
Some Graph Algorithms

1. Depth-First Search (DFS)

2. Topological sort

3. Strongly connected components

4. Shortest paths in graphs

5. Graph colorings

1

1. Representation of graphs

Let G = (V,E) be a graph and let u, v ∈ V .

• Adjacency list.

Adj[u] is a list of nodes adjacent to u
Memory space: O(|V | + |E|)
Disadvantage: there is no quick way to check if (u, v) ∈ E.

• Adjacency matrix A(G) = aij.

aij =


1, if (vi, vj) ∈ E
0, otherwise

Memory space: O(|V |2).
Advantage: one can save space by using bit encoding of aij

One can also use both representations for oriented graphs.

2

2. Depth-First Search (DFS)

This procedure visits all vertices and edges of G = (VG, EG) and
colors the vertices in white, gray, and black.

Initially all vertices of G are white. As soon as a vertex v is visited for
the first time, we color it gray. As soon as all adjacent to v vertices
have been visited, the color of v becomes black.

We assign to each vertex v ∈ VG three labels: d[v], f [v] and π[v]:

d[v]: the time interval when v becomes gray

f [v]: the time interval when v becomes black

π[v]: the predecessor of v in DFS.

It holds:

d[v], f [v] ∈ {1, . . . , 2|VG|},
d[v] < f [v]

for any v ∈ VG.

The method constructs a spanning forest W of G, defined by

EW = {(π[v], v) | v ∈ V, and π[v] 6= nil}.
The edges of EW are called tree edges.

3

Algorithm 1 DFS(G, s);

for all u ∈ VG do
color[u] := white
π[u] := nil

time := 0
for all u ∈ VG do /* let s be the first vertex */

if (color[u] = white) then
DFS-Visit(u)

DFS-Visit(u);
color[u] := gray
time := time + 1
d[u] := time
for all v ∈ Adj[u] do

if (color[v] = white) then
π[v] := u
DFS-Visit(v)

color[u] := black
time := time + 1
f [u] := time

The running time of DFS is Θ(|VG| + |EG|).

4

Figure 1: DFS on a directed graph

5

3. Properties of Depth-First Search

Theorem 1 Let G = (VG, EG) be an (oriented or non-oriented)
graph and u, v ∈ VG, u 6= v. Then either:

• the intervals [d[u], f [u]] and [d[v], f [v]] are disjoint. or

• the interval [d[u], f [u]] is a subinterval of [d[v], f [v]] and u is the
descendant of v in the DFS tree, or

• the interval [d[v], f [v]] is a subinterval of [d[u], f [u]] and v is the
descendant of u in the DFS tree.

Proof. Assume d[u] < d[v].

Case 1. Assume d[v] < f [u]. ⇒ v was discovered when u was gray
⇒ v is a descendant of u.

Since v was discovered after u, if became black before u did.
⇒ [d[v], f [v]] ⊂ [d[u], f [u]].

Case 2. Assume f [u] < d[v]. Since d[u] < f [u] and d[v] < f [v],

d[u] < f [u] < d[v] < f [v]

⇒ intervals [d[u], f [u]] and [d[v], f [v]] are disjoint. 2

Corollary 1 A vertex v is a descendant of u (in DFS forest) if and
only if

d[u] < d[v] < f [v] < f [u]

6

Theorem 2 Let G = (VG, EG) be an (oriented or non-oriented)
graph, and W be its DFS forest and u, v ∈ VG. Then v is the
descendant of u if and only if in time d[u] there exists a path from u
to v, consisting of white vertices only.

Proof.
“⇒”-part: assume v is a descendant of u and w ∈ u; v. So, w is
a descendant of u ⇒ d[u] < d[w] ⇒ (C. 1) w is white at time d[u].

“⇐”-part: assume any vertex on the path u ; v is white at time
d[u], but v is not a descendant of u in the DFS tree.

WLOG assume any other vertex on u; v is a descendant of u and
let w be the predec. of v in u; v (u; w → v).

