
General Methods for Algorithm Design

1. Dynamic Programming

• Multiplication of matrices

• Elements of the dynamic programming

• Optimal triangulation of polygons

• Longest common subsequence

2. Greedy Methods

• Scheduling problems

• The Knapsack Problem

• Matroids

• Minimal and maximal spanning trees

• Huffman codes
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Let A be a p × q matrix and let B be a q × r matrix. Then
C = A ·B is a p× r matrix.

One needs pqr multiplications to compute C:

Algorithm 1 MM(A,B);

if (# Columns(A) 6= # Rows(B)) then
ERROR

else for i = 1 to # Rows(A) do
for j = 1 to # Columns(B) do
C[i, j] := 0
for k = 1 to # Rows(B) do
C[i, j] := C[i, j] + A[i, k] ·B[k, j]

return C

The product operation A1A2A3 is associative and the number of
multiplications strictly depends on the order.

Example 1 Let A1 10× 100, A2 100× 5 and A3 5× 50 matrices.

The scheme ((A1A2)A3) requires 10 · 100 · 5 + 10 · 5 · 50 = 7500
multiplications.
The scheme (A1(A2A3)) requires 100 · 5 · 50 + 10 · 100 · 50 = 75000
multiplications.

Problem:
Find an optimal multiplication order for A1A2...An.
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For n = 4 there are only 5 orders:

(A1(A2(A3A4)))

(A1((A2A3)A4))

((A1A2)(A3A4))

((A1(A2A3))A4)

(((A1A2)A3)A4)

In general the number of orders is

P (n) =


1 if n = 1,
n−1∑
k=1

P (k) · P (n− k) if n ≥ 2.

This implies:

P (n) =
1

n

2n− 2

n− 1

 = Ω
 4n

n3/2

 .

Therefore, “the complete choice” is exponential in time.

a. Optimal Multiplication Order:

Let
Ai..j = Ai · ... · Aj.

There exists k (i ≤ k < j), such that the optimal multiplication
order for Ai · ... · Aj is or the form:

Ai · ... · Aj = Ai..k · Ak+1..j,

and the orders for the products for Ai..k and Ak+1..j are optimal.
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b. Recursive Solution:

Let m[i, j] be the minimal number of multiplications in the optimal
order for Ai..j and Ai be a pi−1 × pi matrix. One has:

m[i, j] =


0 if i = j
min
i≤k<j
{m[i, k] + m[k + 1, j] + pi−1pkpj} if i < j.

Let p = 〈p0, ..., pn〉.

Algorithm 2 RMC(p, i, j);

if (i = j) then
return 0

m[i, j] :=∞
for k = i to j − 1 do
q := RMC(p, i, k) + RMC(p, k + 1, j) + pi−1pkpj
if (q < m[i, j]) then
m[i, j] := q

return m[i, j]

Our goal is to compute m[1, n] = RMC(p, 1, n). The running time:

T (n) ≥ 1 +
n−1∑
k=1

(T (k) + T (n− k) + 1) for n > 1,

or

T (n) ≥ 2 ·
n−1∑
k=1

T (k) + n,

which implies
T (n) ≥ 2n−1.
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To show this we apply the induction on n. T (1) ≥ 1 = 20.
Assuming T (i) ≥ 2i−1 for any i < n, one has

T (n) ≥ 2 ·
n−1∑
i=1

2i−1 + n

= 2 ·
n−2∑
i=0

2i + n

= 2(2n−1 − 1) + n

= 2n + (n− 2)

≥ 2n−1.

Why is the running time so large ?

Many computations are repeated several times:

Figure 1: The subproblem structure
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c. A Better Algorithm:

The number of different subproblems is O(n2).

The “bottom-up” principle.

