Some Graph Algorithms

1. Depth-First Search (DFS)
2. Topological sort
3. Strongly connected components
4. Shortest paths in graphs
5. Graph colorings

1. Representation of graphs

Let $G=(V, E)$ be a graph and let $u, v \in V$.

- Adjacency list.
$\operatorname{Adj}[u]$ is a list of nodes adjacent to u
Memory space: $O(|V|+|E|)$
Disadvantage: there is no quick way to check if $(u, v) \in E$.
- Adjacency matrix $A(G)=a_{i j}$.
$a_{i j}=\left\{\begin{array}{l}1, \text { if }\left(v_{i}, v_{j}\right) \in E \\ 0, \text { otherwise }\end{array}\right.$
Memory space: $O\left(|V|^{2}\right)$.
Advantage: one can save space by using bit encoding of $a_{i j}$

One can also use both representations for oriented graphs.

2. Depth-First Search (DFS)

This procedure visits all vertices and edges of $G=\left(V_{G}, E_{G}\right)$ and colors the vertices in white, gray, and black.

Initially all vertices of G are white. As soon as a vertex v is visited for the first time, we color it gray. As soon as all adjacent to v vertices have been visited, the color of v becomes black.

We assign to each vertex $v \in V_{G}$ three labels: $d[v], f[v]$ and $\pi[v]$:
$d[v]$: the time interval when v becomes gray
$f[v]$: the time interval when v becomes black $\pi[v]$: the predecessor of v in DFS.

It holds:

$$
\begin{aligned}
d[v], f[v] & \in\left\{1, \ldots, 2\left|V_{G}\right|\right\}, \\
d[v] & <f[v]
\end{aligned}
$$

for any $v \in V_{G}$.

The method constructs a spanning forest W of G, defined by

$$
E_{W}=\{(\pi[v], v) \mid v \in V, \text { and } \pi[v] \neq \text { nil }\} .
$$

The edges of E_{W} are called tree edges.

Algorithm $1 \operatorname{DFS}(G, s) ;$

for all $u \in V_{G}$ do color $[u]:=$ white $\pi[u]:=$ nil
time $:=0$
for all $u \in V_{G}$ do $\quad / *$ let s be the first vertex */ if (color $[u]=$ white) then

DFS-Visit(u)

DFS-Visit (u);
color $[u]:=$ gray
time $:=$ time +1
$d[u]:=$ time
for all $v \in \operatorname{Adj}[u]$ do
if (color $[v]=$ white) then
$\pi[v]:=u$
DFS-Visit (v)
color $[u]:=$ black
time $:=$ time +1
$f[u]:=$ time

The running time of DFS is $\Theta\left(\left|V_{G}\right|+\left|E_{G}\right|\right)$.

Figure 1: DFS on a directed graph

3. Properties of Depth-First Search

Theorem 1 Let $G=\left(V_{G}, E_{G}\right)$ be an (oriented or non-oriented) graph and $u, v \in V_{G}, u \neq v$. Then either:

- the intervals $[d[u], f[u]]$ and $[d[v], f[v]]$ are disjoint. or
- the interval $[d[u], f[u]]$ is a subinterval of $[d[v], f[v]]$ and u is the descendant of v in the DFS tree, or
- the interval $[d[v], f[v]]$ is a subinterval of $[d[u], f[u]]$ and v is the descendant of u in the DFS tree.

Proof. Assume $d[u]<d[v]$.
Case 1. Assume $d[v]<f[u] . \Rightarrow v$ was discovered when u was gray $\Rightarrow v$ is a descendant of u.