⇒ (C. 1) f [w] ≤ f [u]. v must be discovered after u but before w
turns black. Hence,

d[u] < d[v] < f [w] ≤ f [u].

⇒ (T. 1) [d[v], f [v]] ⊂ [d[u], f [u]].
⇒ (C. 1) v is a descendant of u. 2

7

4. Topological Sort

Let G = (VG, EG) be a DAG (Directed Acyclic Graph), that is a
graph without oriented cycles or loops.

The Problem:
Construct a numbering ψ : V 7→ {1, . . . , |V |}, such that:

(u→ v) ∈ E ⇒ ψ(u) < ψ(v)

Figure 2: DAG and topological sort

8

Algorithm 2 Top-Sort(G);

1. Call DFS(G) to compute {f [u]}.
2. Place u to the head of the list as soon as f [u] is computed;
return the list

Proof of of the correctness of this algorithm is based on the following
notion and lemma:

Definition 1 An edge (u, v) ∈ VG is called back edge if v is an
ancestor of u in the DFS tree (or u is a descendant of v).

Lemma 1 [1]. An oriented graph G is a DAG if and only if the DFS
forest has no back edges.

Proof:

“⇒” Assume ∃back edge (u, v)
⇒ u is a descendant of v
⇒ ∃path v ; u in G and G contains a cycle, a contradiction.

“⇐” Assume G contains a cycle C.
Let v be the first vertex of C in DFS and (u, v) ∈ EC.
⇒ ∃“white” path v ; u at time d[v]. (T. 2)
⇒ u is a descendant of v and (u, v) is a back edge, a contradic-
tion. 2

9

Theorem 3 [1]. Let G be a DAG. Then Top-Sort(G) algorithm
constructs a topological sorting of G.

Proof:

We show that ∀u, v ∈ V (u 6= v)
(u, v) ∈ EG ⇒ f [u] > f [v].

Consider an edge (u, v) explored by DFS.
⇒ color(u) = gray and color(v) 6= gray.

(color(v) = gray ⇒ v is an ancestor of u
⇒ (u, v) is a back edge.)

⇒ color(v) ∈ {white, black}.

a. [color(v) = white] ⇒ v is a descendant of u
⇒ f [v] < f [u].

b. [color(v) = black] ⇒ f [v] < d[u] < f [u]. 2

The running time of Top-Sort(G) is Θ(|VG| + |EG|).

10

5. Strongly connected components (SCC)

Definition 2 Let G = (VG, EG) be an oriented graph.
A strongly connected component is a maximal (by inclusion) vertex
set K ⊆ VG, such that for any u, v ∈ K there exist oriented paths
u; v and v ; u.

The Problem:
Given G = (VG, EG), partition VG into SCC.

Denote GT = (VG, E
T
G), where

ET
G = {(u→ v) | (v → u) ∈ EG}.

Algorithm 3 SCC(G);

1. Call DFS(G) to compute the numbers {f [u]}
2. Construct GT

3. Call DFS(GT), where the vertices are ordered according to f [u]
taken in decreasing order

4. Output the vertices of the DFS trees of GT

as strongly connected components

The running time of SCC(G) is Θ(|VG| + |EG|).

Theorem 4 [1]. SCC(G) partitions VG into SCCs.

11

Figure 3: DFS labeling and Strongly Connected Components

Lemma 2 Let C and C ′ be distinct SCC in directed graph G =
(VG, EG). Let u, v ∈ C, u′, v′ ∈ C ′ and there ∃path u ; u′. Then
there is no path v′ ; v.

Proof:
If v′ ; v then there are paths u ; u′ ; v′ ; v ; u, so u and v′

belong to the same component, a contradiction. 2

For a set U ⊆ VG denote

d(U) = min
u∈U
{d[u]}

f (U) = max
u∈U
{f [u]}

12

Lemma 3 Let C and C ′ be distinct SCCs in directed graph G =
(VG, EG). If ∃edge (u, v) ∈ EG with u ∈ C and v ∈ C ′ then
f (C) > f (C ′).