Algorithm 3 MCO(p);

for i = 1 to n do
m[i, i] := 0

for l = 2 to n do
for i = 1 to n− l + 1 do

(j := i + l − 1; m[i, j] :=∞)

for k = i to j − 1 do
q := m[i, k] + m[k + 1, j] + pi−1pkpj
if (q < m[i, j]) then
m[i, j] := q
s[i, j] := k

return m and s

The running time of MCO is O(n3). Moreover MCO uses O(n2)
memory to store the values of m and s.
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Example 2 Let p = (30, 35, 15, 5, 10, 20, 25).

j \ i 1 2 3 4 5 6
6 15125 10500 5375 3500 5000 0
5 11875 7125 2500 1000 0
4 9375 4375 750 0
3 7875 2625 0
2 15750 0
1 0

Table of m[i, j].

j \ i 1 2 3 4 5
6 3 3 3 5 5
5 3 3 3 4
4 3 3 3
3 1 2
2 1

Table of s[i, j].

m[2, 5] = min



m[2, 2] + m[3, 5] + p1p2p5 (= 13000)
m[2, 3] + m[4, 5] + p1p3p5 (= 7125)
m[2, 4] + m[5, 5] + p1p4p5 (= 11375)

= 7125
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d. Construction of optimal solution:

Let A = {A1, A2, ..., An}.

MCM(A, s, 1, n)

Algorithm 4 MCM(A, s, i, j);

if (i = j) then
print “Ai”

else print “(”
MCM(A, s, i, s[i, j])
MCM(A, s, s[i, j] + 1, j)
print “)”

Optimal multiplication order for our example:

((A1(A2A3))((A4A5)A6)).

2. Elements of dynamic programming:

• Structure of the optimal solution

• Overlapping subproblems

• Memorization
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Memorized version of RMC

Algorithm 5 MMC(p);

for i = 0 to n do
for j = i to n do
m[i, j] :=∞

return LC(p, 1, n)

Algorithm 6 LC(p, i, j);

if (m[i, j] <∞) then
return m[i, j]

if (i = j) then
m[i, j] := 0

else for k = i to j − 1 do
q := LC(p, i, k) + LC(p, k + 1, j) + pi−1pkpj
if (q < m[i, j]) then
m[i, j] := q

return m[i, j]

This “top-down” algorithm computes the solution in O(n3) time.
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3. Triangulation of Polygons

Let P be a simple convex polygon with the node set

{v0, v1, ..., vn}.

Definition 1 The segments of the form vivi+1modn+1
are called

edges and the segments of the form vivj which are not edges are
called chords of P .

Definition 2 A triangulation T of P is a set of chords which par-
tition P into disjoint triangles.

Assume we are given a weight function w : {vivj} 7→ R+ satisfying
w(vivj) = w(vjvi) for all 0 ≤ i, j ≤ n, i 6= j. Furthermore, let
vivjvk be a triangle of the triangulation. Define its weight as

w(vivjvk) = w(vivj) + w(vivk) + w(vjvk).

The weight of a triangulation T is defined as the sum of weights of
all its triangles.

Problem:
Given a polygon P , find a triangulation T of P of minimum weight.

We call such triangulation optimal.
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a. The optimal solution structure

Let T be an optimal triangulation of P which contains a triangle
v0vkvn for some 1 ≤ k < n. Then T consists of optimal triangu-
lations of polygons v0, ..., vk and vk, vk+1, ..., vn.

b. Splitting into subproblems

Let w[i, j] be the weight of an optimal triangulation of the polygon
vi−1, ..., vj.

The number of subproblems is O(n2).

c. Recursive solution

It holds:

w[i, j] =


0 if i = j
min
i≤k<j
{w[i, k] + w[k + 1, j] + w(vi−1vkvj)} if i < j.

Therefore, the optimal triangulation of P can be constructed with
(almost) the same algorithm as for the matrix multiplication.
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4. Longest Common Substring

Definition 3 Let X = (x1, ..., xm) and Z = (z1, ..., zk) be strings.
A string Z is called substring of X if ∃ i1, ..., ik (i1 < · · · < ik),
such that xij = zj for j = 1, ..., k.

Definition 4 Let X and Y be strings. A string Z is called common
substring of X and Y if Z is a substring of X and of Y .
Z is called longest common substring if its length is maximum.
Denotation: Z = CS(X, Y ), resp. Z = LCS(X, Y ).

