Some Graph Algorithms

- 1. Depth-First Search (DFS)
- 2. Topological sort
- 3. Strongly connected components
- 4. Shortest paths in graphs
- 5. Graph colorings

1. Representation of graphs

Let G = (V, E) be a graph and let $u, v \in V$.

• Adjacency list.

Adj[u] is a list of nodes adjacent to u<u>Memory space</u>: O(|V| + |E|)<u>Disadvantage</u>: there is no quick way to check if $(u, v) \in E$.

• Adjacency matrix $A(G) = a_{ij}$.

$$\begin{split} a_{ij} &= \begin{cases} 1, \text{ if } (v_i, v_j) \in E \\ 0, \text{ otherwise} \end{cases} \\ \underline{\mathsf{Memory space}} : O(|V|^2). \\ \underline{\mathsf{Advantage}} : \text{ one can save space by using bit encoding of } a_{ij} \end{split}$$

One can also use both representations for oriented graphs.

2. Depth-First Search (DFS)

This procedure visits all vertices and edges of $G = (V_G, E_G)$ and colors the vertices in white, gray, and black.

Initially all vertices of G are white. As soon as a vertex v is visited for the first time, we color it gray. As soon as all adjacent to v vertices have been visited, the color of v becomes black.

We assign to each vertex $v \in V_G$ three labels: d[v], f[v] and $\pi[v]$:

d[v]: the time interval when v becomes gray

f[v]: the time interval when v becomes black

 $\pi[v]$: the predecessor of v in DFS.

It holds:

$$d[v], f[v] \in \{1, \dots, 2|V_G|\},\ d[v] < f[v]$$

for any $v \in V_G$.

The method constructs a spanning forest W of G, defined by

$$E_W = \{ (\pi[v], v) \mid v \in V, \text{ and } \pi[v] \neq \mathsf{nil} \}.$$

The edges of E_W are called tree edges.

Algorithm 1 DFS(G, s);

```
for all u \in V_G do

color[u] := white

\pi[u] := nil

time := 0

for all u \in V_G do /* let s be the first vertex */

if (color[u] = white) then

DFS-VISIT(u)
```

```
\begin{aligned} \text{DFS-VISIT}(u);\\ color[u] &:= \texttt{gray}\\ time &:= time + 1\\ d[u] &:= time\\ \texttt{for all } v \in Adj[u] \texttt{ do}\\ \texttt{if } (color[v] = \texttt{white})\texttt{ then}\\ \pi[v] &:= u\\ \text{DFS-VISIT}(v)\\ color[u] &:= \texttt{black}\\ time &:= time + 1\\ f[u] &:= time \end{aligned}
```

The running time of DFS is $\Theta(|V_G| + |E_G|)$.

Figure 1: DFS on a directed graph

3. Properties of Depth-First Search

Theorem 1 Let $G = (V_G, E_G)$ be an (oriented or non-oriented) graph and $u, v \in V_G$, $u \neq v$. Then either:

- the intervals [d[u], f[u]] and [d[v], f[v]] are disjoint. or
- the interval [d[u], f[u]] is a subinterval of [d[v], f[v]] and u is the descendant of v in the DFS tree, or
- the interval [d[v], f[v]] is a subinterval of [d[u], f[u]] and v is the descendant of u in the DFS tree.

Proof. Assume
$$d[u] < d[v]$$
.

<u>Case 1.</u> Assume d[v] < f[u]. $\Rightarrow v$ was discovered when u was gray $\Rightarrow v$ is a descendant of u.

Since v was discovered after u, if became black before u did. $\Rightarrow [d[v], f[v]] \subset [d[u], f[u]].$

<u>Case 2.</u> Assume f[u] < d[v]. Since d[u] < f[u] and d[v] < f[v], d[u] < f[u] < d[v] < f[v]

 \Rightarrow intervals [d[u], f[u]] and [d[v], f[v]] are disjoint.

Corollary 1 A vertex v is a descendant of u (in DFS forest) if and only if

$$d[u] < d[v] < f[v] < f[u]$$

Theorem 2 Let $G = (V_G, E_G)$ be an (oriented or non-oriented) graph, and W be its DFS forest and $u, v \in V_G$. Then v is the descendant of u if and only if in time d[u] there exists a path from u to v, consisting of white vertices only.

Proof. " \Rightarrow "-part: assume v is a descendant of u and $w \in u \rightsquigarrow v$. So, w is a descendant of $u \Rightarrow d[u] < d[w] \Rightarrow$ (C. 1) w is white at time d[u].

"
—"-part: assume any vertex on the path $u \rightsquigarrow v$ is white at time d[u], but v is not a descendant of u in the DFS tree.

