
General Methods for Algorithm Design

1. Dynamic Programming

• Multiplication of matrices

• Elements of the dynamic programming

• Optimal triangulation of polygons

• Longest common subsequence

2. Greedy Methods

• Scheduling problems

• The Knapsack Problem

• Matroids

• Minimal and maximal spanning trees

• Huffman codes

1

Let A be a p × q matrix and let B be a q × r matrix. Then
C = A ·B is a p× r matrix.

One needs pqr multiplications to compute C:

Algorithm 1 MM(A,B);

if (# Columns(A) 6= # Rows(B)) then
ERROR

else for i = 1 to # Rows(A) do
for j = 1 to # Columns(B) do
C[i, j] := 0
for k = 1 to # Rows(B) do
C[i, j] := C[i, j] + A[i, k] ·B[k, j]

return C

The product operation A1A2A3 is associative and the number of
multiplications strictly depends on the order.

Example 1 Let A1 10× 100, A2 100× 5 and A3 5× 50 matrices.

The scheme ((A1A2)A3) requires 10 · 100 · 5 + 10 · 5 · 50 = 7500
multiplications.
The scheme (A1(A2A3)) requires 100 · 5 · 50 + 10 · 100 · 50 = 75000
multiplications.

Problem:
Find an optimal multiplication order for A1A2...An.

2

For n = 4 there are only 5 orders:

(A1(A2(A3A4)))

(A1((A2A3)A4))

((A1A2)(A3A4))

((A1(A2A3))A4)

(((A1A2)A3)A4)

In general the number of orders is

P (n) =


1 if n = 1,
n−1∑
k=1

P (k) · P (n− k) if n ≥ 2.

This implies:

P (n) =
1

n

2n− 2

n− 1

 = Ω
 4n

n3/2

 .

Therefore, “the complete choice” is exponential in time.

a. Optimal Multiplication Order:

Let
Ai..j = Ai · ... · Aj.

There exists k (i ≤ k < j), such that the optimal multiplication
order for Ai · ... · Aj is or the form:

Ai · ... · Aj = Ai..k · Ak+1..j,

and the orders for the products for Ai..k and Ak+1..j are optimal.

3

b. Recursive Solution:

Let m[i, j] be the minimal number of multiplications in the optimal
order for Ai..j and Ai be a pi−1 × pi matrix. One has:

m[i, j] =


0 if i = j
min
i≤k<j
{m[i, k] + m[k + 1, j] + pi−1pkpj} if i < j.

Let p = 〈p0, ..., pn〉.

Algorithm 2 RMC(p, i, j);

if (i = j) then
return 0

m[i, j] :=∞
for k = i to j − 1 do
q := RMC(p, i, k) + RMC(p, k + 1, j) + pi−1pkpj
if (q < m[i, j]) then
m[i, j] := q

return m[i, j]

Our goal is to compute m[1, n] = RMC(p, 1, n). The running time:

T (n) ≥ 1 +
n−1∑
k=1

(T (k) + T (n− k) + 1) for n > 1,

or

T (n) ≥ 2 ·
n−1∑
k=1

T (k) + n,

which implies
T (n) ≥ 2n−1.

4

To show this we apply the induction on n. T (1) ≥ 1 = 20.
Assuming T (i) ≥ 2i−1 for any i < n, one has

T (n) ≥ 2 ·
n−1∑
i=1

2i−1 + n

= 2 ·
n−2∑
i=0

2i + n

= 2(2n−1 − 1) + n

= 2n + (n− 2)

≥ 2n−1.

Why is the running time so large ?

Many computations are repeated several times:

Figure 1: The subproblem structure

5

c. A Better Algorithm:

The number of different subproblems is O(n2).

The “bottom-up” principle.

Algorithm 3 MCO(p);

for i = 1 to n do
m[i, i] := 0

for l = 2 to n do
for i = 1 to n− l + 1 do

(j := i + l − 1; m[i, j] :=∞)

for k = i to j − 1 do
q := m[i, k] + m[k + 1, j] + pi−1pkpj
if (q < m[i, j]) then
m[i, j] := q
s[i, j] := k

return m and s

The running time of MCO is O(n3). Moreover MCO uses O(n2)
memory to store the values of m and s.