Proof:
Case 1. Assume d(C) < d(C ′), and let x ∈ C, s.t. d(C) = d[x].
⇒ at time d[x] all vertices of C and C ′ are white
⇒ ∀w ∈ C ′ ∃path x; u→ v ; w
⇒ all vertices of C and C ′ are descendants of x in DFS tree
⇒ f (x) = f (C) > f (C ′).

Case 2. Assume d(C) > d(C ′), and let y ∈ C ′, s.t. d(C ′) = d[y].
⇒ at time d[y] all vertices of C ′ are white
⇒ all vertices of C ′ are descendants of y, so f [y] = f (C ′)

Since ∃u→ v, there is no path v ; u (Lemma 2)
⇒ all vertices of C are white at time f [y]
⇒ ∀w ∈ C, f [w] > f [y] ⇒ f (C) > f [y] = f (C ′) 2

Corollary 2 Let C and C ′ be distinct SCCs in directed graph G =
(VG, EG). If ∃edge (u, v) ∈ ET with u ∈ C and v ∈ C ′ then
f (C) < f (C ′).

Proof: (u, v) ∈ ET ⇒ (v, u) ∈ E. Since the SCCs in G and GT are
the same, Lemma 3 implies f (C) < f (C ′). 2

13

Proof of Theorem 4:

Claim: the vertices of each tree constructed in step 3 form a SCC.
Induction on the number k of DFS trees. Trivial for k = 0.

Assume each of the first k trees is a SCC and consider the (k+ 1)-th
tree T = (VT , ET). Let u be its root and u ∈ C for some SCC C.
We show C = VT .

At time the DFS on GT visits u, all vertices of C are white
⇒ all vertices of C are descendants of u in DFS tree
⇒ ∀w ∈ C, w ∈ VT , i.e.

C ⊆ VT

To show the equality, assume C ⊂ VT and let v be the first vertex
of VT −C visited by the DFS on GT . Let v ∈ C ′ for some SCC C ′.
⇒ f (C) < f (C ′) (Cor. 2)
⇒ all vertices of C ′ have already been visited, a contradiction. 2

14

6. Shortest Path Algorithms

• Generalities

• Part I. Single source shortest paths

– The Bellman-Ford algorithm

– Dijkstra’s algorithm

• Part II. All pairs shortest paths

– The Floyd-Warshall algorithm

15

6a. Generalities

Let G = (VG, EG) be an oriented graph and let w : EG 7→ R be
a weight function. Let P = (v0, . . . , vk) be a (oriented) path in G.
We define

w(P) =
k∑
i=1
w(vi−1, vi).

For u, v ∈ V put

δ(u, v) =


min

P=(u;v)
w(P), if ∃path u; v

∞, otherwise.

Definition 3 A path P = (u; v) is called shortest path, if

w(P) = δ(u, v).

Problems:
Given G = (VG, EG) and a weight function w.

• Let s ∈ VG. Find a shortest path from s to any vertex of G.

• Find a shortest path between any pair of vertices of G.

We represent a path P by the set of predecessors {π[v]} for v ∈ P ,
and define the predecessor graph by
Gπ = (Vπ, Eπ), where

Vπ = {v ∈ V | π[v] 6= nil} ∪ {s}
Eπ = {(π[v], v) ∈ E | v ∈ Vπ − {s}}.

16

Part I. Single-source shortest paths

Assume G contains no cycle of negative weight.
We construct a shortest paths tree G′ = (V ′, E ′):

• V ′ = {v ∈ V | ∃path s; v}.
• G′ is a tree rooted in s.

• ∀v ∈ V ′ the path s G′
; v is also a shortest path s G

; v.

Lemma 4 Let (v1, . . . , vk) be a shortest path v1 ; vk. Then
(vi, . . . , vj) is a shortest path vi ; vj, for all 1 ≤ i ≤ j ≤ k.

