Introduction to Randomized Algorithms

1. Introduction
2. Max-3-CNF satisfiability
3. The general Max-CNF problem
4. Monte-Carlo methods
5. Las Vegas algorithms

1. Introduction

Consider the following problem:
Instance: Real numbers x_{1}, \ldots, x_{n}.
Problem: Find x_{i} with $x_{i} \geq \bar{x}$, where \bar{x} is the $\lfloor n / 2\rfloor$-smallest element.

A deterministic algorithm takes $\Theta(n)$ steps.
Let x_{i} and x_{j} with $i \neq j$ be chosen randomly. Assume $x_{i} \geq x_{j}$. One has:

$$
\begin{gathered}
\mathbf{P}\left[x_{i} \geq \bar{x}\right] \geq 1 / 2 \quad \Longleftrightarrow \\
\Downarrow \\
\mathbf{P}\left[\left(x_{i} \leq \bar{x}\right) \text { and }\left(x_{j} \leq \bar{x}\right] \leq 1 / 2\right. \\
\Longleftrightarrow \bar{x})] \leq 1 / 4
\end{gathered}
$$

Since $x_{i} \geq x_{j}$ we get:

$$
\mathbf{P}\left[\left(x_{i} \leq \bar{x}\right) \text { and }\left(x_{j} \leq \bar{x}\right)\right]=\mathbf{P}\left[x_{i} \leq \bar{x}\right] \leq 1 / 4
$$

Similarly, performing this choice k times delivers $x_{i_{1}}, \ldots, x_{i_{k}}$ so that for $\tilde{x}=\max \left\{x_{i_{1}}, \ldots, x_{i_{k}}\right\}$ it holds

$$
\mathbf{P}[\tilde{x} \leq \bar{x}] \leq 2^{-k}
$$

Hence, the probability for $\tilde{x} \geq \bar{x}$ is large (at least $1-2^{-k}$).
If $k=10 \Rightarrow \mathbf{P}[\tilde{x} \geq \bar{x}] \geq 0.999$.
If $k=20 \Rightarrow \mathbf{P}[\tilde{x} \geq \bar{x}] \geq 0.999999$.
The running time of this method does not depend on n !

2. The Max-3-CNF problem:

Instance: A function $f\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge \cdots \wedge C_{m}$ in CNF, with each clause having exactly 3 literals.
Problem: Find a truth assignment to the variables x_{1}, \ldots, x_{n} so that the number of satisfied clauses is maximum.

We set independently each variable to 0 with prob. $1 / 2$ and to 1 with prob. $1 / 2$. Assuming w.l.o.g. that no clause has a variable and its negation, the settings of 3 literals in a clause is independent. \Rightarrow a clause is not satisfied with prob. $1 / 2^{3}=1 / 8$.

Theorem 1 The above algorithm has approximation rate 8/7.
Proof.
Let a variable Y_{i} be defined as follows:

$$
Y_{i}=\left\{\begin{array}{l}
1, \text { if } C_{i} \text { is satisfied } \\
0, \text { otherwise }
\end{array}\right.
$$

Since $\mathbf{P}\left[Y_{i}=1\right]=1-1 / 8=7 / 8, E\left[Y_{i}\right]=7 / 8 \cdot 1+1 / 8 \cdot 0=7 / 8$. So, for $Y=Y_{1}+Y_{2}+\cdots+Y_{m}$ ($=\#$ of satisfied clauses) one has

$$
\begin{aligned}
E[Y] & =E\left[\sum_{i=1}^{m} Y_{i}\right] \\
& =\sum_{i=1}^{m} E\left[Y_{i}\right] \quad \text { (linearity of expectation) } \\
& =\sum_{i=1}^{m} 7 / 8 \\
& =7 m / 8
\end{aligned}
$$

So, the approx. rate of the method is at most $m /(7 m / 8)=8 / 7$.

3. The general Max-CNF problem:

Instance: A function $f\left(x_{1}, \ldots, x_{n}\right)=C_{1} \wedge \cdots \wedge C_{m}$ in CNF.
Problem: Find a truth assignment to the variables x_{1}, \ldots, x_{n} so that the number of satisfied clauses is maximum.

Let M^{*} be the maximum number of satisfied clauses. We construct an algorithm with approximation rate 3/4.

Method 1:

Set $x_{i}=T$ for $i=1, \ldots, n$ independently with probability $1 / 2$. \Rightarrow a clause with k literals is not satisfied with prob. $1 / 2^{k}$.

Let n_{1} denote the number of clauses satisfied by this method. One has $n_{1} \geq(3 / 4) M^{*}$, if each clause consists of at least 2 literals.

