Introduction to Randomized Algorithms

1. Introduction

2. Max-3-CNF satisfiability

3. The general Max-CNF problem
4. Monte-Carlo methods

5. Las Vegas algorithms

1. Introduction

Consider the following problem:

Instance: Real numbers x4, ..., z,.

Problem: Find z; with x; > T, where T is the |n/2|-smallest
element.

A deterministic algorithm takes ©(n) steps.

Let 2; and x; with ¢ # j be chosen randomly. Assume z; > z;. One

has:

4
Pl(z; <7) and (z; <7)] < 1/4.
Since z; > x; we get:
Pl(x; <7)and (z; <7)] =Plz; <z < 1/4.
Similarly, performing this choice k times delivers z;, ..., x;_so that
for £ = max{z;, ..., } it holds
Plz <z]<27"

Hence, the probability for # > 7 is large (at least 1 — 27F).

If k =10 = P[& > 7] > 0.999.
If k =20 = P[& > 7] > 0.999999.

8 8

The running time of this method does not depend on n !

2. The MAX-3-CNF problem:

Instance: A function f(z1,...,2,) = C{A--- AC,, in CNF, with
each clause having exactly 3 literals.

Problem: Find a truth assignment to the variables 1, ..., z, so
that the number of satisfied clauses is maximum.

We set independently each variable to 0 with prob. 1/2 and to 1 with
prob. 1/2. Assuming w.l.o.g. that no clause has a variable and its
negation, the settings of 3 literals in a clause is independent.

= a clause is not satisfied with prob. 1/2% = 1/8.

Theorem 1 The above algorithm has approximation rate 8/7.

Proof.
Let a variable Y, be defined as follows:

1, if C; is satisfied
Y, = .
0, otherwise

Since PV, =1]=1-1/8=7/8 E|Y;]=7/8-1+1/8-0=7/8.
So, for Y =Y, + Yo+ -+ Y, (= # of satisfied clauses) one has

= igjl ElY] (linearity of expectation)
= 3 7/8
= Tm/8.
So, the approx. rate of the method is at most m/(7m/8) = 8/7. O

3

3. The general MAX-CNF problem:

Instance: A function f(x1,...,2,) =Ci A--- A Cp, in CNF.
Problem: Find a truth assignment to the variables =1, ..., x, so
that the number of satisfied clauses is maximum.

Let M* be the maximum number of satisfied clauses. We construct
an algorithm with approximation rate 3/4.

Method 1:
Set x; =T for i = 1,...,n independently with probability 1/2.
= a clause with k literals is not satisfied with prob. 1/2*.

Let n1 denote the number of clauses satisfied by this method. One
has ny > (3/4)M*, if each clause consists of at least 2 literals.

Method 2:
We formulate the MAX-CNF problem as an IP (Integer Program-
ming) problem:

e For each clause C; we introduce a binary variable z; so that
z = 1 & ()} is satisfied.

e For each variable x; we introduce a binary variable y; so that
vy =1z, ="1T.

Denote by S;" (resp. S;7) the set of all variables in C; that are not

1

negated (resp. are negated).

IP problem
maximize gbj Z;

subject to Zyz+2(1—yz'>2,zj, 7=1,....m

Sj S_

Yi, 25 € {O 1}, i=1,....n Jj=1...,m.
We relax the conditions y;, z; € {0, 1} with y;, z; € [0, 1] and obtain
an LP (Linear Programming) problem.

Let ;, and Z; be a solution to the LP. Obviously,

M < S 2,
> 2 %y
7=1

Denote (5, =1 — (1 — i)k
Lemma 1 Let C; be a clause with k literals. Then

Pr|C; is satisfied > [1.Z;.

Proof: W.l.o.g. we can assume that no variable in C; is negated, i.e.
C;=x1V--- Vi Note that Pr[z; = 1] = ;.

Since the LP restrictions are satisfied,

k
N>z e X(1-g) <k-—2z.

This implies TIF_, (1 — g;) < I1IF_ > 11;% < II}_; k SO

Pr|C] is satisfied] = 1 — ﬁ (1—9) >1— ,k (1—2;/k)

Let C* denote the set of all clauses consisting of k literals. Then
ny, = ¥ Ex[|{C; € C*| C; is satisfied}|]

k>1
= ¥ X Pr|C;issatisfied] > > X [iz;.
k>1Cjeck k=1 CieCt

Algorithm 1 MAX-CNF;

1. Apply Method 1 and compute n;.

2. Apply Method 2 and compute ns.

3. Choose the best solution out of those.

Theorem 2 It holds
3 m 3

max{ny, no} > - 5

z; > —M".
4]1 4

Proof:
Denote oy, = 1 — 1/2%. One has
ng= > X ap>X X oz,
E>1C ek k=1 0jech
no 2 > > 61{;23
]{?>1 C ECk‘

Note that for &£ > 1

+ 1 : +1 (1 1)k>3/2
8 — _ — —)

This implies

n1+n22 s 5 Oék+5l<:A §

max{ni, na} > ?j

6

4. The DNF Satisfiability Problem

Instance: Boolean function f(z1,...,2,) in DNF
(ie. f=CLVCyV---V(,).

Problem: Compute #(F') (the number of tuples
(1,...,x,) € {0,1}" that satisfy f).

It is known that this problem is #P-complete. Obviously:
0 < #F <2".