Lemma 5
a. Let (v1, . . . , vk, u) be a path v1 ; u and (vk, u) ∈ E. Then

δ(v1, u) ≤ δ(v1, vk) + w(vk, u).

b. Let (v1, . . . , vk, u) be a shortest path v1 ; u and (vk, u) ∈ E.
Then

δ(v1, u) = δ(v1, vk) + w(vk, u).

Algorithm 4 Initialize-SS(G,w);

for each v ∈ V do
d[v] :=∞
π[v] := nil

d[s] := 0

17

6b. Relaxation

Let (u, v) ∈ EG.

Algorithm 5 Relax(u, v, w);

if (d[v] > d[u] + w(u, v)) then
d[v] := d[u] + w(u, v)
π[v] := u

Assume the procedure Initialize-SS has been applied to a graph
G = (VG, EG). The relaxation satisfies the following properties:

Lemma 6 Let (u, v) ∈ EG. Then right after calling Relax(u, v, w)
one has

d[v] ≤ d[u] + w(u, v).

Lemma 7
a. d[v] ≥ δ(s, v) for all v ∈ VG.
b. If d[v] = δ(s, v) then no further call of Relax modifies d[v].

Proof:
a. The inequality is valid right after the initialization, since
d[s] = 0 ≥ δ(s, s) and d[v] =∞ ≥ δ(s, v) for v 6= s.

18

Let v be the first vertex for which Relax provides d[v] < δ(s, v).
Then for (u, v) ∈ EG right after calling Relax(u, v, w) one has:

d[u] + w(u, v) = d[v]

< δ(s, v)

≤ δ(s, u) + w(u, v) (by L. 5a)

Hence, d[u] < δ(s, u), contradicting the choice of v.

b. Since d[v] ≥ δ(s, v) and Relax does not increase the values of
d[·], the assertion is true. 2

Lemma 8 Let s ; u → v be a shortest path s G
; v and (u, v) ∈

EG. If prior to the call of Relax(u, v, w) one has d[u] = δ(s, u),
then d[v] = δ(s, v) for all times afterwards.

Proof:
d[u] = δ(s, u) prior to the call of Relax(u, v, w)
⇒ d[u] = δ(s, u) after the call (L. 7b).

One has:

d[v] ≤ d[u] + w(u, v) (L. 6)

= δ(s, u) + w(u, v)

= δ(s, v) (L. 5b).

On the other hand, by L. 7a one has d[v] ≥ δ(s, v). 2

19

Lemma 9 Assume G contains no negative-weight loop reachable
from s and d[v] = δ(s, v) holds for any v ∈ V . Then the graph Gπ

is a shortest paths tree.

Proof. We follow the definition of the shortest paths tree.

• δ(s, v) <∞ only for vertices v reachable from s.
d[v] <∞ ⇔ π[v] 6= nil.

• Assume there exist 2 different paths from s to v:

P1 = s; u; x→ z ; v

P2 = s; u; y → z ; v,

where (x, z), (y, z) ∈ E ′. Then: x = π[z] and y = π[z]
⇒ x = y, a contradiction.

• Let P = (s ; v) be a path (in G′) and P = v0, . . . , vk, where
s = v0 and v = vk. For i = 1, . . . , k one has:

d[vi] = δ(s, vi)

d[vi] = d[vi−1] + w(vi−1, vi).

⇒ w(vi−1, vi) = δ(s, vi)− δ(s, vi−1) and

w(P) =
k∑
i=1
w(vi−1, vi)

=
k∑
i=1

(δ(s, vi)− δ(s, vi−1))

= δ(s, vk)− δ(s, v0)

= δ(s, vk).

Hence: w(P) = δ(s, vk), so P is a shortest path. 2

20

6c. The Bellman-Ford-Algorithm

The Algorithm returns true iff G does not contain a negative-weight
cycle that is reachable from s, and runs in O(|V | · |E|) time.