Method 2:

We formulate the MAX-CNF problem as an IP (Integer Programming) problem:

- For each clause C_{i} we introduce a binary variable z_{i} so that $z_{i}=1 \Leftrightarrow C_{i}$ is satisfied.
- For each variable x_{i} we introduce a binary variable y_{i} so that $y_{i}=1 \Leftrightarrow x_{i}=T$.

Denote by S_{i}^{+}(resp. S_{i}^{-}) the set of all variables in C_{i} that are not negated (resp. are negated).

IP problem

maximize $\sum_{j=1}^{m} z_{j}$
subject to $\quad \sum_{S_{j}^{+}} y_{i}+\sum_{S_{j}^{-}}\left(1-y_{i}\right) \geq z_{j}, \quad j=1, \ldots, m$

$$
y_{i}, z_{j} \in\{0,1\}, \quad i=1, \ldots, n \quad j=1, \ldots, m .
$$

We relax the conditions $y_{i}, z_{j} \in\{0,1\}$ with $y_{i}, z_{j} \in[0,1]$ and obtain an LP (Linear Programming) problem.
Let \hat{y}_{i} and \hat{z}_{i} be a solution to the LP. Obviously,

$$
M^{*} \leq \sum_{j=1}^{m} \hat{z}_{j} .
$$

Denote $\beta_{k}=1-\left(1-\frac{1}{k}\right)^{k}$.
Lemma 1 Let C_{j} be a clause with k literals. Then

$$
\operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \geq \beta_{k} \hat{z}_{j} .
$$

Proof: W.I.o.g. we can assume that no variable in C_{j} is negated, i.e. $C_{j}=x_{1} \vee \cdots \vee x_{k}$. Note that $\operatorname{Pr}\left[x_{i}=1\right]=\hat{y}_{i}$.
Since the LP restrictions are satisfied,

$$
\hat{y}_{1}+\cdots+\hat{y}_{k} \geq \hat{z}_{j} \quad \Leftrightarrow \quad \sum_{i=1}^{k}\left(1-\hat{y}_{i}\right) \leq k-\hat{z}_{j} .
$$

This implies $\Pi_{i=1}^{k}\left(1-\hat{y}_{i}\right) \leq \Pi_{i=1}^{k} \sum_{i=1}^{k} \frac{1-\hat{y}_{i}}{k} \leq \Pi_{i=1}^{k} \frac{k-\hat{z}_{j}}{k}$, so

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { is satisfied }\right] & =1-\prod_{i=1}^{k}\left(1-\hat{y}_{i}\right) \geq 1-\prod_{i=1}^{k}\left(1-\hat{z}_{j} / k\right) \\
& =1-\left(1-\hat{z}_{j} / k\right)^{k} \geq \beta_{k} \hat{z}_{j} .
\end{aligned}
$$

Let C^{k} denote the set of all clauses consisting of k literals. Then

$$
\begin{aligned}
n_{2} & =\sum_{k \geq 1} \operatorname{Ex}\left[\mid\left\{C_{j} \in C^{k} \mid C_{j} \text { is satisfied }\right\} \mid\right] \\
& =\sum_{k \geq 1} \sum_{C_{j} \in C^{k}} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \geq \sum_{k \geq 1} \sum_{C_{j} \in C^{k}} \beta_{k} \hat{z}_{j} .
\end{aligned}
$$

Algorithm 1 Max-CNF;

1. Apply Method 1 and compute n_{1}.
2. Apply Method 2 and compute n_{2}.
3. Choose the best solution out of those.

Theorem 2 It holds

$$
\max \left\{n_{1}, n_{2}\right\} \geq \frac{3}{4} \sum_{j=1}^{m} \hat{z}_{j} \geq \frac{3}{4} M^{*}
$$

Proof:
Denote $\alpha_{k}=1-1 / 2^{k}$. One has

$$
\begin{aligned}
n_{1} & =\sum_{k \geq 1} \sum_{C_{j} \in C^{k}} \alpha_{k} \geq \sum_{k \geq 1} \sum_{C_{j} \in C^{k}} \alpha_{k} \hat{z}_{j}, \\
n_{2} & \geq \sum_{k \geq 1} \sum_{C_{j} \in C^{k}} \beta_{k} \hat{z}_{j} .
\end{aligned}
$$

Note that for $k \geq 1$

$$
\alpha_{k}+\beta_{k}=1-\frac{1}{2^{k}}+1-\left(1-\frac{1}{k}\right)^{k} \geq 3 / 2
$$

This implies

$$
\max \left\{n_{1}, n_{2}\right\} \geq \frac{n_{1}+n_{2}}{2} \geq \sum_{k \geq 1} \sum_{C_{j} \in C^{k}} \frac{\alpha_{k}+\beta_{k}}{2} \hat{z}_{j} \geq \frac{3}{4} \sum_{j=1}^{m} \hat{z}_{j}
$$

4. The DNF Satisfiability Problem

Instance: Boolean function $f\left(x_{1}, \ldots, x_{n}\right)$ in DNF
(i.e. $f=C_{1} \vee C_{2} \vee \cdots \vee C_{m}$).

