
String Matching

1. Problem statement

2. A naive approach

3. The Rabin-Karp algorithm

4. String matching with finite automata

1. Terminology

Let Σ∗ denote the set of all strings a finite alphabet Σ.

concatenation: For strings x and y, the concatenation is the string
xy and has length |x| + |y|.

prefix A string w is a prefix of x (denotation w < x) if x = wy for
some string y ∈ Σ∗. If w < x then |w| ≤ |x|.

suffix A string w is a suffix of x (denotation w = x) if x = yw for
some string y ∈ Σ∗. If w = x then |w| ≤ |x|.

Example 1 ab < abcca and cca = abcca.

Lemma 1 Suppose that x, y, and z are strings such that x = z and
y = z. If |x| ≤ |y| then x = y. If |x| ≥ |y| then y = x. If |x| = |y|
then x = y.

1

Figure 1: A graphical proof of Lemma 1

2. A naive approach

The following algorithm looks for all occurrences of a pattern P [1..m]
in the string T [1..n] and reports all s for which there is a match, i.e.

P [1 . . .m] = T [s + 1 . . . s + m]

Algorithm 1 Naive-String-Matcher(T, P);

n = |T |
m = |P |
for s = 0 to n−m do

if (P [1 . . .m] = T [s + 1 . . . s + m]) then
print “Pattern occurs with shift” s

The running time of this algorithm is Θ((n−m + 1)m).

2

3. The Rabin-Karp algorithm

We consider each character of Σ as a digit in radix-d notation, where
d = |Σ|.

Given a pattern P [1 . . .m], we let p denote its corresponding decimal
value, which can be computed in Θ(m) time using Horner’s rule:

p = P [m] + d(P [m− 1] + d(P [m− 2] + · · ·+ d(P [2] + dP [1]) · · ·)).

Similarly, denote by ts the decimal value of the length-m substring
T [s + 1 . . . s + m], for s = 1, 2, . . . , n−m.

Clearly, ts = p if and only if T [s + 1 . . . s + m] = P [1 . . .m]. The
value t0 can be computed in time Θ(m).

To compute the values t1, t2, . . . , tn−m in time Θ(n−m), note that

ts+1 = d(ts − dm−1T [s + 1]) + T [s + m + 1]. (1)

Assuming that dm−1 is precomputed, ts+1 can be computed from ts
in a constant time.

Figure 2: Recomputing the value for a window in a constant time

3

The only disadvantage of the above method is that the values p and
ts become very large.

To make the approach practical, we consider these numbers modulo
q, where q is maximum number such that qd fits within one computer
word. Then (1) becomes

ts+1 = (d(ts − h · T [s + 1]) + T [s + m + 1]) mod q (2)

where h ≡ dm−1 (mod q).

Figure 3: The Rabin-Karp algorithm

Now if ts 6≡ p (mod d) then ts 6= p. If ts ≡ p (mod q) we have a
spurious hit. In this case the strings P [1 . . .m] and T [s+1 . . . s+m]
have to be compared character-by-character as in the naive approach.

4

Algorithm 2 Rabin-Karp-Matcher(T, P, d, q);

1. n := |T |
2. m := |P |
3. h := dm−1 mod q
4. p := 0
5. t0 := 0
6. for i = 1 to m do //preprocessing
7. p := (dp + P [i]) mod q
8. t0 = (dt0 + T [i]) mod q
9. for s = 0 to n−m do //matching
10. if (p = ts) then
11. if (P [1 . . .m] = T [s + 1 . . . s + m]) then
12. print “pattern occurs with shift” s
13. if (s < n−m) then
14. ts+1 := (d(ts − T [s + 1]h) + T [s + m + 1]) mod q

The preprocessing time is Θ(m).
The matching time is Θ((n−m + 1)m) in the worth case.

In many application a few valid shifts are expected. Then the Rabin-
Karp algorithm runs significantly faster than the naive one.

5

4. String matching with finite automata

A finite automaton M is a 5-tuple (Q, q0, A,Σ, δ), where

• Q is a finite set of states

• q0 is the start state

• A ⊆ Q is a set of accepted states

• Σ is a finite input alphabet

• δ is a function Q×Σ 7→ Q, called the transition function of M .

If the automaton is in state q and reads a symbol a, it moves to state
δ(q, a). If δ(q, a) ∈ A, the string ending with a is called accepted.