WLOG assume any other vertex on $u \rightsquigarrow v$ is a descendant of u and let w be the predec. of v in $u \rightsquigarrow v$ ($u \rightsquigarrow w \rightarrow v$).

 \Rightarrow (C. 1) $f[w] \leq f[u]. \ v$ must be discovered after u but before w turns black. Hence,

$$d[u] < d[v] < f[w] \le f[u].$$

 $\Rightarrow (\mathsf{T. 1}) \ [d[v], f[v]] \subset [d[u], f[u]].$ $\Rightarrow (\mathsf{C. 1}) \ v \text{ is a descendant of } u.$

4. Topological Sort

Let $G = (V_G, E_G)$ be a DAG (Directed Acyclic Graph), that is a graph without oriented cycles or loops.

The Problem:

Construct a numbering $\psi: V \mapsto \{1, \ldots, |V|\}$, such that:

 $(u \to v) \in E \qquad \Rightarrow \qquad \psi(u) < \psi(v)$

Figure 2: DAG and topological sort

Algorithm 2 TOP-SORT(G);

- 1. Call DFS(G) to compute $\{f[u]\}$.
- 2. Place u to the head of the list as soon as f[u] is computed; return the list

Proof of of the correctness of this algorithm is based on the following notion and lemma:

Definition 1 An edge $(u, v) \in V_G$ is called <u>back edge</u> if v is an ancestor of u in the DFS tree (or u is a descendant of v).

Lemma 1 [1]. An oriented graph G is a DAG if and only if the DFS forest has no back edges.

Proof:

" \Rightarrow " Assume \exists back edge (u, v) $\Rightarrow u$ is a descendant of v $\Rightarrow \exists$ path $v \rightsquigarrow u$ in G and G contains a cycle, a contradiction. " \Leftarrow " Assume G contains a cycle C. Let v be the first vertex of C in DFS and $(u, v) \in E_C$. $\Rightarrow \exists$ "white" path $v \rightsquigarrow u$ at time d[v]. (T. 2) $\Rightarrow u$ is a descendant of v and (u, v) is a back edge, a contradiction. **Theorem 3** [1]. Let G be a DAG. Then TOP-SORT(G) algorithm constructs a topological sorting of G.

Proof:

We show that
$$\forall u, v \in V \ (u \neq v)$$

 $(u, v) \in E_G \Rightarrow f[u] > f[v].$
Consider an edge (u, v) explored by DFS.
 $\Rightarrow color(u) = gray$ and $color(v) \neq gray.$
 $(color(v) = gray \Rightarrow v \text{ is an ancestor of } u$
 $\Rightarrow (u, v) \text{ is a back edge.})$
 $\Rightarrow color(v) \in \{white, black\}.$

a.
$$[color(v) = white] \Rightarrow v$$
 is a descendant of u
 $\Rightarrow f[v] < f[u].$

$$\mathsf{b.} \; [color(v) = black] \Rightarrow f[v] < d[u] < f[u].$$

The running time of TOP-SORT(G) is $\Theta(|V_G| + |E_G|)$.

 \square

5. Strongly connected components (SCC)

Definition 2 Let $G = (V_G, E_G)$ be an oriented graph.

A strongly connected component is a maximal (by inclusion) vertex set $K \subseteq V_G$, such that for any $u, v \in K$ there exist oriented paths $u \rightsquigarrow v$ and $v \rightsquigarrow u$.

The Problem:

Given $G = (V_G, E_G)$, partition V_G into SCC.

Denote $G^T = (V_G, E_G^T)$, where $E_G^T = \{(u \to v) \mid (v \to u) \in E_G\}.$

<u>Algorithm 3</u> SCC(G);

- 1. Call DFS(G) to compute the numbers $\{f[u]\}$
- 2. Construct G^T
- 3. Call $DFS(G^T)$, where the vertices are ordered according to f[u] taken in decreasing order
- 4. Output the vertices of the DFS trees of G^T as strongly connected components

The running time of SCC(G) is $\Theta(|V_G| + |E_G|)$.

Theorem 4 [1]. SCC(G) partitions V_G into SCCs.

Figure 3: DFS labeling and Strongly Connected Components

Lemma 2 Let C and C' be distinct SCC in directed graph $G = (V_G, E_G)$. Let $u, v \in C$, $u', v' \in C'$ and there \exists path $u \rightsquigarrow u'$. Then there is no path $v' \rightsquigarrow v$.

Proof:

If $v' \rightsquigarrow v$ then there are paths $u \rightsquigarrow u' \rightsquigarrow v' \rightsquigarrow v \rightsquigarrow u$, so u and v' belong to the same component, a contradiction.

