String Matching

1. Problem statement

2. A naive approach
3. The Rabin-Karp algorithm
4. String matching with finite automata

1. Terminology

Let Σ^{*} denote the set of all strings a finite alphabet Σ.
concatenation: For strings x and y, the concatenation is the string $x y$ and has length $|x|+|y|$.
prefix A string w is a prefix of x (denotation $w \sqsubset x$) if $x=w y$ for some string $y \in \Sigma^{*}$. If $w \sqsubset x$ then $|w| \leq|x|$.
suffix A string w is a suffix of x (denotation $w \sqsupset x$) if $x=y w$ for some string $y \in \Sigma^{*}$. If $w \sqsupset x$ then $|w| \leq|x|$.

Example $1 \mathrm{ab} \sqsubset \mathrm{abcca}$ and cca $\sqsupset \mathrm{abcca}$.
Lemma 1 Suppose that x, y, and z are strings such that $x \sqsupset z$ and $y \sqsupset z$. If $|x| \leq|y|$ then $x \sqsupset y$. If $|x| \geq|y|$ then $y \sqsupset x$. If $|x|=|y|$ then $x=y$.

Figure 1: A graphical proof of Lemma 1

2. A naive approach

The following algorithm looks for all occurrences of a pattern $P[1 . . m]$ in the string $T[1 . . n]$ and reports all s for which there is a match, i.e.

$$
P[1 \ldots m]=T[s+1 \ldots s+m]
$$

Algorithm 1 Naive-String-Matcher (T, P);

$$
\begin{aligned}
& n=|T| \\
& m=|P| \\
& \text { for } s=0 \text { to } n-m \text { do } \\
& \quad \text { if }(P[1 \ldots m]=T[s+1 \ldots s+m]) \text { then } \\
& \quad \text { print "Pattern occurs with shift" } s
\end{aligned}
$$

The running time of this algorithm is $\Theta((n-m+1) m)$.

3. The Rabin-Karp algorithm

We consider each character of Σ as a digit in radix- d notation, where $d=|\Sigma|$.

Given a pattern $P[1 \ldots m]$, we let p denote its corresponding decimal value, which can be computed in $\Theta(m)$ time using Horner's rule:
$p=P[m]+d(P[m-1]+d(P[m-2]+\cdots+d(P[2]+d P[1]) \cdots))$.
Similarly, denote by t_{s} the decimal value of the length $-m$ substring $T[s+1 \ldots s+m]$, for $s=1,2, \ldots, n-m$.
Clearly, $t_{s}=p$ if and only if $T[s+1 \ldots s+m]=P[1 \ldots m]$. The value t_{0} can be computed in time $\Theta(m)$.

To compute the values $t_{1}, t_{2}, \ldots, t_{n-m}$ in time $\Theta(n-m)$, note that

$$
\begin{equation*}
t_{s+1}=d\left(t_{s}-d^{m-1} T[s+1]\right)+T[s+m+1] . \tag{1}
\end{equation*}
$$

Assuming that d^{m-1} is precomputed, t_{s+1} can be computed from t_{s} in a constant time.

Figure 2: Recomputing the value for a window in a constant time

The only disadvantage of the above method is that the values p and t_{s} become very large.

To make the approach practical, we consider these numbers modulo q, where q is maximum number such that $q d$ fits within one computer word. Then (1) becomes

$$
\begin{equation*}
t_{s+1}=\left(d\left(t_{s}-h \cdot T[s+1]\right)+T[s+m+1]\right) \bmod q \tag{2}
\end{equation*}
$$

where $h \equiv d^{m-1} \quad(\bmod q)$.

Figure 3: The Rabin-Karp algorithm
Now if $t_{s} \not \equiv p \quad(\bmod d)$ then $t_{s} \neq p$. If $t_{s} \equiv p \quad(\bmod q)$ we have a spurious hit. In this case the strings $P[1 \ldots m]$ and $T[s+1 \ldots s+m]$ have to be compared character-by-character as in the naive approach.