Example 3 Let

X = (A,B,C,B,D,A,B) Y = (B,D,C,A,B,A).

One has:

Z = (B,C,A) = CS(X, Y )

Z ′ = (B,C,B,A) = LCS(X, Y ).

Problem:
Given strings X and Y , compute LCS(X, Y ).
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a. The structure of LCS(X, Y )

For a string X = (x1, ..., xn) denote Xi = (x1, ..., xi), i = 1, ..., n.

Proposition 1 Let X = (x1, ..., xm) and Y = (y1, ..., yn) be
strings and let Z = (z1, ..., zk) = LCS(X, Y ). Then:

1. xm = yn =⇒ zk = xm or zk = yn, so Zk−1 = LCS(Xm−1, Yn−1)

2. xm 6= yn, zk 6= xm =⇒ Z = LCS(Xm−1, Y )

3. xm 6= yn, zk 6= yn =⇒ Z = LCS(X, Yn−1)

Note that if xm = yn then WLOG zk = xm and zk = yn.
If xm 6= yn then zk 6= xm or zk 6= yn (or both).

b. Recursive solution

Let c[i, j] be the length of LCS(Xi, Yj). One has:

c[i, j] =



0 if i = 0 or j = 0
c[i− 1, j − 1] + 1 if i, j > 0 and xi = yj
max{c[i, j − 1], c[i− 1, j]} if i, j > 0 and xi 6= yj

The number of subproblems is Θ(mn).
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c. The LCS Algorithm

Algorithm 7 LCS(X, Y );

for i = 1 to m do
c[i, 0] := 0

for j = 0 to n do
c[0, j] := 0

for i = 1 to m do
for j = 1 to n do

if (xi = yj) then
c[i, j] := c[i− 1, j − 1] + 1
b[i, j] :=“↖”

else if (c[i− 1, j] ≥ c[i, j − 1]) then
c[i, j] := c[i− 1, j]
b[i, j] :=“↑”

else
c[i, j] := c[i, j − 1]
b[i, j] :=“←”

return c and b

The running time of LCS is O(mn).
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Example 4 Let

X = (A,B,C,B,D,A,B) and Y = (B,D,C,A,B,A)

j 0 1 2 3 4 5 6
i yj B D C A B A
0 xi 0 0 0 0 0 0 0

1 A 0 ↑0 ↑0 ↑0 ↖1 ←1 ↖1

2 B 0 ↖1 ←1 ←1 ↑1 ↖2 ←2

3 C 0 ↑1 ↑1 ↖2 ←2 ↑2 ↑2

4 B 0 ↖1 ↑1 ↑2 ↑2 ↖3 ←3

5 D 0 ↑1 ↖2 ↑2 ↑2 ↑3 ↑3

6 A 0 ↑1 ↑2 ↑2 ↖3 ↑3 ↖4

7 B 0 ↖1 ↑2 ↑2 ↑3 ↖4 ↑4

LCS(X, Y ) = (B,C,B,A)
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Construction of LCS

Algorithm call
Print-LCS(b,X, |X|, |Y |) or Print-LCS(b, Y, |X|, |Y |)

Algorithm 8 Print-LCS(b,X, i, j);

if (i = 0 or j = 0) then
return

if (b[i, j] =“↖”) then
Print-LCS(b,X, i− 1, j − 1)
print(Xi)

else
if (b[i, j] =“↑”) then
Print-LCS(b,X, i− 1, j)

else
Print-LCS(b,X, i, j − 1)

The running time of Print-LCS is O(m + n).
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5. Greedy Methods

Let S be a set of n lectures to be given in the same hall. Each
lecture Vi is characterized by its starting time si and terminating
time fi for i = 1, ..., n.

We represent Vi by the interval [si, fi). The intervals (resp. lec-
tures) [si, fi) and [sj, fj) are called compatible iff

fi ≤ sj or fj ≤ si

The Scheduling Problem:
Find a maximal set of compatible lectures.