6

Example 2 Let p = (30, 35, 15, 5, 10, 20, 25).

j \ i 1 2 3 4 5 6
6 15125 10500 5375 3500 5000 0
5 11875 7125 2500 1000 0
4 9375 4375 750 0
3 7875 2625 0
2 15750 0
1 0

Table of m[i, j].

j \ i 1 2 3 4 5
6 3 3 3 5 5
5 3 3 3 4
4 3 3 3
3 1 2
2 1

Table of s[i, j].

m[2, 5] = min



m[2, 2] + m[3, 5] + p1p2p5 (= 13000)
m[2, 3] + m[4, 5] + p1p3p5 (= 7125)
m[2, 4] + m[5, 5] + p1p4p5 (= 11375)

= 7125

7

d. Construction of optimal solution:

Let A = {A1, A2, ..., An}.

MCM(A, s, 1, n)

Algorithm 4 MCM(A, s, i, j);

if (i = j) then
print “Ai”

else print “(”
MCM(A, s, i, s[i, j])
MCM(A, s, s[i, j] + 1, j)
print “)”

Optimal multiplication order for our example:

((A1(A2A3))((A4A5)A6)).

2. Elements of dynamic programming:

• Structure of the optimal solution

• Overlapping subproblems

• Memorization

8

Memorized version of RMC

Algorithm 5 MMC(p);

for i = 0 to n do
for j = i to n do
m[i, j] :=∞

return LC(p, 1, n)

Algorithm 6 LC(p, i, j);

if (m[i, j] <∞) then
return m[i, j]

if (i = j) then
m[i, j] := 0

else for k = i to j − 1 do
q := LC(p, i, k) + LC(p, k + 1, j) + pi−1pkpj
if (q < m[i, j]) then
m[i, j] := q

return m[i, j]

This “top-down” algorithm computes the solution in O(n3) time.

9

3. Triangulation of Polygons

Let P be a simple convex polygon with the node set

{v0, v1, ..., vn}.

Definition 1 The segments of the form vivi+1modn+1
are called

edges and the segments of the form vivj which are not edges are
called chords of P .

Definition 2 A triangulation T of P is a set of chords which par-
tition P into disjoint triangles.

Assume we are given a weight function w : {vivj} 7→ R+ satisfying
w(vivj) = w(vjvi) for all 0 ≤ i, j ≤ n, i 6= j. Furthermore, let
vivjvk be a triangle of the triangulation. Define its weight as

w(vivjvk) = w(vivj) + w(vivk) + w(vjvk).

The weight of a triangulation T is defined as the sum of weights of
all its triangles.

Problem:
Given a polygon P , find a triangulation T of P of minimum weight.

We call such triangulation optimal.

10

a. The optimal solution structure

Let T be an optimal triangulation of P which contains a triangle
v0vkvn for some 1 ≤ k < n. Then T consists of optimal triangu-
lations of polygons v0, ..., vk and vk, vk+1, ..., vn.

b. Splitting into subproblems

Let w[i, j] be the weight of an optimal triangulation of the polygon
vi−1, ..., vj.

The number of subproblems is O(n2).

c. Recursive solution

It holds:

w[i, j] =


0 if i = j
min
i≤k<j
{w[i, k] + w[k + 1, j] + w(vi−1vkvj)} if i < j.

Therefore, the optimal triangulation of P can be constructed with
(almost) the same algorithm as for the matrix multiplication.

11

4. Longest Common Substring

Definition 3 Let X = (x1, ..., xm) and Z = (z1, ..., zk) be strings.
A string Z is called substring of X if ∃ i1, ..., ik (i1 < · · · < ik),
such that xij = zj for j = 1, ..., k.

Definition 4 Let X and Y be strings. A string Z is called common
substring of X and Y if Z is a substring of X and of Y .
Z is called longest common substring if its length is maximum.
Denotation: Z = CS(X, Y), resp. Z = LCS(X, Y).

