Introduction to Randomized Algorithms

- 1. Introduction
- 2. Max-3-CNF satisfiability
- 3. The general Max-CNF problem
- 4. Monte-Carlo methods
- 5. Las Vegas algorithms

1. Introduction

Consider the following problem:

Instance: Real numbers x_1, \ldots, x_n .

Problem: Find x_i with $x_i \geq \overline{x}$, where \overline{x} is the $\lfloor n/2 \rfloor$ -smallest element.

A deterministic algorithm takes $\Theta(n)$ steps.

Let x_i and x_j with $i \neq j$ be chosen randomly. Assume $x_i \geq x_j$. One has:

Since $x_i \ge x_j$ we get:

$$\mathbf{P}[(x_i \leq \overline{x}) \text{ and } (x_j \leq \overline{x})] = \mathbf{P}[x_i \leq \overline{x}] \leq 1/4.$$

Similarly, performing this choice k times delivers x_{i_1}, \ldots, x_{i_k} so that for $\tilde{x} = \max\{x_{i_1}, \ldots, x_{i_k}\}$ it holds

$$\mathbf{P}[\tilde{x} \le \overline{x}] \le 2^{-k}.$$

Hence, the probability for $\tilde{x} \ge \overline{x}$ is large (at least $1 - 2^{-k}$). If $k = 10 \Rightarrow \mathbf{P}[\tilde{x} \ge \overline{x}] \ge 0.999$.

If $k = 20 \Rightarrow \mathbf{P}[\tilde{x} \ge \overline{x}] \ge 0.9999999$.

The running time of this method does not depend on n !

2. The MAX-3-CNF problem:

Instance: A function $f(x_1, \ldots, x_n) = C_1 \wedge \cdots \wedge C_m$ in CNF, with each clause having exactly 3 literals.

Problem: Find a truth assignment to the variables x_1, \ldots, x_n so that the number of satisfied clauses is maximum.

We set independently each variable to 0 with prob. 1/2 and to 1 with prob. 1/2. Assuming w.l.o.g. that no clause has a variable and its negation, the settings of 3 literals in a clause is independent. \Rightarrow a clause is not satisfied with prob. $1/2^3 = 1/8$.

Theorem 1 The above algorithm has approximation rate 8/7.

Proof. Let a variable Y_i be defined as follows:

 $Y_i = \begin{cases} 1, \text{ if } C_i \text{ is satisfied} \\ 0, \text{ otherwise} \end{cases}$

Since $\mathbf{P}[Y_i = 1] = 1 - 1/8 = 7/8$, $E[Y_i] = 7/8 \cdot 1 + 1/8 \cdot 0 = 7/8$. So, for $Y = Y_1 + Y_2 + \cdots + Y_m$ (= # of satisfied clauses) one has

$$E[Y] = E\left[\sum_{i=1}^{m} Y_i\right]$$

= $\sum_{i=1}^{m} E[Y_i]$ (linearity of expectation)
= $\sum_{i=1}^{m} 7/8$
= $7m/8$.

So, the approx. rate of the method is at most m/(7m/8) = 8/7. \Box

3. The general MAX-CNF problem:

Instance: A function $f(x_1, \ldots, x_n) = C_1 \land \cdots \land C_m$ in CNF. **Problem:** Find a truth assignment to the variables x_1, \ldots, x_n so that the number of satisfied clauses is maximum.

Let M^* be the maximum number of satisfied clauses. We construct an algorithm with approximation rate 3/4.

Method 1:

Set $x_i = T$ for i = 1, ..., n independently with probability 1/2. \Rightarrow a clause with k literals is not satisfied with prob. $1/2^k$.

Let n_1 denote the number of clauses satisfied by this method. One has $n_1 \ge (3/4)M^*$, if each clause consists of at least 2 literals.

Method 2:

We formulate the MAX-CNF problem as an IP (Integer Programming) problem:

- For each clause C_i we introduce a binary variable z_i so that $z_i = 1 \Leftrightarrow C_i$ is satisfied.
- For each variable x_i we introduce a binary variable y_i so that $y_i = 1 \Leftrightarrow x_i = T$.

Denote by S_i^+ (resp. S_i^-) the set of all variables in C_i that are not negated (resp. are negated).