We assume that the lectures are sorted so that

f1 ≤ f2 ≤ · · · ≤ fn

Let s = (s1, ..., sn) and f = (f1, ..., fn).
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Algorithm 9 Schedule(s, f );

A := {1}
j := 1
for i = 2 to n do

if (si ≥ fj) then
A := A ∪ {i}
j := i

return A

The running time of the Schedule algorithm is Θ(n) if the ter-
minating times {fi} are sorted in advance.

Theorem 1 [1] The Schedule algorithm provides a solution to
the Schedule problem.

The greedy method also allows to determine the minimum number
of halls to schedule ALL lectures.

NOT ANY greedy method provides an optimal schedule!
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Elements of the greedy method:

• Optimal strategy at each step

• Optimal structure of subproblems

6. The knapsack problem

Let S = (s1, ..., sn) be a set of n objects. Each object si is char-
acterized by a weight wi and cost pi, i = 1, ..., n. Furthermore, let
W > 0 be the maximum weight of the objects in the knapsack.

0-1 VERSION:
Find a set of objects P = {si1, ..., sik} ⊆ S, such that

k∑
j=1

wij ≤ W and
k∑
j=1

pij is maximized.

FRACTIONAL VERSION:
Find the coefficients ci s.t. 0 ≤ ci ≤ 1 for i = 1, ..., n, such that

n∑
i=1
ciwi ≤ W and

n∑
i=1
cipi is maximized.

Theorem 2 There exist a greedy method for solving the fractional
version of the knapsack problem.
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For the proof we order the items so that
p1
w1
≥ p2
w2
≥ · · · ≥ pn

wn

and load the knapsack with the the items in this order.

Algorithm 10 Knapsack(p, w,W );

Set ci = 0 for i = 1, . . . , n
i = 1
while (W > 0 && i ≤ n) do
ci = min{1,W/wi}
W = W − ci · wi
i++

return (c[])

We have to show that

• There exists an optimal packing where the first item is selected
according to the above algorithm.

• The remaining capacity of the knapsack (if it is any) must be
packed in an optimal order.

To show the first assertion, take an optimal packing K and assume
that c1 < min{1,W/w1}. If ci > 0 for some i ≥ 2, let δ and ε be
such that

(c1 + δ)w1 + (ci − ε)wi = c1w1 + ciwi,

20



which equates to δw1 = εwi. We construct a new packing K ′

with the same weight accordingly. Then (c1 + δ)p1 + (ci − ε)pi −
(c1p1 + cipi) ≥ 0, so the new packing is optimal too. Repeating
this process will lead to the packing with c1 = min{1,W/w1}.

The proof of the second assertion is left to the reader.

Solution of 0-1 Knapsack with Dynamic Program-
ming

Denote by K(W, j) the maximum cost of packed items for a Knap-
sack of capacity W and items 1, . . . , j. One has

K(W, j) = max{K(W − wj, j − 1) + pj, K(W, j − 1)}

Algorithm 11 Knapsack(p, w,W );

Set K(0, j) = 0 for j = 1, . . . , n
Set K(w, 0) = 0 for all w
for j = 1 to n do

for w = 1 to W do
if (wj > w) then
K(w, j) = K(w, j − 1)

else
K(w, j) = max{K(w − wj, j − 1) + pj, K(w, j − 1)}

return K(W,n)

The running time is O(nW ).
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7. Matroids

Under what general conditions do the greedy methods work?

Definition 5 A matroid is a pair M = (S, I), where S 6= ∅ is
a finite set of elements and I ⊆ 2S is a nonempty collection of
subsets of S (independent subsets), such that:
a. [B ∈ I] ∧ [A ⊆ B] =⇒ A ∈ I.
b. [A,B ∈ I] ∧ [|A| < |B|] =⇒ ∃x ∈ B \ A s.t. A ∪ {x} ∈ I.
The element x is called extention of A.

Example 5 Let S be a finite set and Ik be the collection of all
subsets of S consisting of at most k elements. Then (S, Ik) is a
matroid.

Example 6 Let S be the set of columns of an n× n matrix with
real entries and A ⊆ S. We put A ∈ I ⇐⇒ the columns in A are
linearly independent. Then (S, I) is a matroid.