For a set $U \subseteq V_G$ denote

$$d(U) = \min_{u \in U} \{d[u]\}$$

$$f(U) = \max_{u \in U} \{f[u]\}$$

Lemma 3 Let C and C' be distinct SCCs in directed graph $G = (V_G, E_G)$. If \exists edge $(u, v) \in E_G$ with $u \in C$ and $v \in C'$ then f(C) > f(C').

Proof:

<u>Case 1.</u> Assume d(C) < d(C'), and let $x \in C$, s.t. d(C) = d[x]. \Rightarrow at time d[x] all vertices of C and C' are white $\Rightarrow \forall w \in C' \exists path \ x \rightsquigarrow u \rightarrow v \rightsquigarrow w$ \Rightarrow all vertices of C and C' are descendants of x in DFS tree $\Rightarrow f(x) = f(C) > f(C')$.

<u>Case 2.</u> Assume d(C) > d(C'), and let $y \in C'$, s.t. d(C') = d[y]. \Rightarrow at time d[y] all vertices of C' are white \Rightarrow all vertices of C' are descendants of y, so f[y] = f(C')

Since
$$\exists u \to v$$
, there is no path $v \rightsquigarrow u$ (Lemma 2)
 \Rightarrow all vertices of C are white at time $f[y]$
 $\Rightarrow \forall w \in C, f[w] > f[y] \Rightarrow f(C) > f[y] = f(C')$

Corollary 2 Let C and C' be distinct SCCs in directed graph $G = (V_G, E_G)$. If \exists edge $(u, v) \in E^T$ with $u \in C$ and $v \in C'$ then f(C) < f(C').

Proof: $(u, v) \in E^T \Rightarrow (v, u) \in E$. Since the SCCs in G and G^T are the same, Lemma 3 implies f(C) < f(C').

Proof of Theorem 4:

Claim: the vertices of each tree constructed in step 3 form a SCC. Induction on the number k of DFS trees. Trivial for k = 0.

Assume each of the first k trees is a SCC and consider the (k+1)-th tree $T = (V_T, E_T)$. Let u be its root and $u \in C$ for some SCC C. We show $C = V_T$.

At time the DFS on G^T visits u, all vertices of C are white \Rightarrow all vertices of C are descendants of u in DFS tree $\Rightarrow \forall w \in C, w \in V_T$, i.e.

$$C \subseteq V_T$$

To show the equality, assume $C \subset V_T$ and let v be the first vertex of $V_T - C$ visited by the DFS on G^T . Let $v \in C'$ for some SCC C'. $\Rightarrow f(C) < f(C')$ (Cor. 2)

 \Rightarrow all vertices of C' have already been visited, a contradiction. \Box

6. Shortest Path Algorithms

- Generalities
- Part I. Single source shortest paths
 - The Bellman-Ford algorithm
 - Dijkstra's algorithm
- Part II. All pairs shortest paths
 - The Floyd-Warshall algorithm

6a. Generalities

Let $G = (V_G, E_G)$ be an oriented graph and let $w : E_G \mapsto \mathbf{R}$ be a weight function. Let $P = (v_0, \ldots, v_k)$ be a (oriented) path in G. We define

$$w(P) = \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

For $u, v \in V$ put

$$\delta(u,v) = \begin{cases} \min_{P = (u \leadsto v)} w(P), \text{ if } \exists \mathsf{path} \ u \leadsto v \\ \infty, & \text{otherwise.} \end{cases}$$

Definition 3 A path $P = (u \rightsquigarrow v)$ is called <u>shortest path</u>, if $w(P) = \delta(u, v)$.

Problems:

Given $G = (V_G, E_G)$ and a weight function w.

- Let $s \in V_G$. Find a shortest path from s to any vertex of G.
- Find a shortest path between any pair of vertices of G.

We represent a path P by the set of predecessors $\{\pi[v]\}$ for $v \in P$, and define the predecessor graph by $G_{\pi} = (V_{\pi}, E_{\pi})$, where $V_{\pi} = \{v \in V \mid \pi[v] \neq \text{NIL}\} \cup \{s\}$ $E_{\pi} = \{(\pi[v], v) \in E \mid v \in V_{\pi} - \{s\}\}.$

Part I. Single-source shortest paths

Assume G contains no cycle of negative weight. We construct a shortest paths tree G' = (V', E'):

•
$$V' = \{ v \in V \mid \exists path \ s \rightsquigarrow v \}.$$

- G' is a tree rooted in s.
- $\forall v \in V'$ the path $s \stackrel{G'}{\leadsto} v$ is also a shortest path $s \stackrel{G}{\leadsto} v$.