Example 3 Let

X = (A,B,C,B,D,A,B) Y = (B,D,C,A,B,A).

One has:

Z = (B,C,A) = CS(X, Y)

Z ′ = (B,C,B,A) = LCS(X, Y).

Problem:
Given strings X and Y , compute LCS(X, Y).

12

a. The structure of LCS(X, Y)

For a string X = (x1, ..., xn) denote Xi = (x1, ..., xi), i = 1, ..., n.

Proposition 1 Let X = (x1, ..., xm) and Y = (y1, ..., yn) be
strings and let Z = (z1, ..., zk) = LCS(X, Y). Then:

1. xm = yn =⇒ zk = xm or zk = yn, so Zk−1 = LCS(Xm−1, Yn−1)

2. xm 6= yn, zk 6= xm =⇒ Z = LCS(Xm−1, Y)

3. xm 6= yn, zk 6= yn =⇒ Z = LCS(X, Yn−1)

Note that if xm = yn then WLOG zk = xm and zk = yn.
If xm 6= yn then zk 6= xm or zk 6= yn (or both).

b. Recursive solution

Let c[i, j] be the length of LCS(Xi, Yj). One has:

c[i, j] =



0 if i = 0 or j = 0
c[i− 1, j − 1] + 1 if i, j > 0 and xi = yj
max{c[i, j − 1], c[i− 1, j]} if i, j > 0 and xi 6= yj

The number of subproblems is Θ(mn).

13

c. The LCS Algorithm

Algorithm 7 LCS(X, Y);

for i = 1 to m do
c[i, 0] := 0

for j = 0 to n do
c[0, j] := 0

for i = 1 to m do
for j = 1 to n do

if (xi = yj) then
c[i, j] := c[i− 1, j − 1] + 1
b[i, j] :=“↖”

else if (c[i− 1, j] ≥ c[i, j − 1]) then
c[i, j] := c[i− 1, j]
b[i, j] :=“↑”

else
c[i, j] := c[i, j − 1]
b[i, j] :=“←”

return c and b

The running time of LCS is O(mn).

14

Example 4 Let

X = (A,B,C,B,D,A,B) and Y = (B,D,C,A,B,A)

j 0 1 2 3 4 5 6
i yj B D C A B A
0 xi 0 0 0 0 0 0 0

1 A 0 ↑0 ↑0 ↑0 ↖1 ←1 ↖1

2 B 0 ↖1 ←1 ←1 ↑1 ↖2 ←2

3 C 0 ↑1 ↑1 ↖2 ←2 ↑2 ↑2

4 B 0 ↖1 ↑1 ↑2 ↑2 ↖3 ←3

5 D 0 ↑1 ↖2 ↑2 ↑2 ↑3 ↑3

6 A 0 ↑1 ↑2 ↑2 ↖3 ↑3 ↖4

7 B 0 ↖1 ↑2 ↑2 ↑3 ↖4 ↑4

LCS(X, Y) = (B,C,B,A)

15

Construction of LCS

Algorithm call
Print-LCS(b,X, |X|, |Y |) or Print-LCS(b, Y, |X|, |Y |)

Algorithm 8 Print-LCS(b,X, i, j);

if (i = 0 or j = 0) then
return

if (b[i, j] =“↖”) then
Print-LCS(b,X, i− 1, j − 1)
print(Xi)

else
if (b[i, j] =“↑”) then
Print-LCS(b,X, i− 1, j)

else
Print-LCS(b,X, i, j − 1)

The running time of Print-LCS is O(m + n).

16

5. Greedy Methods

Let S be a set of n lectures to be given in the same hall. Each
lecture Vi is characterized by its starting time si and terminating
time fi for i = 1, ..., n.

We represent Vi by the interval [si, fi). The intervals (resp. lec-
tures) [si, fi) and [sj, fj) are called compatible iff

fi ≤ sj or fj ≤ si

The Scheduling Problem:
Find a maximal set of compatible lectures.

We assume that the lectures are sorted so that

f1 ≤ f2 ≤ · · · ≤ fn

Let s = (s1, ..., sn) and f = (f1, ..., fn).