Definition 6 Let (S, I) be a matroid and let a set A ∈ I has no
extention. Then the set A is called maximal.

Proposition 2 Let A and B be maximal independent subsets of
a matroid. Then |A| = |B|.

Proof. If |A| < |B| for some maximal sets A,B, then there must
be x ∈ B \ A, s.t. A ∪ {x} is independent, which contradicts the
maximality of A. 2
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Definition 7 A matroid M = (S, I) is called weighed is there is
a function w : S 7→ R+ assigning a weight to every x ∈ S.

For A ⊆ S define the weight of A:

w(A) =
∑
x∈A

w(x).

Definition 8 An independent set A ∈ I of a weighed matroid is
called optimal if it has maximum weight.

The Matroid Problem:
Given a weighed matroid M , find its optimal independent set(s).

We assume that the elements of S = {x1, ..., xn} are sorted so
that w(x1) ≥ w(x2) ≥ · · · ≥ w(xn).

Algorithm 12 Greedy(M,w);

A := ∅
for i = 1 to n do

if (A ∪ {xi} ∈ I) then
A := A ∪ {xi}

return A

Theorem 3 [1] The Greedy algorithm constructs an optimal in-
dependent set.

The proof is based on the following 3 Lemmas:
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Lemma 1 [1] Let M = (S, I) be a matroid and assume {x} ∈ S
is not an extension of {∅}. Then x is not an extension of any
independent set A ∈ I.

Proof. The contrapositive of the statement is: if x ∈ S is an
extension of some A ∈ I, then {x} ∈ I. This directly follows
from A ∪ {x} ∈ I and the hereditary property of I. 2

Therefore, to construct an optimal set of M one can reduce S to
those elements that appear in some independent set.

Lemma 2 [1] Let M = (S, I) be a weighed matroid and assume
x ∈ S is an element of maximum weight such that {x} ∈ I. Then
there exists an optimal set A ⊆ I with x ∈ A.

Proof. Let A be an optimal set. If x ∈ A, we are done. Otherwise,
∃y ∈ A \ {x}, s.t. {x, y} ∈ I. Repeating this argument several
times leads to an maximal set C with x ∈ C and |C| = |A|. Since
C \ A = {x}, w(C) ≥ w(A). So, C is optimal. 2

Hence, we can start with an element x provided by Greedy.

Lemma 3 [1] Let x be the first element chosen by Greedy. Then
the matroid problem for M can be reduced to a similar problem on
the matroid M ′ = (S ′, I ′) and reduced weight function on S ′,
where

S ′ = {y ∈ S | {x, y} ∈ I},
I ′ = {B ⊆ S \ {x} | B ∪ {x} ∈ I}.
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8. Graphs and their Spanning Trees

Definition 9 A Graph G is a pair (V,E), where V is the set of
vertices and

E ⊆ {(u, v) | u, v ∈ V, u 6= v}
is the set of edges.

Definition 10 A sequence of edges in a Graph G is a finite set of
edges of the form

(v0, v1), (v1, v2), · · · (vl−1, vl),

where l ≥ 1 is the sequence length.

A sequence of edges is called:

• path, if all edges are distinct.

• Simple path, is the vertices v0, ..., vl are distinct.

• Cycle, if it is a path with v0 = vl and l ≥ 2.

• Simple cycle, if it is a path with v0 = vl and l ≥ 2, where the
vertices v0, ..., vl−1 are distinct.

Definition 11 A graph G is called connected, if for any u, v ∈ V
there exists a path from u to v.

Definition 12 A graph is called forest, if it contains no cycle. A
connected forest is called tree.
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Definition 13 A graph H = (VH, EH) is called a subgraph of
G = (VG, EG), if VH ⊆ VG and EH ⊆ EG.

Definition 14 A subgraph H of G is called spanning if VH = VG.
If H is a tree, we call it spanning tree.

Definition 15 A graph G = (V,E) is called weighed if there is a
mapping w : E 7→ R+. For a subgraph H of G the weight of H
is defined as

w(H) =
∑

e∈EH
w(E).