IP problem

 $\begin{array}{ll} \text{maximize} & \sum_{j=1}^{m} z_j \\ \text{subject to} & \sum_{S_j^+} y_i + \sum_{S_j^-} (1-y_i) \geq z_j, \quad j = 1, \dots, m \\ & y_i, z_j \in \{0, 1\}, \qquad i = 1, \dots, n \qquad j = 1, \dots, m. \end{array}$

We relax the conditions $y_i, z_j \in \{0, 1\}$ with $y_i, z_j \in [0, 1]$ and obtain an LP (Linear Programming) problem.

Let \hat{y}_i and \hat{z}_i be a solution to the LP. Obviously,

$$M^* \le \sum_{j=1}^m \hat{z}_j.$$

Denote $\beta_k = 1 - \left(1 - \frac{1}{k}\right)^k$.

This

Lemma 1 Let C_j be a clause with k literals. Then $\mathbf{Pr}[C_j \text{ is satisfied}] \geq \beta_k \hat{z}_j.$

Proof: W.I.o.g. we can assume that no variable in C_j is negated, i.e. $C_j = x_1 \vee \cdots \vee x_k$. Note that $\mathbf{Pr}[x_i = 1] = \hat{y}_i$.

Since the LP restrictions are satisfied,

$$\begin{split} \hat{y}_1 + \dots + \hat{y}_k &\geq \hat{z}_j \quad \Leftrightarrow \quad \sum_{i=1}^k (1 - \hat{y}_i) \leq k - \hat{z}_j.\\ \text{implies } \prod_{i=1}^k (1 - \hat{y}_i) \leq \prod_{i=1}^k \sum_{i=1}^k \frac{1 - \hat{y}_i}{k} \leq \prod_{i=1}^k \frac{k - \hat{z}_j}{k}, \text{ so}\\ \mathbf{Pr}[C_j \text{ is satisfied}] &= 1 - \prod_{i=1}^k (1 - \hat{y}_i) \geq 1 - \prod_{i=1}^k (1 - \hat{z}_j/k)\\ &= 1 - (1 - \hat{z}_j/k)^k \geq \beta_k \hat{z}_j. \quad \Box \end{split}$$

Let C^k denote the set of all clauses consisting of k literals. Then

$$n_{2} = \sum_{k \geq 1} \mathbf{Ex}[|\{C_{j} \in C^{k} \mid C_{j} \text{ is satisfied}\}|]$$

=
$$\sum_{k \geq 1} \sum_{C_{j} \in C^{k}} \mathbf{Pr}[C_{j} \text{ is satisfied}] \geq \sum_{k \geq 1} \sum_{C_{j} \in C^{k}} \beta_{k} \hat{z}_{j}.$$

Algorithm 1 MAX-CNF;

- 1. Apply Method 1 and compute n_1 .
- 2. Apply Method 2 and compute n_2 .
- 3. Choose the best solution out of those.

Theorem 2 It holds

$$\max\{n_1, n_2\} \ge \frac{3}{4} \sum_{j=1}^{m} \hat{z}_j \ge \frac{3}{4} M^*.$$

Proof:

Denote $\alpha_k = 1 - 1/2^k$. One has

$$n_1 = \sum_{k \ge 1} \sum_{\substack{C_j \in C^k}} \alpha_k \ge \sum_{k \ge 1} \sum_{\substack{C_j \in C^k}} \alpha_k \hat{z}_j,$$

$$n_2 \ge \sum_{k \ge 1} \sum_{\substack{C_j \in C^k}} \beta_k \hat{z}_j.$$

Note that for $k \geq 1$

$$\alpha_k + \beta_k = 1 - \frac{1}{2^k} + 1 - \left(1 - \frac{1}{k}\right)^k \ge 3/2.$$

This implies

$$\max\{n_1, n_2\} \ge \frac{n_1 + n_2}{2} \ge \sum_{k \ge 1} \sum_{C_j \in C^k} \frac{\alpha_k + \beta_k}{2} \hat{z}_j \ge \frac{3}{4} \sum_{j=1}^m \hat{z}_j.$$

4. The DNF Satisfiability Problem

Instance: Boolean function $f(x_1, ..., x_n)$ in DNF (i.e. $f = C_1 \lor C_2 \lor \cdots \lor C_m$). Problem: Compute #(F) (the number of tuples $(x_1, ..., x_n) \in \{0, 1\}^n$ that satisfy f).