Since v was discovered after u, if became black before u did.
$\Rightarrow[d[v], f[v]] \subset[d[u], f[u]]$.
Case 2. Assume $f[u]<d[v]$. Since $d[u]<f[u]$ and $d[v]<f[v]$,

$$
d[u]<f[u]<d[v]<f[v]
$$

\Rightarrow intervals $[d[u], f[u]]$ and $[d[v], f[v]]$ are disjoint.
Corollary $1 A$ vertex v is a descendant of u (in DFS forest) if and only if

$$
d[u]<d[v]<f[v]<f[u]
$$

Theorem 2 Let $G=\left(V_{G}, E_{G}\right)$ be an (oriented or non-oriented) graph, and W be its DFS forest and $u, v \in V_{G}$. Then v is the descendant of u if and only if in time $d[u]$ there exists a path from u to v, consisting of white vertices only.

Proof.
" \Rightarrow "-part: assume v is a descendant of u and $w \in u \leadsto v$. So, w is a descendant of $u \Rightarrow d[u]<d[w] \Rightarrow(\mathrm{C} .1) w$ is white at time $d[u]$.
" \Leftarrow "-part: assume any vertex on the path $u \leadsto v$ is white at time $d[u]$, but v is not a descendant of u in the DFS tree.

WLOG assume any other vertex on $u \leadsto v$ is a descendant of u and let w be the predec. of v in $u \leadsto v(u \leadsto w \rightarrow v)$.
$\Rightarrow($ C. 1) $f[w] \leq f[u] . v$ must be discovered after u but before w turns black. Hence,

$$
d[u]<d[v]<f[w] \leq f[u]
$$

$\Rightarrow(\mathrm{T} .1)[d[v], f[v]] \subset[d[u], f[u]]$.
$\Rightarrow(\mathrm{C} .1) v$ is a descendant of u.

4. Topological Sort

Let $G=\left(V_{G}, E_{G}\right)$ be a DAG (Directed Acyclic Graph), that is a graph without oriented cycles or loops.

The Problem:

Construct a numbering $\psi: V \mapsto\{1, \ldots,|V|\}$, such that:

$$
(u \rightarrow v) \in E \quad \Rightarrow \quad \psi(u)<\psi(v)
$$

Figure 2: DAG and topological sort

Algorithm 2 Top-Sort (G);

1. Call $\operatorname{DFS}(G)$ to compute $\{f[u]\}$.
2. Place u to the head of the list as soon as $f[u]$ is computed; return the list

Proof of of the correctness of this algorithm is based on the following notion and lemma:

Definition 1 An edge $(u, v) \in V_{G}$ is called back edge if v is an ancestor of u in the DFS tree (or u is a descendant of v).

Lemma 1 [1]. An oriented graph G is a DAG if and only if the DFS forest has no back edges.

Proof:

$" \Rightarrow$ " Assume \exists back edge (u, v)
$\Rightarrow u$ is a descendant of v
$\Rightarrow \exists$ path $v \leadsto u$ in G and G contains a cycle, a contradiction.
$" \Leftarrow$ " Assume G contains a cycle C.
Let v be the first vertex of C in DFS and $(u, v) \in E_{C}$.
$\Rightarrow \exists$ "white" path $v \leadsto u$ at time $d[v]$. (T. 2)
$\Rightarrow u$ is a descendant of v and (u, v) is a back edge, a contradiction.

Theorem 3 [1]. Let G be a DAG. Then $\operatorname{Top-Sort}(G)$ algorithm constructs a topological sorting of G.

Proof:

We show that $\forall u, v \in V(u \neq v)$
$(u, v) \in E_{G} \Rightarrow f[u]>f[v]$.
Consider an edge (u, v) explored by DFS.
$\Rightarrow \operatorname{color}(u)=$ gray and $\operatorname{color}(v) \neq$ gray .

$$
\begin{aligned}
& (\operatorname{color}(v)=g r a y \Rightarrow v \text { is an ancestor of } u \\
& \Rightarrow(u, v) \text { is a back edge. })
\end{aligned}
$$

$\Rightarrow \operatorname{color}(v) \in\{$ white, black $\}$.
a. $[\operatorname{color}(v)=$ white $] \Rightarrow v$ is a descendant of u $\Rightarrow f[v]<f[u]$.
b. $[\operatorname{color}(v)=$ black $] \Rightarrow f[v]<d[u]<f[u]$.