17

Algorithm 9 Schedule(s, f);

A := {1}
j := 1
for i = 2 to n do

if (si ≥ fj) then
A := A ∪ {i}
j := i

return A

The running time of the Schedule algorithm is Θ(n) if the ter-
minating times {fi} are sorted in advance.

Theorem 1 [1] The Schedule algorithm provides a solution to
the Schedule problem.

The greedy method also allows to determine the minimum number
of halls to schedule ALL lectures.

NOT ANY greedy method provides an optimal schedule!

18

Elements of the greedy method:

• Optimal strategy at each step

• Optimal structure of subproblems

6. The knapsack problem

Let S = (s1, ..., sn) be a set of n objects. Each object si is char-
acterized by a weight wi and cost pi, i = 1, ..., n. Furthermore, let
W > 0 be the maximum weight of the objects in the knapsack.

0-1 VERSION:
Find a set of objects P = {si1, ..., sik} ⊆ S, such that

k∑
j=1

wij ≤ W and
k∑
j=1

pij is maximized.

FRACTIONAL VERSION:
Find the coefficients ci s.t. 0 ≤ ci ≤ 1 for i = 1, ..., n, such that

n∑
i=1
ciwi ≤ W and

n∑
i=1
cipi is maximized.

Theorem 2 There exist a greedy method for solving the fractional
version of the knapsack problem.

19

For the proof we order the items so that
p1
w1
≥ p2
w2
≥ · · · ≥ pn

wn

and load the knapsack with the the items in this order.

Algorithm 10 Knapsack(p, w,W);

Set ci = 0 for i = 1, . . . , n
i = 1
while (W > 0 && i ≤ n) do
ci = min{1,W/wi}
W = W − ci · wi
i++

return (c[])

We have to show that

• There exists an optimal packing where the first item is selected
according to the above algorithm.

• The remaining capacity of the knapsack (if it is any) must be
packed in an optimal order.

To show the first assertion, take an optimal packing K and assume
that c1 < min{1,W/w1}. If ci > 0 for some i ≥ 2, let δ and ε be
such that

(c1 + δ)w1 + (ci − ε)wi = c1w1 + ciwi,

20

which equates to δw1 = εwi. We construct a new packing K ′

with the same weight accordingly. Then (c1 + δ)p1 + (ci − ε)pi −
(c1p1 + cipi) ≥ 0, so the new packing is optimal too. Repeating
this process will lead to the packing with c1 = min{1,W/w1}.

The proof of the second assertion is left to the reader.

Solution of 0-1 Knapsack with Dynamic Program-
ming

Denote by K(W, j) the maximum cost of packed items for a Knap-
sack of capacity W and items 1, . . . , j. One has

K(W, j) = max{K(W − wj, j − 1) + pj, K(W, j − 1)}

Algorithm 11 Knapsack(p, w,W);

Set K(0, j) = 0 for j = 1, . . . , n
Set K(w, 0) = 0 for all w
for j = 1 to n do

for w = 1 to W do
if (wj > w) then
K(w, j) = K(w, j − 1)

else
K(w, j) = max{K(w − wj, j − 1) + pj, K(w, j − 1)}

return K(W,n)

The running time is O(nW).

21

7. Matroids

Under what general conditions do the greedy methods work?

Definition 5 A matroid is a pair M = (S, I), where S 6= ∅ is
a finite set of elements and I ⊆ 2S is a nonempty collection of
subsets of S (independent subsets), such that:
a. [B ∈ I] ∧ [A ⊆ B] =⇒ A ∈ I.
b. [A,B ∈ I] ∧ [|A| < |B|] =⇒ ∃x ∈ B \ A s.t. A ∪ {x} ∈ I.
The element x is called extention of A.

Example 5 Let S be a finite set and Ik be the collection of all
subsets of S consisting of at most k elements. Then (S, Ik) is a
matroid.

Example 6 Let S be the set of columns of an n× n matrix with
real entries and A ⊆ S. We put A ∈ I ⇐⇒ the columns in A are
linearly independent. Then (S, I) is a matroid.