It is known that this problem is #P-complete. Obviously:

$$0 < \#F \le 2^n.$$

First, we consider a general problem:

Let U be a finite set and $f : U \mapsto \{0, 1\}$ be a function. We assume that the value of f can be computed fast. The question is to determine |G|, where

$$G = \{ u \in U \mid f(u) = 1 \}.$$

We apply the Monte-Carlo method and make N independent samples u_1, \ldots, u_N from U. Introduce random variables Y_i $(i = 1, \ldots, N)$ defined as

$$Y_i = \left\{ egin{array}{cc} 1, \ {
m if} \ f(u_i) = 1 \ 0, \ {
m otherwise} \end{array}
ight.$$

Furthermore, let

$$Z = |U| \cdot \sum_{i=1}^{N} \frac{Y_i}{N}.$$

Since $\mathbf{E}[Z] = |G|$, we hope that with a high probability Z is an ϵ -approximation for |G|. But this probability strictly depends on N.

Theorem 3 Let $\rho = |G|/|U|$. Then the Monte-Carlo method provides an ϵ -approximation for |G| with probability at least $1 - \delta$ for a fixed $\delta \in (0, 1]$ if

$$N \ge \frac{4}{\epsilon^2 \rho} \ln \frac{2}{\delta}.$$

Proof:

Let $Y = \sum_{i=1}^{N} Y_i$. Then $\mathbf{E}[Y] = N\rho$. We use the Chernoff inequalities:

$$\begin{aligned} \mathbf{Pr}[Y &\leq (1-\epsilon)N\rho] \leq e^{-N\rho\epsilon^2/2} \\ \mathbf{Pr}[(1+\epsilon)N\rho \leq Y] \leq e^{-N\rho\epsilon^2/(2+\epsilon)}. \end{aligned}$$

Both upper bounds do not exceed $e^{-N
ho\epsilon^2/4}$. Hence,

$$\mathbf{Pr}[(1-\epsilon)|G| \le Z \le (1+\epsilon)|G|]$$

=
$$\mathbf{Pr}[(1-\epsilon)N\rho \le Y \le (1+\epsilon)N\rho]$$

$$\ge 1-2e^{-N\rho\epsilon^2/4}.$$

So, $1 - 2e^{-N\rho\epsilon^2/4} \ge 1 - \delta$ iff $N \ge \frac{4}{\epsilon^2\rho} \ln \frac{2}{\delta}$.

The running time of this method is at least $N \ge 1/\rho$. The ratio $1/\rho$ is, however, not known in advance and can be exponentially large.

What is wrong in our approach is that the sample space U is very large. So if G is small, to evaluate |G| with a high accuracy one has to do many samples, which makes N large.

Modification: decrease the size of sample space.

The set union problem: Let V be a finite set and $H_1, \ldots, H_m \subseteq V$, so that for every i:

1. $|H_i|$ can be computed in polynomial time.

- 2. There is a way to select an element of H_i randomly and uniformly.
- 3. For every $v \in V$ it can be checked in polynomial time if $v \in H_i$.

Our goal: estimate the size of $H = H_1 \cup \cdots \cup H_m$.

Remark 1 The above assumptions are satisfied for our original problem concerning DNF.

We define a multiset $U = H_1 \uplus \cdots \uplus H_m$:

$$U = \{ (v, i) \mid v \in H_i \}.$$

One has:

$$|U| = \sum_{j=1}^{m} |H_j| \ge |H|.$$

Furthermore, for $v \in V$ define a covering of v:

$$cov(v) = \{(v, i) \mid (v, i) \in U\}.$$

That is, cov(v) is a set of subsets H_i that contain v.

We have the following observations:

- 1. The number of coverings sets is |H| and they are simply computable.
- 2. $U = \bigcup_{v \in H} cov(v)$. 3. $|U| = \sum_{v \in H} |cov(v)|$. 4. $|cov(v)| \le m$ for all $v \in H$.

We define

$$f((v, i)) = \begin{cases} 1, \text{ if } i = \min\{j \mid v \in H_j\} \\ 0, \text{ otherwise} \\ G = \{(v, i) \in U \mid f((v, i)) = 1\}. \end{cases}$$

One has: |G| = |H|.