The running time of $\operatorname{TOP}-\operatorname{Sort}(G)$ is $\Theta\left(\left|V_{G}\right|+\left|E_{G}\right|\right)$.

5. Strongly connected components (SCC)

Definition 2 Let $G=\left(V_{G}, E_{G}\right)$ be an oriented graph.
A strongly connected component is a maximal (by inclusion) vertex set $K \subseteq V_{G}$, such that for any $u, v \in K$ there exist oriented paths $u \leadsto v$ and $v \leadsto u$.

The Problem:

Given $G=\left(V_{G}, E_{G}\right)$, partition V_{G} into SCC.
Denote $G^{T}=\left(V_{G}, E_{G}^{T}\right)$, where

$$
E_{G}^{T}=\left\{(u \rightarrow v) \mid(v \rightarrow u) \in E_{G}\right\} .
$$

Algorithm $3 \mathrm{SCC}(G)$;

1. Call $\operatorname{DFS}(G)$ to compute the numbers $\{f[u]\}$
2. Construct G^{T}
3. Call $\operatorname{DFS}\left(G^{T}\right)$, where the vertices are ordered according to $f[u]$ taken in decreasing order
4. Output the vertices of the DFS trees of G^{T} as strongly connected components

The running time of $\operatorname{SCC}(\mathrm{G})$ is $\Theta\left(\left|V_{G}\right|+\left|E_{G}\right|\right)$.
Theorem 4 [1]. SCC(G) partitions V_{G} into SCCs.

Figure 3: DFS labeling and Strongly Connected Components

Lemma 2 Let C and C^{\prime} be distinct SCC in directed graph $G=$ $\left(V_{G}, E_{G}\right)$. Let $u, v \in C, u^{\prime}, v^{\prime} \in C^{\prime}$ and there \exists path $u \leadsto u^{\prime}$. Then there is no path $v^{\prime} \leadsto v$.

Proof:

If $v^{\prime} \leadsto v$ then there are paths $u \leadsto u^{\prime} \leadsto v^{\prime} \leadsto v \leadsto u$, so u and v^{\prime} belong to the same component, a contradiction.

For a set $U \subseteq V_{G}$ denote

$$
\begin{aligned}
d(U) & =\min _{u \in U}\{d[u]\} \\
f(U) & =\max _{u \in U}\{f[u]\}
\end{aligned}
$$

Lemma 3 Let C and C^{\prime} be distinct SCCs in directed graph $G=$ $\left(V_{G}, E_{G}\right)$. If \exists edge $(u, v) \in E_{G}$ with $u \in C$ and $v \in C^{\prime}$ then $f(C)>f\left(C^{\prime}\right)$.

Proof:

Case 1. Assume $d(C)<d\left(C^{\prime}\right)$, and let $x \in C$, s.t. $d(C)=d[x]$. \Rightarrow at time $d[x]$ all vertices of C and C^{\prime} are white
$\Rightarrow \forall w \in C^{\prime} \exists$ path $x \leadsto u \rightarrow v \leadsto w$
\Rightarrow all vertices of C and C^{\prime} are descendants of x in DFS tree
$\Rightarrow f(x)=f(C)>f\left(C^{\prime}\right)$.
Case 2. Assume $d(C)>d\left(C^{\prime}\right)$, and let $y \in C^{\prime}$, s.t. $d\left(C^{\prime}\right)=d[y]$.
\Rightarrow at time $d[y]$ all vertices of C^{\prime} are white
\Rightarrow all vertices of C^{\prime} are descendants of y, so $f[y]=f\left(C^{\prime}\right)$

Since $\exists u \rightarrow v$, there is no path $v \leadsto u$ (Lemma 2)
\Rightarrow all vertices of C are white at time $f[y]$
$\Rightarrow \forall w \in C, f[w]>f[y] \Rightarrow f(C)>f[y]=f\left(C^{\prime}\right)$

Corollary 2 Let C and C^{\prime} be distinct SCCs in directed graph $G=$ $\left(V_{G}, E_{G}\right)$. If \exists edge $(u, v) \in E^{T}$ with $u \in C$ and $v \in C^{\prime}$ then $f(C)<f\left(C^{\prime}\right)$.