Definition 6 Let (S, I) be a matroid and let a set A ∈ I has no
extention. Then the set A is called maximal.

Proposition 2 Let A and B be maximal independent subsets of
a matroid. Then |A| = |B|.

Proof. If |A| < |B| for some maximal sets A,B, then there must
be x ∈ B \ A, s.t. A ∪ {x} is independent, which contradicts the
maximality of A. 2

22

Definition 7 A matroid M = (S, I) is called weighed is there is
a function w : S 7→ R+ assigning a weight to every x ∈ S.

For A ⊆ S define the weight of A:

w(A) =
∑
x∈A

w(x).

Definition 8 An independent set A ∈ I of a weighed matroid is
called optimal if it has maximum weight.

The Matroid Problem:
Given a weighed matroid M , find its optimal independent set(s).

We assume that the elements of S = {x1, ..., xn} are sorted so
that w(x1) ≥ w(x2) ≥ · · · ≥ w(xn).

Algorithm 12 Greedy(M,w);

A := ∅
for i = 1 to n do

if (A ∪ {xi} ∈ I) then
A := A ∪ {xi}

return A

Theorem 3 [1] The Greedy algorithm constructs an optimal in-
dependent set.

The proof is based on the following 3 Lemmas:

23

Lemma 1 [1] Let M = (S, I) be a matroid and assume {x} ∈ S
is not an extension of {∅}. Then x is not an extension of any
independent set A ∈ I.

Proof. The contrapositive of the statement is: if x ∈ S is an
extension of some A ∈ I, then {x} ∈ I. This directly follows
from A ∪ {x} ∈ I and the hereditary property of I. 2

Therefore, to construct an optimal set of M one can reduce S to
those elements that appear in some independent set.

Lemma 2 [1] Let M = (S, I) be a weighed matroid and assume
x ∈ S is an element of maximum weight such that {x} ∈ I. Then
there exists an optimal set A ⊆ I with x ∈ A.

Proof. Let A be an optimal set. If x ∈ A, we are done. Otherwise,
∃y ∈ A \ {x}, s.t. {x, y} ∈ I. Repeating this argument several
times leads to an maximal set C with x ∈ C and |C| = |A|. Since
C \ A = {x}, w(C) ≥ w(A). So, C is optimal. 2

Hence, we can start with an element x provided by Greedy.

Lemma 3 [1] Let x be the first element chosen by Greedy. Then
the matroid problem for M can be reduced to a similar problem on
the matroid M ′ = (S ′, I ′) and reduced weight function on S ′,
where

S ′ = {y ∈ S | {x, y} ∈ I},
I ′ = {B ⊆ S \ {x} | B ∪ {x} ∈ I}.

24

8. Graphs and their Spanning Trees

Definition 9 A Graph G is a pair (V,E), where V is the set of
vertices and

E ⊆ {(u, v) | u, v ∈ V, u 6= v}
is the set of edges.

Definition 10 A sequence of edges in a Graph G is a finite set of
edges of the form

(v0, v1), (v1, v2), · · · (vl−1, vl),

where l ≥ 1 is the sequence length.

A sequence of edges is called:

• path, if all edges are distinct.

• Simple path, is the vertices v0, ..., vl are distinct.

• Cycle, if it is a path with v0 = vl and l ≥ 2.

• Simple cycle, if it is a path with v0 = vl and l ≥ 2, where the
vertices v0, ..., vl−1 are distinct.

Definition 11 A graph G is called connected, if for any u, v ∈ V
there exists a path from u to v.

Definition 12 A graph is called forest, if it contains no cycle. A
connected forest is called tree.

25

Definition 13 A graph H = (VH, EH) is called a subgraph of
G = (VG, EG), if VH ⊆ VG and EH ⊆ EG.

Definition 14 A subgraph H of G is called spanning if VH = VG.
If H is a tree, we call it spanning tree.

Definition 15 A graph G = (V,E) is called weighed if there is a
mapping w : E 7→ R+. For a subgraph H of G the weight of H
is defined as

w(H) =
∑

e∈EH
w(E).