The Spanning Tree Problem:
Given a weighed connected graph G, construct its spanning tree of
maximum weight.

Let A ⊆ EG. Define a set IG as follows:
A ∈ IG ⇐⇒ A contains no cycle.

Theorem 4 Let G = (VG, EG) be a graph. Then (EG, IG) is a
matroid (graphic matroid).

Corollary 1 The Spanning Tree Problem can be solved by a greedy
method.

The greedy method is also applicable to construct a spanning tree
of minimum weight.
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Proof of Theorem 4

We need to verify two properties of matroids.

For the hereditary property, if A ⊆ EG contains no cycle and
B ⊆ A, then B can be obtained from A by dropping some edges.
Obviously, this procedure cannot create a cycle in B.

For the exchange property, let A,B ⊆ EG and |A| < |B|. The
edges of each A and B partition VG into connected components.
If kA and kB is the number of those components, one has

|VG| = |A| + kA
|VG| = |B| + kB.

Since |A| < |B| we get kA > kB. If there is an edge e ∈ B
connecting two different components of A then we are done, since
e ∈ B \ A and the set A ∪ {e} contains no cycle.

Assume the contrary: for every edge e = (x, y) ∈ B its endpoints
x, y belong to the same component of A. This implies that every
component of B can intersect only one component of A. In other
words, every component of B is contained in some component of
A. Hence, kB ≥ kA which is a contradiction. 2

27



9. Algorithm of Kruskal

Let M be a set of elements and A,B ⊆M , A ∩B = ∅.

We will need the following procedures:

Make-Set(v): constructs a new set {v} for v ∈M .

Find-Set(v): finds a set A ⊆M with v ∈ A.

Union(u, v): computes the union of A = Find-Set(u) and
B = Find-Set(v) if A ∩B = ∅.

Algorithm 13 MST-Kruskal(G,w);

B := ∅
for all v ∈ V (G) do
Make-Set(v)

Sort the edges E according to the weights w in non-decreasing order.
for all (u, v) ∈ E do

if (Find-Set(u) 6= Find-Set(v)) then
B := B ∪ (u, v)
Union(u, v)

return B
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Figure 2: The algorithm of Kruskal
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10. Algorithm of Prim

Let r ∈ V (G). For a tree T with V (T ) ⊂ V (G) and w ∈ V (G)
let key[w] be the min weight of an edge connecting w to T .
We will use the heap procedure Extract-Min(Q).

Algorithm 14 MST-Prim(G,w, r);

Q := V (G) // set of unprocessed vertices
for each u ∈ Q do
key[u] :=∞

key[r] := 0
π[r] := nil

while (Q 6= ∅) do
u := Extract-Min(Q)
for each v ∈ Adj[u] do

if (v ∈ Q and w(u, v) < key[v]) then
π[v] := u
key[v] := w(u, v)

At each step the MST-Prim constructs a tree, which is a subtree
of a minimal spanning tree.

30



Figure 3: The algorithm of Prim
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11. A task-scheduling problem

Instance: a set S of unit-length tasks a1, . . . , an. Each task ai
has a deadline di and a non-negative penalty wi for being completed
after the deadline.

Problem: find a schedule for S that minimizes the total penalty.

Example:

ai 1 2 3 4 5 6 7
di 4 2 4 3 1 4 6
wi 70 60 50 40 30 20 10

We call a task early if it finishes before its deadline and late other-
wise. Any schedule can be put into the canonical form, where the
early tasks preceed the late ones and the early tasks are scheduled
in order of increasing deadlines.

We say a set of tasks A ⊆ S is independent if there exists a schedule
for these tasks where no task is late. For a set A of tasks denote
by Nt(A) the number of tasks in A whose deadline is t or earlier.

Lemma 4 For any set of tasks the following is equivalent:

a. The set A is independent.

b. For t = 0, . . . , n, we have Nt(A) ≤ t.

c. If the tasks in A are scheduled in order of monotonically in-
creasing deadlines, then no task is late.
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To construct a schedule with a minimum penalty for the late tasks
is equivalent to maximizing the penalty of the early tasks. We use
a greedy approach for that.