Lemma 4 Let (v_1, \ldots, v_k) be a shortest path $v_1 \rightsquigarrow v_k$. Then (v_i, \ldots, v_j) is a shortest path $v_i \rightsquigarrow v_j$, for all $1 \le i \le j \le k$.

Lemma 5

a. Let
$$(v_1, \ldots, v_k, u)$$
 be a path $v_1 \rightsquigarrow u$ and $(v_k, u) \in E$. Then
 $\delta(v_1, u) \leq \delta(v_1, v_k) + w(v_k, u).$

b. Let (v_1, \ldots, v_k, u) be a shortest path $v_1 \rightsquigarrow u$ and $(v_k, u) \in E$. Then

$$\delta(v_1, u) = \delta(v_1, v_k) + w(v_k, u).$$

<u>Algorithm 4</u> INITIALIZE-SS(G, w);

for each
$$v \in V$$
 do
 $d[v] := \infty$
 $\pi[v] := \text{NIL}$
 $d[s] := 0$

6b. Relaxation

Let $(u, v) \in E_G$.

Algorithm 5 RELAX(u, v, w);

$$\label{eq:constraint} \begin{array}{l} \mbox{if } (d[v] > d[u] + w(u,v)) \mbox{ then } \\ d[v] := d[u] + w(u,v) \\ \pi[v] := u \end{array}$$

Assume the procedure INITIALIZE-SS has been applied to a graph $G = (V_G, E_G)$. The relaxation satisfies the following properties:

Lemma 6 Let $(u, v) \in E_G$. Then right after calling Relax(u, v, w) one has

$$d[v] \le d[u] + w(u, v).$$

Lemma 7

a. $d[v] \ge \delta(s, v)$ for all $v \in V_G$. b. If $d[v] = \delta(s, v)$ then no further call of RELAX modifies d[v].

Proof:

a. The inequality is valid right after the initialization, since $d[s]=0\geq \delta(s,s)$ and $d[v]=\infty\geq \delta(s,v)$ for $v\neq s.$

Let v be the first vertex for which RELAX provides $d[v] < \delta(s, v)$. Then for $(u, v) \in E_G$ right after calling RELAX(u, v, w) one has:

$$\begin{split} d[u] + w(u,v) &= d[v] \\ &< \delta(s,v) \\ &\leq \delta(s,u) + w(u,v) \quad \text{(by L. 5a)} \end{split}$$

Hence, $d[u] < \delta(s, u)$, contradicting the choice of v.

b. Since $d[v] \ge \delta(s, v)$ and RELAX does not increase the values of $d[\cdot]$, the assertion is true.

Lemma 8 Let $s \rightsquigarrow u \rightarrow v$ be a shortest path $s \stackrel{G}{\rightsquigarrow} v$ and $(u, v) \in E_G$. If prior to the call of RELAX(u, v, w) one has $d[u] = \delta(s, u)$, then $d[v] = \delta(s, v)$ for all times afterwards.

Proof: $d[u] = \delta(s, u)$ prior to the call of RELAX(u, v, w) $\Rightarrow d[u] = \delta(s, u)$ after the call (L. 7b).

One has:

$$\begin{aligned} d[v] &\leq d[u] + w(u, v) \quad \text{(L. 6)} \\ &= \delta(s, u) + w(u, v) \\ &= \delta(s, v) \quad \text{(L. 5b).} \end{aligned}$$

On the other hand, by L. 7a one has $d[v] \geq \delta(s, v)$.

Lemma 9 Assume G contains no negative-weight loop reachable from s and $d[v] = \delta(s, v)$ holds for any $v \in V$. Then the graph G_{π} is a shortest paths tree.

Proof. We follow the definition of the shortest paths tree.

- $\delta(s, v) < \infty$ only for vertices v reachable from s. $d[v] < \infty \Leftrightarrow \pi[v] \neq \text{NIL}.$
- Assume there exist 2 different paths from s to v:

$$P_1 = s \rightsquigarrow u \rightsquigarrow x \to z \rightsquigarrow v$$
$$P_2 = s \rightsquigarrow u \rightsquigarrow y \to z \rightsquigarrow v,$$

where $(x, z), (y, z) \in E'$. Then: $x = \pi[z]$ and $y = \pi[z]$ $\Rightarrow x = y$, a contradiction.

• Let $P = (s \rightsquigarrow v)$ be a path (in G') and $P = v_0, \ldots, v_k$, where $s = v_0$ and $v = v_k$. For $i = 1, \ldots, k$ one has:

$$\begin{split} d[v_i] &= \delta(s, v_i) \\ d[v_i] &= d[v_{i-1}] + w(v_{i-1}, v_i). \end{split}$$

$$\Rightarrow w(v_{i-1}, v_i) = \delta(s, v_i) - \delta(s, v_{i-1}) \text{ and}$$

$$w(P) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

=
$$\sum_{i=1}^{k} (\delta(s, v_i) - \delta(s, v_{i-1}))$$

=
$$\delta(s, v_k) - \delta(s, v_0)$$

=
$$\delta(s, v_k).$$

Hence: $w(P) = \delta(s, v_k)$, so P is a shortest path.