The Spanning Tree Problem:
Given a weighed connected graph G, construct its spanning tree of
maximum weight.

Let A ⊆ EG. Define a set IG as follows:
A ∈ IG ⇐⇒ A contains no cycle.

Theorem 4 Let G = (VG, EG) be a graph. Then (EG, IG) is a
matroid (graphic matroid).

Corollary 1 The Spanning Tree Problem can be solved by a greedy
method.

The greedy method is also applicable to construct a spanning tree
of minimum weight.

26

Proof of Theorem 4

We need to verify two properties of matroids.

For the hereditary property, if A ⊆ EG contains no cycle and
B ⊆ A, then B can be obtained from A by dropping some edges.
Obviously, this procedure cannot create a cycle in B.

For the exchange property, let A,B ⊆ EG and |A| < |B|. The
edges of each A and B partition VG into connected components.
If kA and kB is the number of those components, one has

|VG| = |A| + kA
|VG| = |B| + kB.

Since |A| < |B| we get kA > kB. If there is an edge e ∈ B
connecting two different components of A then we are done, since
e ∈ B \ A and the set A ∪ {e} contains no cycle.

Assume the contrary: for every edge e = (x, y) ∈ B its endpoints
x, y belong to the same component of A. This implies that every
component of B can intersect only one component of A. In other
words, every component of B is contained in some component of
A. Hence, kB ≥ kA which is a contradiction. 2

27

9. Algorithm of Kruskal

Let M be a set of elements and A,B ⊆M , A ∩B = ∅.

We will need the following procedures:

Make-Set(v): constructs a new set {v} for v ∈M .

Find-Set(v): finds a set A ⊆M with v ∈ A.

Union(u, v): computes the union of A = Find-Set(u) and
B = Find-Set(v) if A ∩B = ∅.

Algorithm 13 MST-Kruskal(G,w);

B := ∅
for all v ∈ V (G) do
Make-Set(v)

Sort the edges E according to the weights w in non-decreasing order.
for all (u, v) ∈ E do

if (Find-Set(u) 6= Find-Set(v)) then
B := B ∪ (u, v)
Union(u, v)

return B

28

Figure 2: The algorithm of Kruskal

29

10. Algorithm of Prim

Let r ∈ V (G). For a tree T with V (T) ⊂ V (G) and w ∈ V (G)
let key[w] be the min weight of an edge connecting w to T .
We will use the heap procedure Extract-Min(Q).

Algorithm 14 MST-Prim(G,w, r);

Q := V (G) // set of unprocessed vertices
for each u ∈ Q do
key[u] :=∞

key[r] := 0
π[r] := nil

while (Q 6= ∅) do
u := Extract-Min(Q)
for each v ∈ Adj[u] do

if (v ∈ Q and w(u, v) < key[v]) then
π[v] := u
key[v] := w(u, v)

At each step the MST-Prim constructs a tree, which is a subtree
of a minimal spanning tree.

30

Figure 3: The algorithm of Prim

31

11. A task-scheduling problem

Instance: a set S of unit-length tasks a1, . . . , an. Each task ai
has a deadline di and a non-negative penalty wi for being completed
after the deadline.

Problem: find a schedule for S that minimizes the total penalty.

Example:

ai 1 2 3 4 5 6 7
di 4 2 4 3 1 4 6
wi 70 60 50 40 30 20 10

We call a task early if it finishes before its deadline and late other-
wise. Any schedule can be put into the canonical form, where the
early tasks preceed the late ones and the early tasks are scheduled
in order of increasing deadlines.

We say a set of tasks A ⊆ S is independent if there exists a schedule
for these tasks where no task is late. For a set A of tasks denote
by Nt(A) the number of tasks in A whose deadline is t or earlier.

Lemma 4 For any set of tasks the following is equivalent:

a. The set A is independent.

b. For t = 0, . . . , n, we have Nt(A) ≤ t.

c. If the tasks in A are scheduled in order of monotonically in-
creasing deadlines, then no task is late.

32

To construct a schedule with a minimum penalty for the late tasks
is equivalent to maximizing the penalty of the early tasks. We use
a greedy approach for that.