Algorithm 2 Rabin-Karp-Matcher (T, P, d, q);

1. $n:=|T|$
2. $m:=|P|$
3. $h:=d^{m-1} \bmod q$
4. $p:=0$
5. $t_{0}:=0$
6. for $i=1$ to m do //preprocessing
7. $\quad p:=(d p+P[i]) \bmod q$
8. $\quad t_{0}=\left(d t_{0}+T[i]\right) \bmod q$
9. for $s=0$ to $n-m$ do $/ /$ matching
10. if $\left(p=t_{s}\right)$ then
11. if $(P[1 \ldots m]=T[s+1 \ldots s+m])$ then
12. print "pattern occurs with shift" s
13. if $(s<n-m)$ then
14. $t_{s+1}:=\left(d\left(t_{s}-T[s+1] h\right)+T[s+m+1]\right) \bmod q$

The preprocessing time is $\Theta(m)$.
The matching time is $\Theta((n-m+1) m)$ in the worth case.
In many application a few valid shifts are expected. Then the RabinKarp algorithm runs significantly faster than the naive one.

4. String matching with finite automata

A finite automaton M is a 5 -tuple $\left(Q, q_{0}, A, \Sigma, \delta\right)$, where

- Q is a finite set of states
- q_{0} is the start state
- $A \subseteq Q$ is a set of accepted states
- Σ is a finite input alphabet
- δ is a function $Q \times \Sigma \mapsto Q$, called the transition function of M.

If the automaton is in state q and reads a symbol a, it moves to state $\delta(q, a)$. If $\delta(q, a) \in A$, the string ending with a is called accepted.

Example 2 The following automaton accepts those strings in the alphabet $\Sigma=\{a, b\}$, which end with an odd number of a 's.

Figure 4: A simple two-state automaton

Given a pattern string $P[1 \ldots m]$, we define $P_{k}=P[1 \ldots k]$ and introduce the suffix function $\sigma: \Sigma^{*} \mapsto\{0,1, \ldots, m\}$ of P as

$$
\sigma(x)=\max \left\{k \mid P_{k} \sqsupset x\right\}
$$

Example 3 If $P=a b$, we have

$$
\sigma(c c a c a)=1, \quad \sigma(c c a b)=2, \quad \sigma(\epsilon)=0
$$

In general, $\sigma(x)=m$ for $|P|=m$ if and only if $P \sqsupset x$, and if $x \sqsupset y$ then $\sigma(x) \leq \sigma(y)$.
We define the string-matching automaton corresponding to a given pattern $P[1 \ldots m]$ as follows:

- Set $Q=\{0,1,2, \ldots, m\}$ and $q_{0}=0$.
- For any $q \in Q$ and $a \in \Sigma$ set

$$
\begin{equation*}
\delta(q, a)=\sigma\left(P_{q} a\right) \tag{3}
\end{equation*}
$$

$\underline{\text { Algorithm } 3}$ Finite-Automaton-Matcher (T, δ, m);

1. $n:=|T|$
2. $q:=0$
3. for $i=1$ to n do
4. $q:=\delta(q, T[i])$
5. if $(q=m)$ then
6. print "pattern occurs with shift" $i-m$

The running time is $\Theta(n)+$ preprocessing for constructing $\delta()$.

(a)

Figure 5: The string-matching automaton for $P=a b a b a c a$

The transition table is constructed so that

$$
\delta(q, a)=\sigma\left(P_{q} a\right)
$$

The machine is designed so that after scanning the first i characters of the string T it is in the state $q=\sigma\left(T_{i}\right)$.

Computing the transition function $\delta()$

Algorithm 4 Compute-Transition-Function (P, Σ);

1. $m:=|P|$
2. for $q=0$ to m
3. for each $a \in \Sigma$
4. $k:=\min (m, q+1)$
5. while $\left(P_{k} \not \supset P_{q} a\right)$
6. $\quad k=k-1$
7. $\quad \delta(q, a):=k$
8. return δ

This algorithm computes $\delta(q, a)$ according to its definition (3)

$$
\delta(q, a)=\sigma\left(P_{q} a\right)
$$

The running time of this method is $\Theta\left(m^{3}|\Sigma|\right)$, however, there exist faster implementations with the running time $\Theta(m|\Sigma|)$.

