-th forbidden object (j = 0, . . . ,m − 1). If they do intersect, we add
the number 4n + j into the adjacency list of the i-th label. Note that the adjacency graph will
still have only 4n lists (one for each label), since we never check the neighbors of a forbidden
object. With these additions, no further modifications of the algorithm are required.
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5 Simulated annealing method

Simulated annealing is a well-known method for solving combinatorial optimization problems
[5, 6]. The method consists of the following general steps.

1. For each point object, place its label randomly in one of the admissible positions
for that object

2. Initialize a “temperature” T to an initial high value
3. Repeat until the rate of improvement falls below a given threshold

a. Decrease T according to the annealing schedule
b. Pick a point randomly and move its label to a new position randomly

chosen from the set of admissible positions
c. Compute the change of the cost function ∆C
d. If the new positioning is worse, accept it with the probability exp(−∆C/T )

The method strongly depends on the annealing schedule, that is the way how and when to
decrease the temperature T . As experiments show, this method requires several dozens of
thousand iterations before producing a solution of appropriate quality. Therefore, fast recom-
puting of the cost function is very desirable.

We use the same as above data structure (the intersection graph) and placement costs in the
implementation of this method. So, all one needs to specify is the steps 2 and 3a of the
algorithm.

5.1 Initialization of the Temperature

On the first 50 passes through the annealing schedule (that is, on the first 50 random choices
of a label to reposition without modifying the temperature), we make the algorithm accept any
non-improving move with probability 1/3. At the same time the sum of the non-improving ∆
changes of the cost function is encountered during the 50 passes is recorded and used to compute
an average value for non-improving ∆. The program then sets up T so that the probability of
acceptance of the worse placement is 1/3 for the average value of ∆:

T = ∆/ ln 3.

From then on, T is reduced according to the schedule given below.

5.2 The Annealing Schedule

Given an initial value for the temperature T , the most commonly used annealing schedule is to
compute new values of T from the old values as follows:

Tnew = λ · Told, 0 < λ < 1.

Assuming the process does not terminate earlier due to some other criteria, we let 50 reductions
of temperature with λ = 0.9. For each value of T , the program makes a number of random
perturbations of the solution which is proportional to the number of label placement positions.
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Usually this proportionality factor is set to 10. Finally, if four successive reductions of the
system temperature do not produce a better solution, the annealing process is stopped without
finishing the normal 50 reductions.

5.3 The entire Algorithm

1. for i = 0; i < n; i++ do
Generate an integer random number in the range [1..5]
and place the label for the i-th point in the corresponding position

2. Initialize ∆ = 0 and b = 0
for i = 0; i < 50; i++ do

Generate an integer random number r in the range [1..n]
Generate an integer random number t in the range [1..5]
Compute the change of the cost ∆ of placing the label of

point r in position t
if (∆ < 0) then accept the change
else

∆ = ∆ + ∆ and b++
Generate a random real number p in the range [0..1]
if (p ≤ 1/3) then accept the change

if (b > 0) then ∆ = ∆/b
Set T = ∆/ ln 3

3. if (T > 0) then for i = 0; i < 50; i++ do
T = T ∗ 0.9
for j = 0; j < 50; j++ do

Generate an integer random number r in the range [1..n]
Generate an integer random number t in the range [1..5]
Compute the change of the cost ∆ of placing the label of

point r in position t
if (∆ < 0) then accept the change
else

Generate a random real number p in the range [0..1]
if (p ≤ exp(−∆/T )) then accept the change

5.4 Hill climbing

This method is a special case of the annealing schedule when the temperature is always zero.
In this case changes in label placement are made randomly and are only kept if they give
no deterioration to the solution. If a problem is not too complicated, this method performs
surprisingly well. The rate of improvement is very high at the start of the algorithm.