Proof: $(u, v) \in E^{T} \Rightarrow(v, u) \in E$. Since the SCCs in G and G^{T} are the same, Lemma 3 implies $f(C)<f\left(C^{\prime}\right)$.

Proof of Theorem 4:

Claim: the vertices of each tree constructed in step 3 form a SCC. Induction on the number k of DFS trees. Trivial for $k=0$.

Assume each of the first k trees is a SCC and consider the $(k+1)$-th tree $T=\left(V_{T}, E_{T}\right)$. Let u be its root and $u \in C$ for some SCC C.
We show $C=V_{T}$.
At time the DFS on G^{T} visits u, all vertices of C are white \Rightarrow all vertices of C are descendants of u in DFS tree $\Rightarrow \forall w \in C, w \in V_{T}$, i.e.

$$
C \subseteq V_{T}
$$

To show the equality, assume $C \subset V_{T}$ and let v be the first vertex of $V_{T}-C$ visited by the DFS on G^{T}. Let $v \in C^{\prime}$ for some SCC C^{\prime}. $\Rightarrow f(C)<f\left(C^{\prime}\right)$ (Cor. 2)
\Rightarrow all vertices of C^{\prime} have already been visited, a contradiction.

6. Shortest Path Algorithms

- Generalities
- Part I. Single source shortest paths
- The Bellman-Ford algorithm
- Dijkstra's algorithm
- Part II. All pairs shortest paths
- The Floyd-Warshall algorithm

6a. Generalities

Let $G=\left(V_{G}, E_{G}\right)$ be an oriented graph and let $w: E_{G} \mapsto \mathbf{R}$ be a weight function. Let $P=\left(v_{0}, \ldots, v_{k}\right)$ be a (oriented) path in G. We define

$$
w(P)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) .
$$

For $u, v \in V$ put

$$
\delta(u, v)= \begin{cases}\min _{P=(u \leadsto v)} w(P), & \text { if } \exists \text { path } u \leadsto v \\ \infty, & \text { otherwise } .\end{cases}
$$

Definition 3 A path $P=(u \leadsto v)$ is called shortest path, if

$$
w(P)=\delta(u, v) .
$$

Problems:

Given $G=\left(V_{G}, E_{G}\right)$ and a weight function w.

- Let $s \in V_{G}$. Find a shortest path from s to any vertex of G.
- Find a shortest path between any pair of vertices of G.

We represent a path P by the set of predecessors $\{\pi[v]\}$ for $v \in P$, and define the predecessor graph by
$G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$, where

$$
\begin{aligned}
V_{\pi} & =\{v \in V \mid \pi[v] \neq \operatorname{NIL}\} \cup\{s\} \\
E_{\pi} & =\left\{(\pi[v], v) \in E \mid v \in V_{\pi}-\{s\}\right\} .
\end{aligned}
$$

Part I. Single-source shortest paths

Assume G contains no cycle of negative weight. We construct a shortest paths tree $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$:

- $V^{\prime}=\{v \in V \mid \exists$ path $s \leadsto v\}$.
- G^{\prime} is a tree rooted in s.
- $\forall v \in V^{\prime}$ the path $s \stackrel{G^{\prime}}{\sim} v$ is also a shortest path $s \stackrel{G}{\sim} v$.

Lemma 4 Let $\left(v_{1}, \ldots, v_{k}\right)$ be a shortest path $v_{1} \leadsto v_{k}$. Then $\left(v_{i}, \ldots, v_{j}\right)$ is a shortest path $v_{i} \leadsto v_{j}$, for all $1 \leq i \leq j \leq k$.