Example 2 The following automaton accepts those strings in the
alphabet Σ = {a, b}, which end with an odd number of a’s.

Figure 4: A simple two-state automaton

6

Given a pattern string P [1 . . .m], we define Pk = P [1 . . . k] and
introduce the suffix function σ : Σ∗ 7→ {0, 1, . . . ,m} of P as

σ(x) = max{k | Pk = x}.

Example 3 If P = ab, we have

σ(ccaca) = 1, σ(ccab) = 2, σ(ε) = 0.

In general, σ(x) = m for |P | = m if and only if P = x, and if x = y
then σ(x) ≤ σ(y).

We define the string-matching automaton corresponding to a given
pattern P [1 . . .m] as follows:

• Set Q = {0, 1, 2, . . . ,m} and q0 = 0.

• For any q ∈ Q and a ∈ Σ set

δ(q, a) = σ(Pqa). (3)

Algorithm 3 Finite-Automaton-Matcher(T, δ,m);
1. n := |T |
2. q := 0
3. for i = 1 to n do
4. q := δ(q, T [i])
5. if (q = m) then
6. print “pattern occurs with shift” i−m

The running time is Θ(n) + preprocessing for constructing δ().

7

Figure 5: The string-matching automaton for P = ababaca

The transition table is constructed so that

δ(q, a) = σ(Pqa)

The machine is designed so that after scanning the first i characters
of the string T it is in the state q = σ(Ti).

8

Computing the transition function δ()

Algorithm 4 Compute-Transition-Function(P,Σ);

1. m := |P |
2. for q = 0 to m
3. for each a ∈ Σ
4. k := min(m, q + 1)
5. while (Pk 6= Pqa)
6. k = k − 1
7. δ(q, a) := k
8. return δ

This algorithm computes δ(q, a) according to its definition (3)

δ(q, a) = σ(Pqa)

The running time of this method is Θ(m3|Σ|), however, there exist
faster implementations with the running time Θ(m|Σ|).

Therefore, the search for P can be done with Θ(m|Σ|) preprocessing
time and Θ(n) matching time.

9

To prove the correctness of the above algorithm we will need two
lemmas.

Lemma 2 For any string x ∈ Σ∗ and character a ∈ Σ, we have
σ(xa) ≤ σ(x) + 1.

Proof.

Let r = σ(xa). If r = 0, then r = σ(xa) = 0 ≤ σ(x) + 1 is trivially
satisfied, since 0 ≤ σ(x).

If r > 0, then Pr = xa ⇒ Pr−1 = x
⇒ r − 1 ≤ σ(x), and the lemma follows. 2

Figure 6: An illustration for the proof of Lemma 2

10

Lemma 3 For any x ∈ Σ∗ and a ∈ Σ, if q = σ(x) then
σ(xa) = σ(Pqa).

Proof.

By the definition of σ, if q = σ(x) then Pq = x.

By Lemma 2, for r = σ(xa) we have r ≤ q + 1.

Since Pqa = xa, Pr = xa, |Pr| ≤ |Pqa| ⇒ Pr = Pqa (Lemma 1).
Therefore, r ≤ σ(Pqa), i.e. σ(xa) ≤ σ(Pqa).

On the other hand, Pqa = xa ⇒ σ(Pqa) ≤ σ(xa). 2

Figure 7: An illustration for the proof of Lemma 3

11

Theorem 1 If φ(T) is the final-state function of a string-matching
automaton for a fixed pattern P and given text T , then

φ(Ti) = σ(Ti) for i = 0, 1, . . . , n.

Proof. We use induction on i. For i = 0 we have T0 = ε, so
φ(T0) = σ(T0) = 0, and the theorem is true.

Assuming φ(Ti) = σ(Ti), we show φ(Ti+1) = σ(Ti+1).

For this denote q = φ(Ti) and a = T [i + 1]. One has

φ(Ti+1) = φ(Tia) (since Ti+1 = Tia)
= δ(φ(Ti), a) (definition of φ)
= δ(q, a) (since φ(Ti) = q)
= σ(Pqa) (definition (3) of δ)
= σ(Tia) (Lemma 3 for x = Ti and induction

here q = φ(Ti) = σ(Ti))
= σ(Ti+1) (since Tia = Ti+1)

The above theorem implies that if the automaton M enters state q in
line 4 of the algorithm, then q is the largest value such that Pq = Ti.

Thus, q = m in line 5 iff an occurrence of P is found.

12