6 Experiments with algorithms

The Gradient Descent method and Simulating Annealing method were implemented in C++
programming language. Up to 150 objects were randomly placed. The size of each object
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was chosen 5 × 5 pixels. The label of each object was of the form label x, where x is the
object number. Hence, the labels had the same height but different widths in the experiments.
However, the label and object class constructors in the implementation allow to set up different
sizes for each label as well as different size for each object. Every other object was set up as a
forbidden one.

With the settings describe above both methods provide comparable results. The advantages
of the first method is its simplicity, speed, and ability to work with various types of data
(labels/objects) without any adjustments. The only disadvantage is that it always chooses one
of the best ways to relabel the objects at each step and, hence, is unable to get out of a local
optimum.

The simulating algorithm has a chance to get out of a local optimum due to some stochastic
featured in its implementation. However, this method required a fine tuning for real data. The
number of iterations for each temperature and the number of times to decrease the temperature
(the annealing schedule) strictly depends on the data. It requires many experiments to work
out the good settings for the data to work.

Both methods running time is about 1 second. Most of this time is required to redisplay the
label positioning after the placement is computed. Both methods decrease the initial cost from
the range of 800-900 (for 150 random objects) for the initial random placement down to ≈100-
150. Around 70% of labels in all tests were placed on their preferred positions, in average 8
labels were not shown.

7 Genetic Algorithms

This approach also brings up an element of randomness to the optimization process and gives
it a chance to escape from a local minimum. The approach emulates the Darwin’s Evolution
Process, which briefly consists of the following.

Assume there is a population of some species whose (useful) properties are defined by genes.
There is, however, not known what exactly genes and their combinations influence on the
desired properties. During the population lifetime, some of the species can produce siblings
and, thus, a new population is created. In this process, the set of sibling’s genes is combined
from the ones of their parents. It is also assumed that there is a way to evaluate the siblings
with respect to the desired properties. Then, from the set of parents and their siblings, one
leaves only those whose desired properties are stronger, to make the population size finite and
bounded.

The siblings can also be selected by combining the genes of their parents. There are various
approaches to combine the genes. One of the most widely used one is called crossover. In this
approach a pair of parents produces just two siblings. Modeling the genes sequence (whole
length is the same for all species) by a one-dimensional vector, one chooses randomly a set
of genes S. One of the siblings gets then the genes from the set S from one parent and the
remaining ones from the other parent. The other sibling gets the complementary set of genes.
In some models only a few genes are allowed to be modified in both siblings. This is provided
by designing a suitable mask and called focusing.

Additionally, some parent genes in both siblings can be randomly modified with a small prob-
ability. This process is called muting. After several populations, the set of species will be
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stronger in the desired property.

This is just a vague idea. Translated to the problem of labeling the point sets, the population
consists of several label placements (usually several hundreds). Each label placement has to be
stored in computer memory and evaluated against a fixed cost function. One step of iteration
procedure (which results in a new population in the above description) consists in choosing two
label placements from the set and applying to them the crossover and muting operations. Out
of 4 obtained labelings produced this way, one chooses only 2 which have smallest cost, and
replaces the original two labelings in the population with the obtained ones. The genes in our
problem are simulated by the positions of the labels for each point, so the number of genes is
equal to the number of points.

The step above leads to a new population (of the same size) with the property that the average
size of the placement cost tends to be smaller. After several thousands of evolutions (iterations)
one chooses a labeling that has a minimum cost from the pool.

The method is very sensible to the process parameters. Crossover is just one of the techniques
used. Its implementation also varies and there are many approaches known in the literature
[3]. There are also various techniques to muting, and the evolution steps are usually followed
by a local optimization around each point, which essentially influences on the running time and
the quality of the final placement. There are also several approaches to obtaining an initial
population with a sufficient diversity.

The genetic algorithms provide a very high quality map placement. However, as the comparison
results in [3] show, their quality is comparable with the one provided by the simulation annealing
algorithms. The running time is much higher and usually for the conversion of the method one
needs to do several millions intersection tests. These algorithms require a very precise tuning
to the considered placement model and cautious choosing of the cost function.
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