Algorithm 6 Bellman-Ford(G,w, s);
Initialize-SS(G,w, s)
for i := 1 to |V | − 1 do

for every (u, v) ∈ E do
Relax(u, v, w)

for every (u, v) ∈ E do
if (d[v] > d[u] + w(u, v)) then

return false
return true

Figure 4: Bellman-Ford Algorithm

21

Lemma 10 Assume G does not contain a negative-weight cycle that
is reachable from s. Then after |V | − 1 iterations of the first loop
one has: d[v] = δ(u, v) for any v ∈ V that is reachable from s.

Proof. Let v ∈ V be reachable from s and P = (v0, . . . , vk) be a
shortest path v0 = s; v = vk. Then k ≤ |V | − 1.

We show by induction on i that d[vi] = δ(s, vi) after first i iterations
of the for -loop.

Induction basis: i = 0: d[v0] = δ(s, v0) = 0.
Induction step: assume d[vi−1] = δ(s, vi−1). Since the edge (vi−1, vi)
is relaxed on the i-th iteration of the loop, the assertion follows from
L. 8. 2

Corollary 3 Vertex v is reachable from s iff the Bellman-Ford
algorithm terminates with d[v] <∞.

Theorem 5 If G contains no negative-weight loop that is reachable
from s, then the algorithm returns true and the shortest paths from
s are provided by the pred. subgraph Gπ. If G contains such a loop,
then the algorithm returns false.

If G does not contain a negative-weight loop reachable from s, then
d[v] = δ(s, v) follows from L. 10 and its corollary.

The predecessor subgraph Gπ is a shortest-path tree (L. 9).

22

We show that the algorithm returns true. For (u, v) ∈ EG one has:

d[v] = δ(s, v) ≤ δ(s, u) + w(u, v) (L. 5a)

= d[u] + w(u, v).

Hence, the if -condition in Relax is not satisfied for every edge,
so the algorithm returns true.

Assume G contains a negative-weight loop C = (v0, . . . , vk) (with
v0 = vk) that is reachable from s. So,

k∑
i=1
w(vi−1, vi) < 0.

If the algorithm returns true , then

d[vi] ≤ d[vi−1] + w(vi−1, vi), for i = 1, . . . , k.

Summing up these inequalities results in:

k∑
i=1
d[vi] ≤

k∑
i=1
d[vi−1] +

k∑
i=1
w(vi−1, vi).

Since v0 = vk, all d-values are finite, and each vertex appears in the
sums exactly once,

k∑
i=1
d[vi] =

k∑
i=1
d[vi−1]

which implies

0 ≤
k∑
i=1
w(vi−1, vi).

This contradiction implies that the algorithm returns false. 2

23

6d. Dijkstra’s Algorithm

Assume w(u, v) ≥ 0 for all (u, v) ∈ EG.

Algorithm 7 Dijkstra(G,w, s);
Initialize-SS(G, s)
S := ∅; Q := V (G)
while (Q 6= ∅) do
u := Extract-Min(Q)
S := S ∪ {u}
for each v ∈ Adj[u]
Relax(u, v, w)

Figure 5: Dijkstra’s Algorithm

The running time of Dijkstra Algorithm is O(|VG|2). With a care-
ful implementation it can run in O(|V | log |V | + |E|) time.

24

Theorem 6 Let G = (VG, EG) be a graph with non-negative edge
weights w. Then the Dijkstra Algorithm provides d[u] = δ(s, u)
∀u ∈ V .

Proof:
We show that at time when u is included in S it holds: d[u] = δ(s, u).

Assume ∃u such that d[u] > δ(s, u) and let u be the first such vertex.
Then u is reachable from s and u 6= s.

Let P = (s G
; u) be a shortest path and (x, y) ∈ EG be the first

edge of P with x ∈ S, y 6∈ S. Then P = (s ; x → y ; u),
d[x] = δ(s, x) and d[y] = δ(s, y) (by L. 8). Therefore,

d[y] = δ(s, y) ≤ δ(s, u) ≤ d[u].