Lemma 2 For the set union problem it holds:

$$\rho = \frac{|G|}{|U|} \ge \frac{1}{m}.$$

Proof:

$$\begin{aligned} |U| &= \sum_{v \in H} |cov(v)| \\ &\leq \sum_{v \in H} m \\ &\leq m|H| = m|G|. \end{aligned}$$

Theorem 4 The Monte-Carlo method provides an ϵ -approximation for |G| with probability at least $1 - \delta$ for a fixed $\delta \in (0, 1]$ if

$$N \ge \frac{4m}{\epsilon^2} \ln \frac{2}{\delta}.$$

Proof:

We make N independent samples (v, i) from U in two steps.

Step 1: choose an i randomly with probability

$$\mathbf{Pr}[i] = \frac{|H_i|}{|U|}.$$

Step 2: choose a $v \in H_i$ randomly and uniformly with probability

$$\mathbf{Pr}[v] = \frac{1}{|H_i|}.$$

This way the pairs (v, i) become uniformly distributed:

$$\mathbf{Pr}[(v,i)] = \frac{1}{|H_i|} \cdot \frac{|H_i|}{|U|} = \frac{1}{|U|}.$$

Let Y_i (i = 1, ..., N) be random variables defined by

$$Y_i = \left\{ egin{array}{c} 1, \ {
m if} \ f((v,i)) = 1 \ 0, \ {
m otherwise} \end{array}
ight.$$

Furthermore, let

$$Y = \sum_{i=1}^{N} Y_i$$
$$Z = \frac{|U|}{N} Y.$$

One has:

$$\mathbf{E}[Y] = N\rho$$
$$\mathbf{E}[Z] = |G|.$$

We apply the Chernoff inequalities and obtain

$$\begin{aligned} &\mathbf{Pr}[(1-\epsilon)|G| \leq Z \leq (1+\epsilon)|G|] \\ &= \mathbf{Pr}[(1-\epsilon)N\rho \leq Y \leq (1+\epsilon)N\rho] \\ &\geq 1 - 2e^{-N\rho\epsilon^2/4} \\ &\geq 1 - 2e^{-N\epsilon^2/4m}. \end{aligned}$$

Therefore,

$$1 - 2e^{-N\epsilon^2/4m} \ge 1 - \delta,$$

which implies

$$N \ge \frac{4m}{\epsilon^2} \ln \frac{2}{\delta}.$$

The total running time of this method is polynomial w.r.t. m, $1/\epsilon$, and $\ln(1/\delta)$.

5. The Las-Vegas Algorithms

The algorithm from the previous section is an example of Monte-Carlo type algorithm. Such algorithms do not necessarily provide an exact solution, they just do it with a relatively high probability. However, their running time is usually much shorter compared to deterministic algorithms.

On the other hand, there are algorithms that surely provide a correct solution, however, one can estimate only their average running time.

Set-Coloring problem:

Instance: A set S with |S| = n and subsets $F = \{S_i\}$, $S_i \subseteq S$, $|S_i| = r$, i = 1, ..., k, where $k \leq 2^{r-2}$. **Problem:** Color every element $x \in S$ red or blue, so that each

subset $S_i \in F$ contains elements of both colors.

Algorithm 2 2-COLORING(S, F);

- 1. Color every element of S randomly and independently in red or blue with probability 1/2.
- 2. Repeat step 1 until a valid coloring will be obtained.

How high is the probability that the coloring obtained after step 1 is invalid?

$$\mathbf{Pr}[$$
all elements of S_i are red $] = 2^{-r}$.

This implies

$$\mathbf{Pr}[\exists a \text{ "red" subset } S_i \in F] \leq k \, 2^{-r} \leq 1/4.$$

The same inequality holds for an existence of a "blue" set. Hence,

 $\mathbf{Pr}[\mathsf{the coloring is invalid}] \leq 1/2$

and

```
\mathbf{Pr}[\mathsf{the coloring is valid}] > 1/2.
```

Our algorithm is a Las-Vegas algorithm, since it constructs a new coloring until it becomes valid.

The last inequality implies that the expected number of repetitions of step 1 is only 2.