String Matching

- 1. Problem statement
- 2. A naive approach
- 3. The Rabin-Karp algorithm
- 4. String matching with finite automata

1. Terminology

Let Σ^* denote the set of all strings a finite alphabet Σ .

- **<u>concatenation</u>**: For strings x and y, the concatenation is the string xy and has length |x| + |y|.
- <u>prefix</u> A string w is a prefix of x (denotation $w \sqsubset x$) if x = wy for some string $y \in \Sigma^*$. If $w \sqsubset x$ then $|w| \le |x|$.
- suffix A string w is a suffix of x (denotation $w \sqsupset x$) if x = yw for some string $y \in \Sigma^*$. If $w \sqsupset x$ then $|w| \le |x|$.

Example 1 ab \square abcca *and* cca \square abcca.

Lemma 1 Suppose that x, y, and z are strings such that $x \sqsupset z$ and $y \sqsupset z$. If $|x| \le |y|$ then $x \sqsupset y$. If $|x| \ge |y|$ then $y \sqsupset x$. If |x| = |y| then x = y.

Figure 1: A graphical proof of Lemma 1

2. A naive approach

The following algorithm looks for all occurrences of a pattern P[1..m] in the string T[1..n] and reports all s for which there is a match, i.e.

$$P[1\ldots m] = T[s+1\ldots s+m]$$

Algorithm 1 NAIVE-STRING-MATCHER(T, P);

$$n = |T|$$

$$m = |P|$$

for $s = 0$ to $n - m$ do
if $(P[1 \dots m] = T[s + 1 \dots s + m])$ then
print "Pattern occurs with shift" s

The running time of this algorithm is $\Theta((n-m+1)m)$.

3. The Rabin-Karp algorithm

We consider each character of Σ as a digit in radix-d notation, where $d = |\Sigma|$.

Given a pattern $P[1 \dots m]$, we let p denote its corresponding decimal value, which can be computed in $\Theta(m)$ time using Horner's rule:

$$p = P[m] + d(P[m-1] + d(P[m-2] + \dots + d(P[2] + dP[1]) \dots)).$$

Similarly, denote by t_s the decimal value of the length-m substring $T[s+1\ldots s+m]$, for $s=1,2,\ldots,n-m$.

Clearly, $t_s = p$ if and only if $T[s + 1 \dots s + m] = P[1 \dots m]$. The value t_0 can be computed in time $\Theta(m)$.

To compute the values $t_1, t_2, \ldots, t_{n-m}$ in time $\Theta(n-m)$, note that

$$t_{s+1} = d(t_s - d^{m-1}T[s+1]) + T[s+m+1].$$
(1)

Assuming that d^{m-1} is precomputed, t_{s+1} can be computed from t_s in a constant time.

Figure 2: Recomputing the value for a window in a constant time

The only disadvantage of the above method is that the values p and t_s become very large.

To make the approach practical, we consider these numbers modulo q, where q is maximum number such that qd fits within one computer word. Then (1) becomes

$$t_{s+1} = (d(t_s - h \cdot T[s+1]) + T[s+m+1]) \mod q$$
 (2)

where $h \equiv d^{m-1} \pmod{q}$.

Figure 3: The Rabin-Karp algorithm

Now if $t_s \not\equiv p \pmod{d}$ then $t_s \neq p$. If $t_s \equiv p \pmod{q}$ we have a <u>spurious hit</u>. In this case the strings $P[1 \dots m]$ and $T[s+1 \dots s+m]$ have to be compared character-by-character as in the naive approach.

<u>Algorithm 2</u> Rabin-Karp-Matcher(T, P, d, q);

1.
$$n := |T|$$

2. $m := |P|$
3. $h := d^{m-1} \mod q$
4. $p := 0$
5. $t_0 := 0$
6. for $i = 1$ to m do //preprocessing
7. $p := (dp + P[i]) \mod q$
8. $t_0 = (dt_0 + T[i]) \mod q$
9. for $s = 0$ to $n - m$ do //matching
10. if $(p = t_s)$ then
11. if $(P[1 ... m] = T[s + 1 ... s + m])$ then
12. print "pattern occurs with shift" s
13. if $(s < n - m)$ then
14. $t_{s+1} := (d(t_s - T[s + 1]h) + T[s + m + 1]) \mod q$

The preprocessing time is $\Theta(m).$ The matching time is $\Theta((n-m+1)m)$ in the worth case.

In many application a few valid shifts are expected. Then the Rabin-Karp algorithm runs significantly faster than the naive one.

4. String matching with finite automata

A finite automaton M is a 5-tuple $(Q, q_0, A, \Sigma, \delta)$, where

- Q is a finite set of <u>states</u>
- q_0 is the <u>start state</u>
- $A \subseteq Q$ is a set of accepted states
- $\bullet\ \Sigma$ is a finite input alphabet
- δ is a function $Q \times \Sigma \mapsto Q$, called the <u>transition function</u> of M.

If the automaton is in state q and reads a symbol a, it moves to state $\delta(q, a)$. If $\delta(q, a) \in A$, the string ending with a is called <u>accepted</u>.

Example 2 The following automaton accepts those strings in the alphabet $\Sigma = \{a, b\}$, which end with an odd number of a's.

Figure 4: A simple two-state automaton

Given a pattern string $P[1 \dots m]$, we define $P_k = P[1 \dots k]$ and introduce the suffix function $\sigma : \Sigma^* \mapsto \{0, 1, \dots, m\}$ of P as

 $\sigma(x) = \max\{k \mid P_k \sqsupset x\}.$

Example 3 If P = ab, we have $\sigma(ccaca) = 1$, $\sigma(ccab) = 2$, $\sigma(\epsilon) = 0$.