However, since y ∈ V − S when u was chosen: d[u] ≤ d[y].
⇒ d[u] = δ(s, u), a contradiction. 2

Since predecessor subgraph Gπ is a shortest-path tree (L. 9), the last
theorem proves the correctness of Dijkstra’s algorithm.

25

Part II. All pairs shortest paths

Since the running time of Dijkstra algorithm is O(|V |2), one can
construct all shortest paths in O(|V |3) time if the weight function is
non-negative.

If G contains no cycle of negative weight, the Bellman-Ford
algorithm constructs a solution in O(|V |4) time.

We will develop a better algorithm.

We represent a graph G = (VG, EG) with the vertex set V =
{v1, . . . , vn} by its ajacency matrix wij, where

wij =



0, if i = j
w(vi, vj), if i 6= j and (vi, vj) ∈ E
∞, if i 6= j and (vi, vj) 6∈ E

The shortest paths will be defined by the matrix of predecessors

Π = {πij}.

We assume that G contains no cycle of negative weight.

26

7. The Floyd-Warshall algorithm

Let P = (v1, . . . , vl) be a shortest path v1 ; vl. We call the vertices
v2, . . . , vl−1 (if they exist) inner nodes of the path P .

Denote the vertices of G by {1, 2, . . . , n}. For i, j ∈ V and given k
consider shortest paths i; j with the inner nodes belonging to the
set {1, . . . , k}. Let P be such a path (if it exists).

• If k 6∈ P then all the inner nodes of i ; j are taken from the
set {1, . . . , k − 1}. So P is also a shortest path with the inner
nodes of the set {1, . . . , k − 1}.
• If k ∈ P then split P into two paths: P1 = (i → k) and
P2 = (k → j). Then P1 is a shortest path i ; k with all inner
nodes of the set {1, . . . , k − 1}, and the same holds for P2.

Denote by dkij the weight of the shortest path i ; j with all inner
nodes of the set {1, . . . , k}. One has:

dkij =


wij, if k = 0
min

{
dk−1ij , dk−1ik + dk−1kj

}
, if k ≥ 1.

We put these numbers into a matrix Dk = {dkij}, where dnij = δ(i, j)
for 1 ≤ i ≤ j ≤ n.

27

Algorithm 8 Floyd-Warshall(W)

n := #rows(W)
D0 := W
for k := 1 to n do

for i := 1 to n do
for j := 1 to n do
dkij := min

{
dk−1ij , dk−1ik + dk−1kj

}
return Dn

The running time of Floyd-Warshall algorithm is O(n3).

Construction of shortest paths

We construct a series of matrices: Π0,. . . ,Πn with Πk = {πkij}, where

πkij is the predecessor of j on a shortest path i ; j with all inner
nodes of the set {1, . . . , k}.

π0ij =


nil, if i = j or wij =∞
i, if i 6= j and wij <∞.

For k ≥ 1 define:

πkij =


πk−1ij , if dk−1ij ≤ dk−1ik + dk−1kj

πk−1kj , if dk−1ij > dk−1ik + dk−1kj .

The elements of Πn provide for each vertex j its predecessor πnij on
a shortest path i; j.

28

Figure 6: Floyd-Warshall algorithm

29

Figure 7: Example graph for the Floyd-Warshall algorithm

Figure 8: The Floyd-Warshall algorithm again

30

8. Graph Colorings

Definition 4 A coloring an assignment of colors to vertices such that
no two adjacent nodes carry the same color.

A k-coloring is a coloring that uses k different colors {1, 2, . . . , k}.

The chromatic number χ(G) of a graph G is the smaller k for which
G admits a k-coloring.

A coloring that uses exactly χ(G) colors is called minimal.

It holds:

χ(Kn) = n, χ(C2n) = 2, χ(C2n+1) = 3.

Theorem 7 A graph G is 2-colorable iff it has no loop of an odd
length.

Sketch of proof:
“=⇒” Obvious.