Lemma 5

a. Let $\left(v_{1}, \ldots, v_{k}, u\right)$ be a path $v_{1} \leadsto u$ and $\left(v_{k}, u\right) \in E$. Then

$$
\delta\left(v_{1}, u\right) \leq \delta\left(v_{1}, v_{k}\right)+w\left(v_{k}, u\right) .
$$

b. Let $\left(v_{1}, \ldots, v_{k}, u\right)$ be a shortest path $v_{1} \leadsto u$ and $\left(v_{k}, u\right) \in E$. Then

$$
\delta\left(v_{1}, u\right)=\delta\left(v_{1}, v_{k}\right)+w\left(v_{k}, u\right) .
$$

Algorithm 4 Initialize-SS (G, w);

for each $v \in V$ do

$$
\begin{aligned}
d[v] & :=\infty \\
\pi[v] & :=\mathrm{NIL} \\
d[s]: & :=0
\end{aligned}
$$

6b. Relaxation
Let $(u, v) \in E_{G}$.

Algorithm $5 \operatorname{Relax}(u, v, w) ;$

$$
\text { if } \begin{aligned}
& \\
&(d[v]>d[u]+w(u, v)) \text { then } \\
& d[v]:=d[u]+w(u, v) \\
& \pi[v]:=u
\end{aligned}
$$

Assume the procedure Initialize-SS has been applied to a graph $G=\left(V_{G}, E_{G}\right)$. The relaxation satisfies the following properties:

Lemma 6 Let $(u, v) \in E_{G}$. Then right after calling $\operatorname{ReLax}(u, v, w)$ one has

$$
d[v] \leq d[u]+w(u, v) .
$$

Lemma 7

a. $d[v] \geq \delta(s, v)$ for all $v \in V_{G}$.
b. If $d[v]=\delta(s, v)$ then no further call of ReLaX modifies $d[v]$.

Proof:

a. The inequality is valid right after the initialization, since $d[s]=0 \geq \delta(s, s)$ and $d[v]=\infty \geq \delta(s, v)$ for $v \neq s$.

Let v be the first vertex for which RELAX provides $d[v]<\delta(s, v)$. Then for $(u, v) \in E_{G}$ right after calling $\operatorname{RELAX}(u, v, w)$ one has:

$$
\begin{aligned}
d[u]+w(u, v) & =d[v] \\
& <\delta(s, v) \\
& \leq \delta(s, u)+w(u, v) \quad \text { (by L. 5a) })
\end{aligned}
$$

Hence, $d[u]<\delta(s, u)$, contradicting the choice of v.
b. Since $d[v] \geq \delta(s, v)$ and RELAX does not increase the values of $d[\cdot]$, the assertion is true.

Lemma 8 Let $s \leadsto u \rightarrow v$ be a shortest path $s \stackrel{G}{\sim} v$ and $(u, v) \in$ E_{G}. If prior to the call of $\operatorname{RELAX}(u, v, w)$ one has $d[u]=\delta(s, u)$, then $d[v]=\delta(s, v)$ for all times afterwards.

Proof:

$d[u]=\delta(s, u)$ prior to the call of $\operatorname{RELAx}(u, v, w)$
$\Rightarrow d[u]=\delta(s, u)$ after the call (L.7b).
One has:

$$
\begin{aligned}
d[v] & \leq d[u]+w(u, v) \quad(\mathrm{L} .6) \\
& =\delta(s, u)+w(u, v) \\
& =\delta(s, v) \quad(\mathrm{L} .5 \mathrm{~b})
\end{aligned}
$$

On the other hand, by L. 7a one has $d[v] \geq \delta(s, v)$.

Lemma 9 Assume G contains no negative-weight loop reachable from s and $d[v]=\delta(s, v)$ holds for any $v \in V$. Then the graph G_{π} is a shortest paths tree.

Proof. We follow the definition of the shortest paths tree.