Theorem 5 For a set S of the unit-length tasks and the collection
I of all independent sets of tasks, the pair (S, I) is a matroid.

Proof.

The hereditary property is trivially satisfied, let us check the ex-
change property. Let A,B be sets of independent tasks, |A| < |B|
and denote k = max{t : Nt(B) ≤ Nt(A)} (such a number exists
since N0(A) = N0(B) = 0).

Note that k < n and Nj(B) > Nj(A) for j = k + 1, . . . , n. So,
B has more tasks with deadline k + 1 than A. Let ai ∈ B −A be
one of them. We show that A′ = A ∪ {ai} is independent.

Indeed, Nt(A
′) = Nt(A) ≤ t for 0 ≤ t ≤ k since A is independent.

Also, Nt(A
′) ≤ Nt(B) ≤ t for k < t ≤ n since B is independent.

Hence, A′ is independent by Lemma 4(b). 2

For the above example the Greedy selects the following tasks by
checking at each step the condition Nt(·) ≤ t:

a1 a2 a3 a4 a7︸ ︷︷ ︸
early

a5 a6︸ ︷︷ ︸
late

The early tasks are then scheduled according to Lemma 4(c):

a2 a4 a1 a3 a7︸ ︷︷ ︸
early

a5 a6︸ ︷︷ ︸
late

The penalty of that schedule is w5 + w6 = 50 and it is minimum.
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12. Huffman Code

Let C be a set of symbols where a symbol ai presents fi times for
i = 1, ..., n. We encode the symbols {ai} with binary strings {wi}
such that any string wi is not a prefix of any other string wi of the
encoding. Denote:

L(C) =
n∑
i=1
fi · |wi|.

Problem:
Given {fi}, find a prefix encoding C such that L(C) is minimized
(optimal encoding).

For n = 2 the problem is trivial. We assume that

f1 ≥ f2 ≥ · · · ≥ fn and n ≥ 3

Proposition 3 [1] There exists an optimal prefix encoding such
that |wn−1| = |wn| and the strings wn−1 and wn differ in one bit
only.

Theorem 6 [1] (Optimal Substructure)
Let C be an optimal prefix encoding for f1, ..., fn
and C ′ be an optimal prefix encoding for f1, ..., fn−2, fn−1 + fn.
Then:

L(C) = L(C ′) + fn−1 + fn.

This Theorem provides a greedy method for constructing an optimal
prefix encoding.
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Let f ′i = fi/|C|, i = 1, ..., n. Then:

f ′1 ≥ f ′2 ≥ · · · ≥ f ′n and
n∑
i=1
f ′i = 1.

The Huffman method consists of the following steps:

1. while |f ′| > 2 do

a. Take two elements f ′n−1 and f ′n of f ′ and construct a new
sequence (f ′1, ..., f

′
n−2, f

′
n−1 + f ′n).

b. Sort the new sequence in non-decreasing order.

2. Encode the sequence (g′1, g
′
2) with 0 and 1.

3. Repeat the procedure 1a. in the reversed direction:
while |g′| < n do
Let a sequence g′ be of the form: (g′1, ..., f

′
m−1 + f ′m, ..., g

′
m−2)

and the corresponding encoding be a1, ..., ai, ..., am,
where m = |g′| ≤ n− 1.
Construct a sequence (g′1, ..., g

′
i−1, g

′
i+1, ..., g

′
m, f

′
m−1, f

′
m)

and encode it with a1, ..., ai−1, ai+1, ..., am, ai0, ai1.

Example 7 Let f ′ = (0.20, 0.20, 0.19, 0.12, 0.11, 0.09, 0.09).

0.20 0.20 0.23 0.37 0.40 0.60 0 1 00 01 10 10
0.20 0.20 0.20 0.23 0.37 0.40 1 00 01 10 11 11
0.19 0.19 0.20 0.20 0.23 01 10 11 000 000
0.12 0.18 0.19 0.20 11 000 001 010
0.11 0.12 0.18 001 010 011
0.09 0.11 011 0010
0.09 0011
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