6c. The Bellman-Ford-Algorithm

The Algorithm returns TRUE iff G does not contain a negative-weight cycle that is reachable from s, and runs in $O(|V| \cdot |E|)$ time.

Figure 4: Bellman-Ford Algorithm

Lemma 10 Assume G does not contain a negative-weight cycle that is reachable from s. Then after |V| - 1 iterations of the first loop one has: $d[v] = \delta(u, v)$ for any $v \in V$ that is reachable from s.

Proof. Let $v \in V$ be reachable from s and $P = (v_0, \ldots, v_k)$ be a shortest path $v_0 = s \rightsquigarrow v = v_k$. Then $k \leq |V| - 1$.

We show by induction on i that $d[v_i] = \delta(s, v_i)$ after first i iterations of the for -loop.

Induction basis: i = 0: $d[v_0] = \delta(s, v_0) = 0$. Induction step: assume $d[v_{i-1}] = \delta(s, v_{i-1})$. Since the edge (v_{i-1}, v_i) is relaxed on the *i*-th iteration of the loop, the assertion follows from L. 8.

Corollary 3 Vertex v is reachable from s iff the BELLMAN-FORD algorithm terminates with $d[v] < \infty$.

Theorem 5 If G contains no negative-weight loop that is reachable from s, then the algorithm returns TRUE and the shortest paths from s are provided by the pred. subgraph G_{π} . If G contains such a loop, then the algorithm returns FALSE.

If G does not contain a negative-weight loop reachable from s, then $d[v]=\delta(s,v)$ follows from L. 10 and its corollary.

The predecessor subgraph G_{π} is a shortest-path tree (L. 9).

We show that the algorithm returns TRUE. For $(u, v) \in E_G$ one has:

$$\begin{split} d[v] &= \delta(s,v) \leq \delta(s,u) + w(u,v) \quad \text{(L. 5a)} \\ &= d[u] + w(u,v). \end{split}$$

Hence, the **if** -condition in RELAX is not satisfied for every edge, so the algorithm returns TRUE.

Assume G contains a negative-weight loop $C = (v_0, \ldots, v_k)$ (with $v_0 = v_k$) that is reachable from s. So,

$$\sum_{i=1}^{k} w(v_{i-1}, v_i) < 0.$$

If the algorithm returns $\ensuremath{\mathrm{TRUE}}$, then

$$d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i),$$
 for $i = 1, \dots, k$.

Summing up these inequalities results in:

$$\sum_{i=1}^{k} d[v_i] \le \sum_{i=1}^{k} d[v_{i-1}] + \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

Since $v_0 = v_k$, all *d*-values are finite, and each vertex appears in the sums exactly once,

$$\sum_{i=1}^{k} d[v_i] = \sum_{i=1}^{k} d[v_{i-1}]$$

which implies

$$0 \le \sum_{i=1}^{k} w(v_{i-1}, v_i).$$

This contradiction implies that the algorithm returns FALSE.

6d. Dijkstra's Algorithm

Assume $w(u,v) \ge 0$ for all $(u,v) \in E_G$.

Algorithm 7 DIJKSTRA(G, w, s);

INITIALIZE-SS(G, s) $S := \emptyset; \quad Q := V(G)$ while $(Q \neq \emptyset)$ do u := EXTRACT-MIN(Q) $S := S \cup \{u\}$ for each $v \in Adj[u]$ RELAX(u, v, w)

Figure 5: Dijkstra's Algorithm

The running time of DIJKSTRA Algorithm is $O(|V_G|^2)$. With a careful implementation it can run in $O(|V| \log |V| + |E|)$ time. **Theorem 6** Let $G = (V_G, E_G)$ be a graph with non-negative edge weights w. Then the DIJKSTRA Algorithm provides $d[u] = \delta(s, u)$ $\forall u \in V$.

Proof:

We show that at time when u is included in S it holds: $d[u] = \delta(s, u)$.

Assume $\exists u$ such that $d[u] > \delta(s, u)$ and let u be the first such vertex. Then u is reachable from s and $u \neq s$.