Problem: Compute \#(F) (the number of tuples
$\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}$ that satisfy $\left.f\right)$.
It is known that this problem is \#P-complete. Obviously:

$$
0<\# F \leq 2^{n}
$$

First, we consider a general problem:
Let U be a finite set and $f: U \mapsto\{0,1\}$ be a function. We assume that the value of f can be computed fast. The question is to determine $|G|$, where

$$
G=\{u \in U \mid f(u)=1\} .
$$

We apply the Monte-Carlo method and make N independent samples u_{1}, \ldots, u_{N} from U. Introduce random variables $Y_{i}(i=1, \ldots, N)$ defined as

$$
Y_{i}= \begin{cases}1, & \text { if } f\left(u_{i}\right)=1 \\ 0, & \text { otherwise }\end{cases}
$$

Furthermore, let

$$
Z=|U| \cdot \sum_{i=1}^{N} \frac{Y_{i}}{N} .
$$

Since $\mathbf{E}[Z]=|G|$, we hope that with a high probability Z is an ϵ-approximation for $|G|$. But this probability strictly depends on N.

Theorem 3 Let $\rho=|G| /|U|$. Then the Monte-Carlo method provides an ϵ-approximation for $|G|$ with probability at least $1-\delta$ for a fixed $\delta \in(0,1]$ if

$$
N \geq \frac{4}{\epsilon^{2} \rho} \ln \frac{2}{\delta} .
$$

Proof:

Let $Y=\sum_{i=1}^{N} Y_{i}$. Then $\mathbf{E}[Y]=N \rho$.
We use the Chernoff inequalities:

$$
\begin{aligned}
& \operatorname{Pr}[Y \leq(1-\epsilon) N \rho] \leq e^{-N \rho \epsilon^{2} / 2} \\
& \operatorname{Pr}[(1+\epsilon) N \rho \leq Y] \leq e^{-N \rho \epsilon^{2} /(2+\epsilon)}
\end{aligned}
$$

Both upper bounds do not exceed $e^{-N \rho \epsilon^{2} / 4}$. Hence,

$$
\begin{aligned}
& \operatorname{Pr}[(1-\epsilon)|G| \leq Z \leq(1+\epsilon)|G|] \\
= & \operatorname{Pr}[(1-\epsilon) N \rho \leq Y \leq(1+\epsilon) N \rho] \\
\geq & 1-2 e^{-N \rho \epsilon^{2} / 4} .
\end{aligned}
$$

So, $1-2 e^{-N \rho \epsilon^{2} / 4} \geq 1-\delta$ iff $N \geq \frac{4}{\epsilon^{2} \rho} \ln \frac{2}{\delta}$.
The running time of this method is at least $N \geq 1 / \rho$. The ratio $1 / \rho$ is, however, not known in advance and can be exponentially large.

What is wrong in our approach is that the sample space U is very large. So if G is small, to evaluate $|G|$ with a high accuracy one has to do many samples, which makes N large.

Modification: decrease the size of sample space.

The set union problem:

Let V be a finite set and $H_{1}, \ldots, H_{m} \subseteq V$, so that for every i :

1. $\left|H_{i}\right|$ can be computed in polynomial time.
2. There is a way to select an element of H_{i} randomly and uniformly.
3. For every $v \in V$ it can be checked in polynomial time if $v \in H_{i}$.

Our goal: estimate the size of $H=H_{1} \cup \cdots \cup H_{m}$.

Remark 1 The above assumptions are satisfied for our original problem concerning DNF.

We define a multiset $U=H_{1} \uplus \cdots \uplus H_{m}$:

$$
U=\left\{(v, i) \mid v \in H_{i}\right\}
$$

One has:

$$
|U|=\sum_{j=1}^{m}\left|H_{j}\right| \geq|H|
$$

Furthermore, for $v \in V$ define a covering of v :

$$
\operatorname{cov}(v)=\{(v, i) \mid(v, i) \in U\}
$$

That is, $\operatorname{cov}(v)$ is a set of subsets H_{i} that contain v.

We have the following observations:

1. The number of coverings sets is $|H|$ and they are simply computable.
2. $U=\underset{v \in H}{ } \operatorname{cov}(v)$.
3. $|U|=\sum_{v \in H}|\operatorname{cov}(v)|$.
4. $|\operatorname{cov}(v)| \leq m$ for all $v \in H$.

