
Introduction to Randomized Algorithms

1. Introduction

2. Max-3-CNF satisfiability

3. The general Max-CNF problem

4. Monte-Carlo methods

5. Las Vegas algorithms

1

1. Introduction

Consider the following problem:
Instance: Real numbers x1, . . . , xn.
Problem: Find xi with xi ≥ x, where x is the bn/2c-smallest
element.

A deterministic algorithm takes Θ(n) steps.

Let xi and xj with i 6= j be chosen randomly. Assume xi ≥ xj. One
has:

P[xi ≥ x] ≥ 1/2 ⇐⇒ P[xi ≤ x] ≤ 1/2.

⇓
P[(xi ≤ x) and (xj ≤ x)] ≤ 1/4.

Since xi ≥ xj we get:

P[(xi ≤ x) and (xj ≤ x)] = P[xi ≤ x] ≤ 1/4.

Similarly, performing this choice k times delivers xi1, . . . , xik so that
for x̃ = max{xi1, . . . , xik} it holds

P[x̃ ≤ x] ≤ 2−k.

Hence, the probability for x̃ ≥ x is large (at least 1− 2−k).

If k = 10 ⇒ P[x̃ ≥ x] ≥ 0.999.
If k = 20 ⇒ P[x̃ ≥ x] ≥ 0.999999.

The running time of this method does not depend on n !

2

2. The Max-3-CNF problem:

Instance: A function f (x1, . . . , xn) = C1∧ · · · ∧Cm in CNF, with
each clause having exactly 3 literals.
Problem: Find a truth assignment to the variables x1, . . . , xn so
that the number of satisfied clauses is maximum.

We set independently each variable to 0 with prob. 1/2 and to 1 with
prob. 1/2. Assuming w.l.o.g. that no clause has a variable and its
negation, the settings of 3 literals in a clause is independent.
⇒ a clause is not satisfied with prob. 1/23 = 1/8.

Theorem 1 The above algorithm has approximation rate 8/7.

Proof.
Let a variable Yi be defined as follows:

Yi =


1, if Ci is satisfied
0, otherwise

Since P[Yi = 1] = 1− 1/8 = 7/8, E[Yi] = 7/8 · 1 + 1/8 · 0 = 7/8.
So, for Y = Y1 + Y2 + · · · + Ym (= # of satisfied clauses) one has

E[Y] = E
 m∑
i=1
Yi


=

m∑
i=1
E[Yi] (linearity of expectation)

=
m∑
i=1

7/8

= 7m/8.

So, the approx. rate of the method is at most m/(7m/8) = 8/7. 2

3

3. The general Max-CNF problem:

Instance: A function f (x1, . . . , xn) = C1 ∧ · · · ∧ Cm in CNF.
Problem: Find a truth assignment to the variables x1, . . . , xn so
that the number of satisfied clauses is maximum.

Let M ∗ be the maximum number of satisfied clauses. We construct
an algorithm with approximation rate 3/4.

Method 1:
Set xi = T for i = 1, . . . , n independently with probability 1/2.
⇒ a clause with k literals is not satisfied with prob. 1/2k.

Let n1 denote the number of clauses satisfied by this method. One
has n1 ≥ (3/4)M ∗, if each clause consists of at least 2 literals.

Method 2:
We formulate the Max-CNF problem as an IP (Integer Program-
ming) problem:

• For each clause Ci we introduce a binary variable zi so that
zi = 1 ⇔ Ci is satisfied.

• For each variable xi we introduce a binary variable yi so that
yi = 1 ⇔ xi = T .

Denote by S+
i (resp. S−i) the set of all variables in Ci that are not

negated (resp. are negated).

4

IP problem

maximize
m∑
j=1

zj

subject to
∑
S+j

yi +
∑
S−j

(1− yi) ≥ zj, j = 1, . . . ,m

yi, zj ∈ {0, 1}, i = 1, . . . , n j = 1, . . . ,m.

We relax the conditions yi, zj ∈ {0, 1} with yi, zj ∈ [0, 1] and obtain
an LP (Linear Programming) problem.

Let ŷi and ẑi be a solution to the LP. Obviously,

M ∗ ≤
m∑
j=1

ẑj.

Denote βk = 1−
(
1− 1

k

)k
.

Lemma 1 Let Cj be a clause with k literals. Then

Pr[Cj is satisfied] ≥ βkẑj.