Let $P = (s \stackrel{G}{\leadsto} u)$ be a shortest path and $(x, y) \in E_G$ be the first edge of P with $x \in S$, $y \notin S$. Then $P = (s \rightsquigarrow x \rightarrow y \rightsquigarrow u)$, $d[x] = \delta(s, x)$ and $d[y] = \delta(s, y)$ (by L. 8). Therefore,

$$d[y] = \delta(s, y) \le \delta(s, u) \le d[u].$$

However, since $y \in V - S$ when u was chosen: $d[u] \le d[y]$. $\Rightarrow d[u] = \delta(s, u)$, a contradiction.

Since predecessor subgraph G_{π} is a shortest-path tree (L. 9), the last theorem proves the correctness of Dijkstra's algorithm.

 \square

Part II. All pairs shortest paths

Since the running time of DIJKSTRA algorithm is $O(|V|^2)$, one can construct all shortest paths in $O(|V|^3)$ time if the weight function is non-negative.

If G contains no cycle of negative weight, the BELLMAN-FORD algorithm constructs a solution in ${\cal O}(|V|^4)$ time.

We will develop a better algorithm.

We represent a graph $G=(V_G,E_G)$ with the vertex set $V=\{v_1,\ldots,v_n\}$ by its ajacency matrix w_{ij} , where

$$w_{ij} = \begin{cases} 0, & \text{if } i = j \\ w(v_i, v_j), & \text{if } i \neq j \text{ and } (v_i, v_j) \in E \\ \infty, & \text{if } i \neq j \text{ and } (v_i, v_j) \notin E \end{cases}$$

The shortest paths will be defined by the matrix of predecessors

$$\Pi = \{\pi_{ij}\}.$$

We assume that G contains no cycle of negative weight.

7. The Floyd-Warshall algorithm

Let $P = (v_1, \ldots, v_l)$ be a shortest path $v_1 \rightsquigarrow v_l$. We call the vertices v_2, \ldots, v_{l-1} (if they exist) inner nodes of the path P.

Denote the vertices of G by $\{1, 2, ..., n\}$. For $i, j \in V$ and given k consider shortest paths $i \rightsquigarrow j$ with the inner nodes belonging to the set $\{1, ..., k\}$. Let P be such a path (if it exists).

- If k ∉ P then all the inner nodes of i → j are taken from the set {1,..., k 1}. So P is also a shortest path with the inner nodes of the set {1,..., k 1}.
- If $k \in P$ then split P into two paths: $P_1 = (i \rightarrow k)$ and $P_2 = (k \rightarrow j)$. Then P_1 is a shortest path $i \rightsquigarrow k$ with all inner nodes of the set $\{1, \ldots, k-1\}$, and the same holds for P_2 .

Denote by d_{ij}^k the weight of the shortest path $i \rightsquigarrow j$ with all inner nodes of the set $\{1, \ldots, k\}$. One has:

$$d_{ij}^{k} = \begin{cases} w_{ij}, & \text{if } k = 0\\ \min\left\{d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}\right\}, & \text{if } k \ge 1. \end{cases}$$

We put these numbers into a matrix $D^k = \{d_{ij}^k\}$, where $d_{ij}^n = \delta(i, j)$ for $1 \le i \le j \le n$.

Algorithm 8 FLOYD-WARSHALL(W)

$$n := \#rows(W)$$

$$D^{0} := W$$

for $k := 1$ to n do
for $i := 1$ to n do
for $j := 1$ to n do

$$d_{ij}^{k} := \min \left\{ d_{ij}^{k-1}, \ d_{ik}^{k-1} + d_{kj}^{k-1} \right\}$$

return D^{n}

The running time of FLOYD-WARSHALL algorithm is $O(n^3)$.

Construction of shortest paths

We construct a series of matrices: Π^0, \ldots, Π^n with $\Pi^k = \{\pi_{ij}^k\}$, where π_{ij}^k is the predecessor of j on a shortest path $i \rightsquigarrow j$ with all inner nodes of the set $\{1, \ldots, k\}$.

For $k \ge 1$ define:

$$\pi_{ij}^{k} = \begin{cases} \pi_{ij}^{k-1}, \text{ if } d_{ij}^{k-1} \leq d_{ik}^{k-1} + d_{kj}^{k-1} \\ \pi_{kj}^{k-1}, \text{ if } d_{ij}^{k-1} > d_{ik}^{k-1} + d_{kj}^{k-1}. \end{cases}$$

The elements of Π^n provide for each vertex j its predecessor π_{ij}^n on a shortest path $i \rightsquigarrow j$.