We define

$$
\begin{aligned}
f((v, i)) & = \begin{cases}1, \text { if } i=\min \left\{j \mid v \in H_{j}\right\} \\
0, \text { otherwise }\end{cases} \\
G & =\{(v, i) \in U \mid f((v, i))=1\}
\end{aligned}
$$

One has: $|G|=|H|$.

Lemma 2 For the set union problem it holds:

$$
\rho=\frac{|G|}{|U|} \geq \frac{1}{m}
$$

Proof:

$$
\begin{aligned}
|U| & =\sum_{v \in H}|\operatorname{cov}(v)| \\
& \leq \sum_{v \in H} m \\
& \leq m|H|=m|G| .
\end{aligned}
$$

Theorem 4 The Monte-Carlo method provides an ϵ-approximation for $|G|$ with probability at least $1-\delta$ for a fixed $\delta \in(0,1]$ if

$$
N \geq \frac{4 m}{\epsilon^{2}} \ln \frac{2}{\delta}
$$

Proof:

We make N independent samples (v, i) from U in two steps.
Step 1: choose an i randomly with probability

$$
\operatorname{Pr}[i]=\frac{\left|H_{i}\right|}{|U|}
$$

Step 2: choose a $v \in H_{i}$ randomly and uniformly with probability

$$
\operatorname{Pr}[v]=\frac{1}{\left|H_{i}\right|}
$$

This way the pairs (v, i) become uniformly distributed:

$$
\operatorname{Pr}[(v, i)]=\frac{1}{\left|H_{i}\right|} \cdot \frac{\left|H_{i}\right|}{|U|}=\frac{1}{|U|}
$$

Let $Y_{i}(i=1, \ldots, N)$ be random variables defined by

$$
Y_{i}= \begin{cases}1, & \text { if } f((v, i))=1 \\ 0, & \text { otherwise }\end{cases}
$$

Furthermore, let

$$
\begin{aligned}
Y & =\sum_{i=1}^{N} Y_{i} \\
Z & =\frac{|U|}{N} Y
\end{aligned}
$$

One has:

$$
\begin{aligned}
\mathbf{E}[Y] & =N \rho \\
\mathbf{E}[Z] & =|G| .
\end{aligned}
$$

We apply the Chernoff inequalities and obtain

$$
\begin{aligned}
& \operatorname{Pr}[(1-\epsilon)|G| \leq Z \leq(1+\epsilon)|G|] \\
= & \operatorname{Pr}[(1-\epsilon) N \rho \leq Y \leq(1+\epsilon) N \rho] \\
\geq & 1-2 e^{-N \rho \epsilon^{2} / 4} \\
\geq & 1-2 e^{-N \epsilon^{2} / 4 m} .
\end{aligned}
$$

Therefore,

$$
1-2 e^{-N \epsilon^{2} / 4 m} \geq 1-\delta
$$

which implies

$$
N \geq \frac{4 m}{\epsilon^{2}} \ln \frac{2}{\delta}
$$

The total running time of this method is polynomial w.r.t. $m, 1 / \epsilon$, and $\ln (1 / \delta)$.

5. The Las-Vegas Algorithms

The algorithm from the previous section is an example of Monte-Carlo type algorithm. Such algorithms do not necessarily provide an exact solution, they just do it with a relatively high probability. However, their running time is usually much shorter compared to deterministic algorithms.

On the other hand, there are algorithms that surely provide a correct solution, however, one can estimate only their average running time.

Set-Coloring problem:

Instance: A set S with $|S|=n$ and subsets $F=\left\{S_{i}\right\}, S_{i} \subseteq S$, $\left|S_{i}\right|=r, i=1, \ldots, k$, where $k \leq 2^{r-2}$.
Problem: Color every element $x \in S$ red or blue, so that each subset $S_{i} \in F$ contains elements of both colors.

Algorithm 2 2-Coloring (S, F);

1. Color every element of S randomly and independently in red or blue with probability $1 / 2$.
2. Repeat step 1 until a valid coloring will be obtained.

How high is the probability that the coloring obtained after step 1 is invalid?

$$
\operatorname{Pr}\left[\text { all elements of } S_{i} \text { are red }\right]=2^{-r} .
$$

This implies

$$
\operatorname{Pr}\left[\exists \text { a "red" subset } S_{i} \in F\right] \leq k 2^{-r} \leq 1 / 4
$$

The same inequality holds for an existence of a "blue" set. Hence,

$$
\operatorname{Pr}[\text { the coloring is invalid }] \leq 1 / 2
$$

and

$$
\operatorname{Pr}[\text { the coloring is valid }]>1 / 2 .
$$

Our algorithm is a Las-Vegas algorithm, since it constructs a new coloring until it becomes valid.

The last inequality implies that the expected number of repetitions of step 1 is only 2 .