In general, $\sigma(x) = m$ for |P| = m if and only if $P \sqsupset x$, and if $x \sqsupset y$ then $\sigma(x) \le \sigma(y)$.

We define the string-matching automaton corresponding to a given pattern $P[1 \dots m]$ as follows:

- Set $Q = \{0, 1, 2, \dots, m\}$ and $q_0 = 0$.
- For any $q \in Q$ and $a \in \Sigma$ set

$$\delta(q,a) = \sigma(P_q a). \tag{3}$$

Algorithm 3Finite-Automaton-Matcher (T, δ, m) ;1. n := |T|2. q := 03. for i = 1 to n do4. $q := \delta(q, T[i])$ 5. if (q = m) then6. print "pattern occurs with shift" i - m

The running time is $\Theta(n)$ + preprocessing for constructing $\delta()$.

(a)

	j	inpu	t														
state	а	b	С	Р													
0	1	0	0	а													
1	1	2	0	b													
2	3	0	0	а				4									
3	1	4	0	b													
4	5	0	0	a													
5	1	4	6	С	i	_	1	2	3	4	5	6	7	8	9	10	11
6	7	0	0	a	T[i]		a	b	а	b	a	b	а	C	a	b	а
7	1	2	0		state $\phi(T_i)$	0	1	2	3	4	5	4	5	6	7	2	3
			·														
(b)										(c)							

Figure 5: The string-matching automaton for P = ababaca

The transition table is constructed so that

$$\delta(q,a) = \sigma(P_q a)$$

The machine is designed so that after scanning the first i characters of the string T it is in the state $q = \sigma(T_i)$.

Computing the transition function $\delta()$

Algorithm 4 Compute-Transition-Function (P, Σ) ;

1.
$$m := |P|$$

2. for $q = 0$ to m
3. for each $a \in \Sigma$
4. $k := \min(m, q + 1)$
5. while $(P_k \not\supseteq P_q a)$
6. $k = k - 1$
7. $\delta(q, a) := k$

8. return δ

This algorithm computes $\delta(q, a)$ according to its definition (3)

$$\delta(q,a) = \sigma(P_q a)$$

The running time of this method is $\Theta(m^3|\Sigma|)$, however, there exist faster implementations with the running time $\Theta(m|\Sigma|)$.

Therefore, the search for P can be done with $\Theta(m|\Sigma|)$ preprocessing time and $\Theta(n)$ matching time.

To prove the correctness of the above algorithm we will need two lemmas.

Lemma 2 For any string $x \in \Sigma^*$ and character $a \in \Sigma$, we have $\sigma(xa) \leq \sigma(x) + 1$.

Proof.

Let $r = \sigma(xa)$. If r = 0, then $r = \sigma(xa) = 0 \le \sigma(x) + 1$ is trivially satisfied, since $0 \le \sigma(x)$.

If r > 0, then $P_r \sqsupset xa \Rightarrow P_{r-1} \sqsupset x$ $\Rightarrow r-1 \le \sigma(x)$, and the lemma follows.

Figure 6: An illustration for the proof of Lemma 2

Lemma 3 For any $x \in \Sigma^*$ and $a \in \Sigma$, if $q = \sigma(x)$ then $\sigma(xa) = \sigma(P_qa)$.

Proof.

By the definition of σ , if $q = \sigma(x)$ then $P_q \sqsupset x$.

By Lemma 2, for $r = \sigma(xa)$ we have $r \le q + 1$.

Since $P_q a \sqsupset xa$, $P_r \sqsupset xa$, $|P_r| \le |P_q a| \Rightarrow P_r \sqsupset P_q a$ (Lemma 1). Therefore, $r \le \sigma(P_q a)$, i.e. $\sigma(xa) \le \sigma(P_q a)$.

On the other hand, $P_q a \sqsupset xa \Rightarrow \sigma(P_q a) \le \sigma(xa)$.

Figure 7: An illustration for the proof of Lemma 3

Theorem 1 If $\phi(T)$ is the final-state function of a string-matching automaton for a fixed pattern P and given text T, then

$$\phi(T_i) = \sigma(T_i)$$
 for $i = 0, 1, ..., n$.

Proof. We use induction on i. For i = 0 we have $T_0 = \epsilon$, so $\phi(T_0) = \sigma(T_0) = 0$, and the theorem is true.

Assuming $\phi(T_i) = \sigma(T_i)$, we show $\phi(T_{i+1}) = \sigma(T_{i+1})$.

For this denote $q = \phi(T_i)$ and a = T[i+1]. One has

$$\begin{split} \phi(T_{i+1}) &= \phi(T_i a) & (\text{since } T_{i+1} = T_i a) \\ &= \delta(\phi(T_i), a) & (\text{definition of } \phi) \\ &= \delta(q, a) & (\text{since } \phi(T_i) = q) \\ &= \sigma(P_q a) & (\text{definition (3) of } \delta) \\ &= \sigma(T_i a) & (\text{Lemma 3 for } x = T_i \text{ and induction} \\ & \text{here } q = \phi(T_i) = \sigma(T_i)) \\ &= \sigma(T_{i+1}) & (\text{since } T_i a = T_{i+1}) \end{split}$$

The above theorem implies that if the automaton M enters state q in line 4 of the algorithm, then q is the largest value such that $P_q \supseteq T_i$. Thus, q = m in line 5 iff an occurrence of P is found.