Proof: W.l.o.g. we can assume that no variable in Cj is negated, i.e.
Cj = x1 ∨ · · · ∨ xk. Note that Pr[xi = 1] = ŷi.

Since the LP restrictions are satisfied,

ŷ1 + · · · + ŷk ≥ ẑj ⇔
k∑
i=1

(1− ŷi) ≤ k − ẑj.

This implies
∏k
i=1(1− ŷi) ≤

∏k
i=1

∑k
i=1

1−ŷi
k ≤

∏k
i=1

k−ẑj
k , so

Pr[Cj is satisfied] = 1−
k∏
i=1

(1− ŷi) ≥ 1−
k∏
i=1

(1− ẑj/k)

= 1− (1− ẑj/k)k ≥ βkẑj. 2

5

Let Ck denote the set of all clauses consisting of k literals. Then

n2 =
∑
k≥1

Ex[|{Cj ∈ Ck | Cj is satisfied}|]

=
∑
k≥1

∑
Cj∈Ck

Pr[Cj is satisfied] ≥ ∑
k≥1

∑
Cj∈Ck

βkẑj.

Algorithm 1 Max-CNF;
1. Apply Method 1 and compute n1.
2. Apply Method 2 and compute n2.
3. Choose the best solution out of those.

Theorem 2 It holds

max{n1, n2} ≥
3

4

m∑
j=1

ẑj ≥
3

4
M ∗.

Proof:
Denote αk = 1− 1/2k. One has

n1 =
∑
k≥1

∑
Cj∈Ck

αk ≥
∑
k≥1

∑
Cj∈Ck

αkẑj,

n2 ≥
∑
k≥1

∑
Cj∈Ck

βkẑj.

Note that for k ≥ 1

αk + βk = 1− 1

2k
+ 1−

1− 1

k


k

≥ 3/2.

This implies

max{n1, n2} ≥
n1 + n2

2
≥ ∑

k≥1

∑
Cj∈Ck

αk + βk
2

ẑj ≥
3

4

m∑
j=1

ẑj.

6

4. The DNF Satisfiability Problem

Instance: Boolean function f (x1, . . . , xn) in DNF
(i.e. f = C1 ∨ C2 ∨ · · · ∨ Cm).
Problem: Compute #(F) (the number of tuples
(x1, . . . , xn) ∈ {0, 1}n that satisfy f).

It is known that this problem is #P-complete. Obviously:

0 < #F ≤ 2n.

First, we consider a general problem:
Let U be a finite set and f : U 7→ {0, 1} be a function. We
assume that the value of f can be computed fast. The question is
to determine |G|, where

G = {u ∈ U | f (u) = 1}.

We apply the Monte-Carlo method and make N independent samples
u1, . . . , uN from U . Introduce random variables Yi (i = 1, . . . , N)
defined as

Yi =


1, if f (ui) = 1
0, otherwise

Furthermore, let

Z = |U | ·
N∑
i=1

Yi
N
.

Since E[Z] = |G|, we hope that with a high probability Z is an
ε-approximation for |G|. But this probability strictly depends on N .

7

Theorem 3 Let ρ = |G|/|U |. Then the Monte-Carlo method pro-
vides an ε-approximation for |G| with probability at least 1− δ for a
fixed δ ∈ (0, 1] if

N ≥ 4

ε2ρ
ln

2

δ
.

Proof:

Let Y =
N∑
i=1
Yi. Then E[Y] = Nρ.

We use the Chernoff inequalities:

Pr[Y ≤ (1− ε)Nρ] ≤ e−Nρε
2/2

Pr[(1 + ε)Nρ ≤ Y] ≤ e−Nρε
2/(2+ε).

Both upper bounds do not exceed e−Nρε
2/4. Hence,

Pr[(1− ε)|G| ≤ Z ≤ (1 + ε)|G|]
= Pr[(1− ε)Nρ ≤ Y ≤ (1 + ε)Nρ]

≥ 1− 2e−Nρε
2/4.

So, 1− 2e−Nρε
2/4 ≥ 1− δ iff N ≥ 4

ε2ρ
ln 2

δ . 2

The running time of this method is at least N ≥ 1/ρ. The ratio 1/ρ
is, however, not known in advance and can be exponentially large.

What is wrong in our approach is that the sample space U is very
large. So if G is small, to evaluate |G| with a high accuracy one has
to do many samples, which makes N large.

8

Modification: decrease the size of sample space.