- $\delta(s, v)<\infty$ only for vertices v reachable from s. $d[v]<\infty \Leftrightarrow \pi[v] \neq$ NIL.
- Assume there exist 2 different paths from s to v :

$$
\begin{aligned}
& P_{1}=s \leadsto u \leadsto x \rightarrow z \leadsto v \\
& P_{2}=s \leadsto u \leadsto y \rightarrow z \leadsto v
\end{aligned}
$$

where $(x, z),(y, z) \in E^{\prime}$. Then: $x=\pi[z]$ and $y=\pi[z]$
$\Rightarrow x=y$, a contradiction.

- Let $P=(s \sim v)$ be a path (in $\left.G^{\prime}\right)$ and $P=v_{0}, \ldots, v_{k}$, where $s=v_{0}$ and $v=v_{k}$. For $i=1, \ldots, k$ one has:

$$
\begin{aligned}
& d\left[v_{i}\right]=\delta\left(s, v_{i}\right) \\
& d\left[v_{i}\right]=d\left[v_{i-1}\right]+w\left(v_{i-1}, v_{i}\right) \\
& \Rightarrow w\left(v_{i-1}, v_{i}\right)=\delta\left(s, v_{i}\right)-\delta\left(s, v_{i-1}\right) \text { and } \\
& w(P)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \\
&=\sum_{i=1}^{k}\left(\delta\left(s, v_{i}\right)-\delta\left(s, v_{i-1}\right)\right) \\
&=\delta\left(s, v_{k}\right)-\delta\left(s, v_{0}\right) \\
&=\delta\left(s, v_{k}\right)
\end{aligned}
$$

Hence: $w(P)=\delta\left(s, v_{k}\right)$, so P is a shortest path.

6c. The Bellman-Ford-Algorithm

The Algorithm returns TRUE iff G does not contain a negative-weight cycle that is reachable from s, and runs in $O(|V| \cdot|E|)$ time.

Algorithm 6 Bellman-Ford (G, w, s);
Initialize-SS (G, w, s)
for $i:=1$ to $|V|-1$ do
for every $(u, v) \in E$ do
$\operatorname{Relax}(u, v, w)$
for every $(u, v) \in E$ do
if $(d[v]>d[u]+w(u, v))$ then
return FALSE
return TRUE

Figure 4: Bellman-Ford Algorithm

Lemma 10 Assume G does not contain a negative-weight cycle that is reachable from s. Then after $|V|-1$ iterations of the first loop one has: $d[v]=\delta(u, v)$ for any $v \in V$ that is reachable from s.

Proof. Let $v \in V$ be reachable from s and $P=\left(v_{0}, \ldots, v_{k}\right)$ be a shortest path $v_{0}=s \leadsto v=v_{k}$. Then $k \leq|V|-1$.

We show by induction on i that $d\left[v_{i}\right]=\delta\left(s, v_{i}\right)$ after first i iterations of the for -loop.

Induction basis: $i=0: d\left[v_{0}\right]=\delta\left(s, v_{0}\right)=0$.
Induction step: assume $d\left[v_{i-1}\right]=\delta\left(s, v_{i-1}\right)$. Since the edge $\left(v_{i-1}, v_{i}\right)$ is relaxed on the i-th iteration of the loop, the assertion follows from L. 8 .

Corollary 3 Vertex v is reachable from s iff the BELLMAN-FORD algorithm terminates with $d[v]<\infty$.

Theorem 5 If G contains no negative-weight loop that is reachable from s, then the algorithm returns TRUE and the shortest paths from s are provided by the pred. subgraph G_{π}. If G contains such a loop, then the algorithm returns FALSE.

If G does not contain a negative-weight loop reachable from s, then $d[v]=\delta(s, v)$ follows from L. 10 and its corollary.

The predecessor subgraph G_{π} is a shortest-path tree (L. 9).