Therefore, the search for P can be done with $\Theta(m|\Sigma|)$ preprocessing time and $\Theta(n)$ matching time.

To prove the correctness of the above algorithm we will need two lemmas.

Lemma 2 For any string $x \in \Sigma^{*}$ and character $a \in \Sigma$, we have $\sigma(x a) \leq \sigma(x)+1$.

Proof.
Let $r=\sigma(x a)$. If $r=0$, then $r=\sigma(x a)=0 \leq \sigma(x)+1$ is trivially satisfied, since $0 \leq \sigma(x)$.

If $r>0$, then $P_{r} \sqsupset x a \Rightarrow P_{r-1} \sqsupset x$
$\Rightarrow r-1 \leq \sigma(x)$, and the lemma follows.

Figure 6: An illustration for the proof of Lemma 2

Lemma 3 For any $x \in \Sigma^{*}$ and $a \in \Sigma$, if $q=\sigma(x)$ then $\sigma(x a)=\sigma\left(P_{q} a\right)$.

Proof.
By the definition of σ, if $q=\sigma(x)$ then $P_{q} \sqsupset x$.
By Lemma 2, for $r=\sigma(x a)$ we have $r \leq q+1$.
Since $P_{q} a \sqsupset x a, P_{r} \sqsupset x a,\left|P_{r}\right| \leq\left|P_{q} a\right| \Rightarrow P_{r} \sqsupset P_{q} a$ (Lemma 1).
Therefore, $r \leq \sigma\left(P_{q} a\right)$, i.e. $\sigma(x a) \leq \sigma\left(P_{q} a\right)$.
On the other hand, $P_{q} a \sqsupset x a \Rightarrow \sigma\left(P_{q} a\right) \leq \sigma(x a)$.

Figure 7: An illustration for the proof of Lemma 3

Theorem 1 If $\phi(T)$ is the final-state function of a string-matching automaton for a fixed pattern P and given text T, then

$$
\phi\left(T_{i}\right)=\sigma\left(T_{i}\right) \quad \text { for } \quad i=0,1, \ldots, n
$$

Proof. We use induction on i. For $i=0$ we have $T_{0}=\epsilon$, so $\phi\left(T_{0}\right)=\sigma\left(T_{0}\right)=0$, and the theorem is true.

Assuming $\phi\left(T_{i}\right)=\sigma\left(T_{i}\right)$, we show $\phi\left(T_{i+1}\right)=\sigma\left(T_{i+1}\right)$.
For this denote $q=\phi\left(T_{i}\right)$ and $a=T[i+1]$. One has

$$
\begin{array}{rlrl}
\phi\left(T_{i+1}\right) & =\phi\left(T_{i} a\right) & & \left(\text { since } T_{i+1}=T_{i} a\right) \\
& =\delta\left(\phi\left(T_{i}\right), a\right) & & (\text { definition of } \phi) \\
& =\delta(q, a) & & \left(\text { since } \phi\left(T_{i}\right)=q\right) \\
& =\sigma\left(P_{q} a\right) & & \text { (definition }(3) \text { of } \delta) \\
& =\sigma\left(T_{i} a\right) & & \left(\text { Lemma 3 for } x=T_{i}\right. \text { and induction } \\
& =\sigma\left(T_{i+1}\right) & & \text { here } \left.q=\phi\left(T_{i}\right)=\sigma\left(T_{i}\right)\right) \\
& & \text { since } \left.T_{i} a=T_{i+1}\right)
\end{array}
$$

The above theorem implies that if the automaton M enters state q in line 4 of the algorithm, then q is the largest value such that $P_{q} \sqsupset T_{i}$.
Thus, $q=m$ in line 5 iff an occurrence of P is found.