The set union problem:
Let V be a finite set and H1, . . . , Hm ⊆ V , so that for every i:

1. |Hi| can be computed in polynomial time.

2. There is a way to select an element of Hi randomly and uniformly.

3. For every v ∈ V it can be checked in polynomial time if v ∈ Hi.

Our goal: estimate the size of H = H1 ∪ · · · ∪Hm.

Remark 1 The above assumptions are satisfied for our original prob-
lem concerning DNF.

We define a multiset U = H1] · · ·]Hm:

U = {(v, i) | v ∈ Hi}.

One has:
|U | =

m∑
j=1
|Hj| ≥ |H|.

Furthermore, for v ∈ V define a covering of v:

cov(v) = {(v, i) | (v, i) ∈ U}.

That is, cov(v) is a set of subsets Hi that contain v.

9

We have the following observations:

1. The number of coverings sets is |H| and they are simply com-
putable.

2. U =
⋃

v∈H
cov(v).

3. |U | = ∑
v∈H
|cov(v)|.

4. |cov(v)| ≤ m for all v ∈ H.

We define

f ((v, i)) =


1, if i = min{j | v ∈ Hj}
0, otherwise

G = {(v, i) ∈ U | f ((v, i)) = 1}.
One has: |G| = |H|.

Lemma 2 For the set union problem it holds:

ρ =
|G|
|U |
≥ 1

m
.

Proof:

|U | =
∑
v∈H
|cov(v)|

≤ ∑
v∈H

m

≤ m|H| = m|G|. 2

10

Theorem 4 The Monte-Carlo method provides an ε-approximation
for |G| with probability at least 1− δ for a fixed δ ∈ (0, 1] if

N ≥ 4m

ε2
ln

2

δ
.

Proof:

We make N independent samples (v, i) from U in two steps.

Step 1: choose an i randomly with probability

Pr[i] =
|Hi|
|U |

.

Step 2: choose a v ∈ Hi randomly and uniformly with probability

Pr[v] =
1

|Hi|
.

This way the pairs (v, i) become uniformly distributed:

Pr[(v, i)] =
1

|Hi|
· |Hi|
|U |

=
1

|U |
.

Let Yi (i = 1, . . . , N) be random variables defined by

Yi =


1, if f ((v, i)) = 1
0, otherwise

Furthermore, let

Y =
N∑
i=1
Yi

Z =
|U |
N

Y.

11

One has:

E[Y] = Nρ

E[Z] = |G|.

We apply the Chernoff inequalities and obtain

Pr[(1− ε)|G| ≤ Z ≤ (1 + ε)|G|]
= Pr[(1− ε)Nρ ≤ Y ≤ (1 + ε)Nρ]

≥ 1− 2e−Nρε
2/4

≥ 1− 2e−Nε
2/4m.

Therefore,
1− 2e−Nε

2/4m ≥ 1− δ,

which implies

N ≥ 4m

ε2
ln

2

δ
.

The total running time of this method is polynomial w.r.t. m, 1/ε,
and ln(1/δ). 2

12

5. The Las-Vegas Algorithms

The algorithm from the previous section is an example of Monte-Carlo
type algorithm. Such algorithms do not necessarily provide an exact
solution, they just do it with a relatively high probability. However,
their running time is usually much shorter compared to deterministic
algorithms.

On the other hand, there are algorithms that surely provide a correct
solution, however, one can estimate only their average running time.

Set-Coloring problem:
Instance: A set S with |S| = n and subsets F = {Si}, Si ⊆ S,
|Si| = r, i = 1, . . . , k, where k ≤ 2r−2.
Problem: Color every element x ∈ S red or blue, so that each
subset Si ∈ F contains elements of both colors.

Algorithm 2 2-Coloring(S, F);

1. Color every element of S randomly and independently
in red or blue with probability 1/2.

2. Repeat step 1 until a valid coloring will be obtained.

13

How high is the probability that the coloring obtained after step 1 is
invalid?

Pr[all elements of Si are red] = 2−r.

This implies

Pr[∃ a “red” subset Si ∈ F] ≤ k 2−r ≤ 1/4.

The same inequality holds for an existence of a “blue” set. Hence,

Pr[the coloring is invalid] ≤ 1/2

and
Pr[the coloring is valid] > 1/2.

Our algorithm is a Las-Vegas algorithm, since it constructs a new
coloring until it becomes valid.

The last inequality implies that the expected number of repetitions
of step 1 is only 2.

14