Theorem 5 For a set S of the unit-length tasks and the collection
I of all independent sets of tasks, the pair (S, I) is a matroid.

Proof.

The hereditary property is trivially satisfied, let us check the ex-
change property. Let A,B be sets of independent tasks, |A| < |B|
and denote k = max{t : Nt(B) ≤ Nt(A)} (such a number exists
since N0(A) = N0(B) = 0).

Note that k < n and Nj(B) > Nj(A) for j = k + 1, . . . , n. So,
B has more tasks with deadline k + 1 than A. Let ai ∈ B −A be
one of them. We show that A′ = A ∪ {ai} is independent.

Indeed, Nt(A
′) = Nt(A) ≤ t for 0 ≤ t ≤ k since A is independent.

Also, Nt(A
′) ≤ Nt(B) ≤ t for k < t ≤ n since B is independent.

Hence, A′ is independent by Lemma 4(b). 2

For the above example the Greedy selects the following tasks by
checking at each step the condition Nt(·) ≤ t:

a1 a2 a3 a4 a7︸ ︷︷ ︸
early

a5 a6︸ ︷︷ ︸
late

The early tasks are then scheduled according to Lemma 4(c):

a2 a4 a1 a3 a7︸ ︷︷ ︸
early

a5 a6︸ ︷︷ ︸
late

The penalty of that schedule is w5 + w6 = 50 and it is minimum.

33

12. Huffman Code

Let C be a set of symbols where a symbol ai presents fi times for
i = 1, ..., n. We encode the symbols {ai} with binary strings {wi}
such that any string wi is not a prefix of any other string wi of the
encoding. Denote:

L(C) =
n∑
i=1
fi · |wi|.

Problem:
Given {fi}, find a prefix encoding C such that L(C) is minimized
(optimal encoding).

For n = 2 the problem is trivial. We assume that

f1 ≥ f2 ≥ · · · ≥ fn and n ≥ 3

Proposition 3 [1] There exists an optimal prefix encoding such
that |wn−1| = |wn| and the strings wn−1 and wn differ in one bit
only.

Theorem 6 [1] (Optimal Substructure)
Let C be an optimal prefix encoding for f1, ..., fn
and C ′ be an optimal prefix encoding for f1, ..., fn−2, fn−1 + fn.
Then:

L(C) = L(C ′) + fn−1 + fn.

This Theorem provides a greedy method for constructing an optimal
prefix encoding.

34

Let f ′i = fi/|C|, i = 1, ..., n. Then:

f ′1 ≥ f ′2 ≥ · · · ≥ f ′n and
n∑
i=1
f ′i = 1.

The Huffman method consists of the following steps:

1. while |f ′| > 2 do

a. Take two elements f ′n−1 and f ′n of f ′ and construct a new
sequence (f ′1, ..., f

′
n−2, f

′
n−1 + f ′n).

b. Sort the new sequence in non-decreasing order.

2. Encode the sequence (g′1, g
′
2) with 0 and 1.

3. Repeat the procedure 1a. in the reversed direction:
while |g′| < n do
Let a sequence g′ be of the form: (g′1, ..., f

′
m−1 + f ′m, ..., g

′
m−2)

and the corresponding encoding be a1, ..., ai, ..., am,
where m = |g′| ≤ n− 1.
Construct a sequence (g′1, ..., g

′
i−1, g

′
i+1, ..., g

′
m, f

′
m−1, f

′
m)

and encode it with a1, ..., ai−1, ai+1, ..., am, ai0, ai1.

Example 7 Let f ′ = (0.20, 0.20, 0.19, 0.12, 0.11, 0.09, 0.09).

0.20 0.20 0.23 0.37 0.40 0.60 0 1 00 01 10 10
0.20 0.20 0.20 0.23 0.37 0.40 1 00 01 10 11 11
0.19 0.19 0.20 0.20 0.23 01 10 11 000 000
0.12 0.18 0.19 0.20 11 000 001 010
0.11 0.12 0.18 001 010 011
0.09 0.11 011 0010
0.09 0011

35