We show that the algorithm returns TRUE. For $(u, v) \in E_{G}$ one has:

$$
\begin{aligned}
d[v] & =\delta(s, v) \leq \delta(s, u)+w(u, v) \quad(\mathrm{L} .5 \mathrm{a}) \\
& =d[u]+w(u, v)
\end{aligned}
$$

Hence, the if -condition in RELAX is not satisfied for every edge, so the algorithm returns TRUE.

Assume G contains a negative-weight loop $C=\left(v_{0}, \ldots, v_{k}\right)$ (with $v_{0}=v_{k}$) that is reachable from s. So,

$$
\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)<0
$$

If the algorithm returns TRUE, then

$$
d\left[v_{i}\right] \leq d\left[v_{i-1}\right]+w\left(v_{i-1}, v_{i}\right), \quad \text { for } i=1, \ldots, k
$$

Summing up these inequalities results in:

$$
\sum_{i=1}^{k} d\left[v_{i}\right] \leq \sum_{i=1}^{k} d\left[v_{i-1}\right]+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

Since $v_{0}=v_{k}$, all d-values are finite, and each vertex appears in the sums exactly once,

$$
\sum_{i=1}^{k} d\left[v_{i}\right]=\sum_{i=1}^{k} d\left[v_{i-1}\right]
$$

which implies

$$
0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

This contradiction implies that the algorithm returns FALSE.

6d. Dijkstra's Algorithm

Assume $w(u, v) \geq 0$ for all $(u, v) \in E_{G}$.
Algorithm 7 Dijkstra (G, w, s);
Initialize-SS (G, s)
$S:=\emptyset ; \quad Q:=V(G)$
while $(Q \neq \emptyset)$ do
$u:=\operatorname{Extract}-\operatorname{Min}(Q)$
$S:=S \cup\{u\}$
for each $v \in \operatorname{Adj}[u]$
$\operatorname{Relax}(u, v, w)$

(a)

(d)

(b)

(e)

(c)

(f)

Figure 5: Dijkstra's Algorithm

The running time of DiJkstra Algorithm is $O\left(\left|V_{G}\right|^{2}\right)$. With a careful implementation it can run in $O(|V| \log |V|+|E|)$ time.

Theorem 6 Let $G=\left(V_{G}, E_{G}\right)$ be a graph with non-negative edge weights w. Then the DiJkstra Algorithm provides $d[u]=\delta(s, u)$ $\forall u \in V$.

Proof:

We show that at time when u is included in S it holds: $d[u]=\delta(s, u)$.
Assume $\exists u$ such that $d[u]>\delta(s, u)$ and let u be the first such vertex. Then u is reachable from s and $u \neq s$.
Let $P=(s \stackrel{G}{\sim} u)$ be a shortest path and $(x, y) \in E_{G}$ be the first edge of P with $x \in S, y \notin S$. Then $P=(s \leadsto x \rightarrow y \leadsto u)$, $d[x]=\delta(s, x)$ and $d[y]=\delta(s, y)$ (by L. 8). Therefore,

$$
d[y]=\delta(s, y) \leq \delta(s, u) \leq d[u]
$$

However, since $y \in V-S$ when u was chosen: $d[u] \leq d[y]$. $\Rightarrow d[u]=\delta(s, u)$, a contradiction.

Since predecessor subgraph G_{π} is a shortest-path tree (L. 9), the last theorem proves the correctness of Dijkstra's algorithm.

Part II. All pairs shortest paths

Since the running time of DiJkstra algorithm is $O\left(|V|^{2}\right)$, one can construct all shortest paths in $O\left(|V|^{3}\right)$ time if the weight function is non-negative.

If G contains no cycle of negative weight, the Bellman-Ford algorithm constructs a solution in $O\left(|V|^{4}\right)$ time.

We will develop a better algorithm.