$$\begin{split} D^{(0)} &= \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(0)} &= \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ \text{NL} & \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & \text{NIL} & \text{NIL} \\ 4 & \text{NIL} & 4 & \text{NIL} & \text{NIL} \\ 1 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 1 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 1 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 1 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 1 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 1 & \text{NIL} & \text{NIL} & \text{NIL} & \text{NIL} \\ 1 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 1 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad \Pi^{(1)} &= \begin{pmatrix} \text{NIL} & 1 & 1 & \text{NIL} & 1 \\ 1 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 1 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 1 & 1 & 2 & 1 \\ \text{NIL} & \text{NIL} & \text{NIL} & 2 & 2 \\ \text{NIL} & 3 & \text{NIL} & 2 & 2 \\ 1 & 3 & \text{NIL} & 2 & 2 \\ 1 & 3 & \text{NIL} & 2 & 2 \\ 1 & 3 & \text{NIL} & 2 & 2 \\ 1 & 3 & \text{NIL} & 2 & 2 \\ 1 & 1 & 4 & \text{NIL} & 1 \\ 1 & 1 & 2 & 1 \\ 1 & \text{NIL} & \text{NIL} & \text{NIL} & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2$$

Figure 6: Floyd-Warshall algorithm

Figure 7: Example graph for the Floyd-Warshall algorithm

$D^{(0)} = egin{pmatrix} 0 & 3 & 8 \ \infty & 0 & \infty \ \infty & 4 & 0 \ 2 & \infty & -5 \ \infty & \infty & \infty \ \end{pmatrix}$	$ \begin{array}{c} \infty & 4 \\ 1 & 7 \\ \infty & \infty \\ 0 & \infty \\ 6 & 0 \end{array} $	11 ⁽⁰⁾ =	NIL NIL 4 NIL	1 NII. J NIL NIL	l NII. NIL 4 NIL	NIL 2 NIL NIL 5	1 2 NIL NIL NIL
$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 \\ \infty & 0 & \infty \\ \infty & 4 & 0 \\ 2 & 5 & -5 \\ \infty & \infty & \infty \end{pmatrix}$	$ \begin{array}{c} \infty & -4 \\ 1 & 7 \\ \infty & \infty \\ 0 & -2 \\ 6 & 0 \end{array} \right) $	Π''' =	(NIL NIL NIL 4 NIL	l NIL 3 I NIL	l NIL NIL 4 NIL	NIL 2 NIL NIL 2	l 2 NIL 1 NIL
$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 \\ \infty & 0 & \infty \\ \infty & 4 & 0 \\ 2 & 5 & 5 \\ \infty & \infty & \infty \end{pmatrix}$	$ \begin{array}{cc} 4 & -4 \\ 1 & 7 \\ 5 & 11 \\ 0 & 2 \\ 6 & 0 \end{array} \right) $	Π ^(?) =	(NIL NIL NIL 4 NIL	1 NIL 3 1 NII.	1 NIL NIL 4 NIL	2 2 2 NIL 5	1 2 2 1 NIL
$D^{(3)} = egin{pmatrix} 0 & 3 & 0 \ \infty & 0 & \infty \ \infty & 4 & 0 \ 2 & -1 & -5 \ \infty & \infty & \infty & 0 \ \end{pmatrix}$	$ \begin{array}{cccc} 8 & 4 & -4 \\ 5 & 1 & 7 \\ 0 & 5 & 11 \\ 5 & 5 & -2 \\ 5 & 6 & 0 \end{array} $	L1 ^{.31} —	(NIL NIL 4 NIL	1 NII. 3 3 NIL	1 NIL NIL 4 NIL	2 2 2 NIL 5	1 2 2 1 NIL
$D^{(3)} = \begin{pmatrix} 0 & 3 & -1 \\ 3 & 0 & -4 \\ 7 & 4 & 0 \\ 2 & -1 & -5 \\ 8 & 5 & 1 \end{pmatrix}$	$ \begin{array}{ccc} 4 & -4 \\ 1 & -1 \\ 5 & 3 \\ 0 & -2 \\ 6 & 0 \end{array} \right) $	Π ⁽⁴⁾ =	(NIL 4 4 4 4	1 NIL 3 3 3	4 1 NIL 4 4	2 2 2 NIL 5	1 1 1 1 NIL
$\mathcal{D}^{(5)} = \begin{pmatrix} 0 & 1 & -3\\ 3 & 0 & -4\\ 7 & 4 & 0\\ 2 & -1 & -5\\ 8 & 5 & 1 \end{pmatrix}$	$ \begin{array}{ccc} 2 & -4 \\ 1 & -1 \\ 5 & 3 \\ 0 & -2 \\ 6 & 0 \end{array} \right) $	11 ⁽⁵⁾ —	(NIL 4 4 4 4	3 NIL 3 3	4 4 NIL 4 4	5 2 2 NIL 5	1 1 1 1 NIL

Figure 8: The Floyd-Warshall algorithm again

8. Graph Colorings

Definition 4 A coloring an assignment of colors to vertices such that no two adjacent nodes carry the same color.