First, we consider a general problem:

Let U be a finite set and f : U — {0,1} be a function. We
assume that the value of f can be computed fast. The question is
to determine |G|, where

G={uecU]| flu) =1}

We apply the Monte-Carlo method and make /N independent samples
Uy, . ..,uy from U. Introduce random variables Y; (i = 1,..., N)

defined as
1, if f(u;) =1
Vi = |
0, otherwise

Furthermore, let
N Y

> .
i=1 N
Since E[Z] = |G|, we hope that with a high probability Z is an
e-approximation for |G|. But this probability strictly depends on N.

Z=1U|-

Theorem 3 Let p = |G|/|U|. Then the Monte-Carlo method pro-
vides an e-approximation for |G| with probability at least 1 — § for a

fixed & € (0,1] if
N > 4 ln2.
ep 0

Proof:

Let Y = Z Y;. Then E[Y]| = Np.
We use the Chernoff inequalities:

PrlY < (1—)Ny

< —N,O€2/2
Pr[(1+e)Np < Y] < e Nre/2te),

€

—Npe? /4

Both upper bounds do not exceed e . Hence,

Pr((1 —¢)|G| < Z < (1+¢)|G|]
= Pr{(1 —¢)Np <Y < (14 ¢)Np)
> 1 — 9e Vo4,
So, 1 —2e™ N/ > 1 — 5 iff N > f In? O

The running time of this method is at Ieast N >1/p. Theratio 1/p
is, however, not known in advance and can be exponentially large.

What is wrong in our approach is that the sample space U is very
large. So if G is small, to evaluate |G| with a high accuracy one has
to do many samples, which makes NV large.

Modification: decrease the size of sample space.

The set union problem:
Let V' be a finite set and Hy,..., H,, CV, so that for every 7:

1. |H;| can be computed in polynomial time.
2. There is a way to select an element of H; randomly and uniformly.

3. For every v € V' it can be checked in polynomial time if v € H,.

Our goal: estimate the size of H = HyU---U H,,.

Remark 1 The above assumptions are satisfied for our original prob-
lem concerning DNF.
We define a multiset U = Hi W --- W H,,:

U={(v,7) | v e H}
One has: .

Ul = 18| = |
Furthermore, for v € V' define a covering of v:

cov(v) = {(v,i) | (v,i) € U}.

That is, cov(v) is a set of subsets H; that contain v.

We have the following observations:

1. The number of coverings sets is |H| and they are simply com-
putable.

2.U = U cov(v).
veHd

3. |U| = .
U] = £ Jcov()

4. |cov(v)| < mforallve H.

We define
W |1, ife=min{j |ve H;}
flw,d)) = 0, otherwise
G = {(i) €U | f((v,1) = 1}.
One has: |G| = |H|.

Lemma 2 For the set union problem it holds:
S
ST

Proof:

Ul = X |cov(v)]

veH

>m
veEH

m|H| = m|G|. O

IA

IA

10

Theorem 4 The Monte-Carlo method provides an e-approximation
for |G| with probability at least 1 — ¢ for a fixed § € (0, 1] if
dm . 2

Proof:

We make N independent samples (v, %) from U in two steps.

Step 1: choose an ¢ randomly with probability

. |Hil
Prli| = :
U
Step 2: choose a v € H; randomly and uniformly with probability
1
Prv] = .
| Hj
This way the pairs (v, i) become uniformly distributed:
. 1 |H 1
Pr{(v,i)] = : = —.
[H| Ul [U

Let Y; (¢ =1,..., N) be random variables defined by
(L A, 0) = 1

] 0, otherwise

Furthermore, let

Y = Y Y
1=1
U

7 -1y

One has:

We apply the Chernoff inequalities and obtain

Pr((1 —¢)|G| < Z < (1+¢)|G|]
Pr((1—¢)Np <Y < (1+¢)Np)
1 — 2~ Nre'/4

AVARAV,

1 _ 2€—N62/4m.

Therefore, ,
1 —2e Ne/Am > 1§

which implies .)
m

The total running time of this method is polynomial w.r.t. m, 1/e,

and In(1/9).

12

[

5. The Las-Vegas Algorithms

The algorithm from the previous section is an example of Monte-Carlo
type algorithm. Such algorithms do not necessarily provide an exact
solution, they just do it with a relatively high probability. However,
their running time is usually much shorter compared to deterministic
algorithms.

On the other hand, there are algorithms that surely provide a correct
solution, however, one can estimate only their average running time.

Set-Coloring problem:

Instance: A set S with |S| = n and subsets F' = {S;}, S; C S,
Si|=r,i=1,...,k, where k <22,

Problem: Color every element z € S red or blue, so that each
subset S; € F' contains elements of both colors.

Algorithm 2 2-COLORING(S, F);

1. Color every element of S randomly and independently
in red or blue with probability 1/2.
2. Repeat step 1 until a valid coloring will be obtained.

13

How high is the probability that the coloring obtained after step 1 is
invalid?

Pr/all elements of S; are red| = 27",

This implies
Pr[d a “red” subset S5; € F| < k27" < 1/4.

The same inequality holds for an existence of a “blue” set. Hence,
Prthe coloring is invalid] < 1/2

and
Pr|the coloring is valid] > 1/2.

Our algorithm is a Las-Vegas algorithm, since it constructs a new
coloring until it becomes valid.

The last inequality implies that the expected number of repetitions
of step 1 is only 2.

14