“⇐=” The following algorithm devilers a 2-coloring for G if one exists
and returns false otherwise.

31

Let Q be (a FIFO)-Queue.

Algorithm 9 Bipartite(G);

Choose any node v ∈ V and color it with 1
Q := {v}
repeat while Q 6= ∅
u := head(Q)
S := Adj[u]
for all w ∈ S

do if color[w] = color[u]
then Graph is not bipartite. false

Color every uncolored node w in S with color 3− color[w]
and add it to Q.

Q := Q− {u}
return 2-coloring

Let ω(G) be the size of a maximum clique in G.

Theorem 8 It holds:

ω(G) ≤ χ(G) ≤ ∆(G) + 1.

The lower bound is obvious. The following algorithm constructs a
coloring satisfying the upper bound.

32

Algorithm 10 Coloring(G);

Choose v ∈ V and color it with color 1
V ′ := V − {v}
repeat while V ′ 6= ∅

Choose u ∈ V ′
S := Adj[u]
Color u with the smallest unused color number in S
V ′ := V ′ − {u}

return largest used color number

Remark 1 For any two numbers ∆, k with 2 ≤ k ≤ ∆ there exists
a G with maximum degree ∆ and χ(G) = k.

A general method for computing χ(G):

Definition 5 Let G = (V,E) be a graph and a, b ∈ V , (a, b) 6∈ E.
Define
G : ab = (V ′, E ′), where

V ′ = (V − {a, b}) ∪ {z}, (z 6∈ V)

E ′ = (E − {(x, y) | x ∈ V, y ∈ {a, b}}) ∪ {(x, z) | x 6∈ {a, b},
and either (x, a) ∈ E or (x, b) ∈ E}.

G/ab = (V,E ′′), where E ′′ = E ∪ (a, b).

33

A coloring of G satisfying color(a) = color(b) also provides a col-
oring of G : ab. Similarly, a coloring of G satisfying color(a) 6=
color(b) provides a correct coloring of G/ab.

Repeat the above operations until the resulting graph is a clique. If
the smallest-size clique consists of k nodes, then χ(G) = k.

This method leads to an exponential running time, in general.

Example:

Figure 9: Graph coloring with a DP algorithm

34

Coloring of special graph classes

Definition 6 A graph G = (V,E) is called interval graph if it can
be represented by a set of intervals on a line as the set of nodes. An
edge of G only exists between overlapping intervals.

Theorem 9 Let G be an interval graph. Then χ(G) = ω(G) and a
greedy algorithm returns a coloring consisting of ω(G) colors.

Definition 7 A graph G = (V,E) is called planar if it can be drawn
on a plane so that no two edges have a proper intersection.

Theorem 10 (Euler)
Let G = (V,E) be a planar connected graph with |V | = n, |E| = e
and f be the number of its faces. Then:

n− e + f = 2.

Corollary 4

1. Let G = (V,E) be a planar graph with |V | = n, |E| = e. Then:

e ≤ 3 · n− 6.

2. Let G = (V,E) be a planar graph with |V | ≥ 4. Then G has a
node of degree ≤ 5.

35

Proof:
1. Every face consists of ≥ 3 edges, and every edge belongs to 2
faces. Therefore, counting the number of edges by different ways
one has 3f ≤ 2e. Furthermore, using the Euler identity,

e = n + f − 2 ≤ n + 2e/3− 2,

which implies e ≤ 3 · n− 6.

2. If the degree of each vertex is at least 6, then: 2e ≥ 6n, which is
equivalent to e ≥ 3n. 2

Theorem 11 Every planar graph is 6-colorable.

With a more deep analysis one can also prove

Theorem 12 Every planar graph is 5-colorable.

A very difficult prove that involves many days of non-stop computing
shows

Theorem 13 Every planar graph is 4-colorable.

However, not all planar graphs are 3-colorable (e.g. K4). As we
will see later, a problem to determine if G admits a 3-coloring is
intractable!

36