A k-coloring is a coloring that uses k different colors $\{1, 2, \ldots, k\}$.

The chromatic number $\chi(G)$ of a graph G is the smaller k for which G admits a k-coloring.

A coloring that uses exactly $\chi(G)$ colors is called minimal.

It holds:

 $\chi(K_n) = n, \qquad \chi(C_{2n}) = 2, \qquad \chi(C_{2n+1}) = 3.$

Theorem 7 A graph G is 2-colorable iff it has no loop of an odd length.

Sketch of proof: " \implies " Obvious.

" \Leftarrow " The following algorithm devilers a 2-coloring for G if one exists and returns FALSE otherwise.

Let Q be (a FIFO)-Queue.

Algorithm 9 BIPARTITE(G);

```
Choose any node v \in V and color it with 1

Q := \{v\}

repeat while Q \neq \emptyset

u := head(Q)

S := Adj[u]

for all w \in S

do if color[w] = color[u]

then Graph is not bipartite. FALSE

Color every uncolored node w in S with color 3 - color[w]

and add it to Q.

Q := Q - \{u\}

return 2-coloring
```

Let $\omega(G)$ be the size of a maximum clique in G.

Theorem 8 It holds:

$$\omega(G) \le \chi(G) \le \Delta(G) + 1.$$

The lower bound is obvious. The following algorithm constructs a coloring satisfying the upper bound.

Algorithm 10 COLORING(G);

Choose $v \in V$ and color it with color 1 $V' := V - \{v\}$ repeat while $V' \neq \emptyset$ Choose $u \in V'$ S := Adj[u]Color u with the smallest unused color number in S $V' := V' - \{u\}$ return largest used color number

Remark 1 For any two numbers Δ , k with $2 \le k \le \Delta$ there exists a G with maximum degree Δ and $\chi(G) = k$.

A general method for computing $\chi(G)$:

Definition 5 Let G = (V, E) be a graph and $a, b \in V$, $(a, b) \notin E$. Define G : ab = (V', E'), where $V' = (V - \{a, b\}) \cup \{z\}, \quad (z \notin V)$ $E' = (E - \{(x, y) \mid x \in V, y \in \{a, b\}\}) \cup \{(x, z) \mid x \notin \{a, b\},$ and either $(x, a) \in E$ or $(x, b) \in E\}$.

G/ab = (V, E''), where $E'' = E \cup (a, b)$.

A coloring of G satisfying color(a) = color(b) also provides a coloring of G : ab. Similarly, a coloring of G satisfying $color(a) \neq color(b)$ provides a correct coloring of G/ab.

Repeat the above operations until the resulting graph is a clique. If the smallest-size clique consists of k nodes, then $\chi(G)=k.$

This method leads to an exponential running time, in general.

Example:

Figure 9: Graph coloring with a DP algorithm

Definition 6 A graph G = (V, E) is called interval graph if it can be represented by a set of intervals on a line as the set of nodes. An edge of G only exists between overlapping intervals.

Theorem 9 Let G be an interval graph. Then $\chi(G) = \omega(G)$ and a greedy algorithm returns a coloring consisting of $\omega(G)$ colors.

Definition 7 A graph G = (V, E) is called planar if it can be drawn on a plane so that no two edges have a proper intersection.

Theorem 10 (Euler) Let G = (V, E) be a planar connected graph with |V| = n, |E| = eand f be the number of its faces. Then:

$$n - e + f = 2.$$

Corollary 4

- 1. Let G = (V, E) be a planar graph with |V| = n, |E| = e. Then: $e \leq 3 \cdot n - 6$.
- 2. Let G = (V, E) be a planar graph with $|V| \ge 4$. Then G has a node of degree ≤ 5 .

Proof:

1. Every face consists of ≥ 3 edges, and every edge belongs to 2 faces. Therefore, counting the number of edges by different ways one has $3f \leq 2e$. Furthermore, using the Euler identity,

$$e = n + f - 2 \le n + 2e/3 - 2,$$

which implies $e \leq 3 \cdot n - 6$.

2. If the degree of each vertex is at least 6, then: $2e \ge 6n$, which is equivalent to $e \ge 3n$.

Theorem 11 Every planar graph is 6-colorable.

With a more deep analysis one can also prove

Theorem 12 Every planar graph is 5-colorable.

A very difficult prove that involves many days of non-stop computing shows

Theorem 13 Every planar graph is 4-colorable.

However, not all planar graphs are 3-colorable (e.g. K_4). As we will see later, a problem to determine if G admits a 3-coloring is intractable!