We represent a graph $G=\left(V_{G}, E_{G}\right)$ with the vertex set $V=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ by its ajacency matrix $w_{i j}$, where

$$
w_{i j}= \begin{cases}0, & \text { if } i=j \\ w\left(v_{i}, v_{j}\right), & \text { if } i \neq j \text { and }\left(v_{i}, v_{j}\right) \in E \\ \infty, & \text { if } i \neq j \text { and }\left(v_{i}, v_{j}\right) \notin E\end{cases}
$$

The shortest paths will be defined by the matrix of predecessors

$$
\Pi=\left\{\pi_{i j}\right\} .
$$

We assume that G contains no cycle of negative weight.

7. The Floyd-Warshall algorithm

Let $P=\left(v_{1}, \ldots, v_{l}\right)$ be a shortest path $v_{1} \leadsto v_{l}$. We call the vertices v_{2}, \ldots, v_{l-1} (if they exist) inner nodes of the path P.

Denote the vertices of G by $\{1,2, \ldots, n\}$. For $i, j \in V$ and given k consider shortest paths $i \leadsto j$ with the inner nodes belonging to the set $\{1, \ldots, k\}$. Let P be such a path (if it exists).

- If $k \notin P$ then all the inner nodes of $i \leadsto j$ are taken from the set $\{1, \ldots, k-1\}$. So P is also a shortest path with the inner nodes of the set $\{1, \ldots, k-1\}$.
- If $k \in P$ then split P into two paths: $P_{1}=(i \rightarrow k)$ and $P_{2}=(k \rightarrow j)$. Then P_{1} is a shortest path $i \leadsto k$ with all inner nodes of the set $\{1, \ldots, k-1\}$, and the same holds for P_{2}.

Denote by $d_{i j}^{k}$ the weight of the shortest path $i \leadsto j$ with all inner nodes of the set $\{1, \ldots, k\}$. One has:

$$
d_{i j}^{k}= \begin{cases}w_{i j}, & \text { if } k=0 \\ \min \left\{d_{i j}^{k-1}, d_{i k}^{k-1}+d_{k j}^{k-1}\right\}, & \text { if } k \geq 1\end{cases}
$$

We put these numbers into a matrix $D^{k}=\left\{d_{i j}^{k}\right\}$, where $d_{i j}^{n}=\delta(i, j)$ for $1 \leq i \leq j \leq n$.

Algorithm 8 Floyd-Warshall(W)

$$
\begin{aligned}
& n:=\# \operatorname{rows}(W) \\
& D^{0}:=W \\
& \text { for } k:=1 \text { to } n \text { do } \\
& \quad \text { for } i:=1 \text { to } n \text { do } \\
& \quad \text { for } j:=1 \text { to } n \text { do } \\
& \quad d_{i j}^{k}:=\min \left\{d_{i j}^{k-1}, d_{i k}^{k-1}+d_{k j}^{k-1}\right\}
\end{aligned}
$$

return D^{n}
The running time of Floyd-Warshall algorithm is $O\left(n^{3}\right)$.

Construction of shortest paths

We construct a series of matrices: Π^{0}, \ldots, Π^{n} with $\Pi^{k}=\left\{\pi_{i j}^{k}\right\}$, where $\pi_{i j}^{k}$ is the predecessor of j on a shortest path $i \leadsto j$ with all inner nodes of the set $\{1, \ldots, k\}$.

$$
\pi_{i j}^{0}= \begin{cases}\text { NIL, } & \text { if } i=j \text { or } w_{i j}=\infty \\ i, & \text { if } i \neq j \text { and } w_{i j}<\infty .\end{cases}
$$

For $k \geq 1$ define:

$$
\pi_{i j}^{k}=\left\{\begin{array}{l}
\pi_{i j}^{k-1}, \text { if } d_{i j}^{k-1} \leq d_{i k}^{k-1}+d_{k j}^{k-1} \\
\pi_{k j}^{k-1}, \text { if } d_{i j}^{k-1}>d_{i k}^{k-1}+d_{k j}^{k-1} .
\end{array}\right.
$$

The elements of Π^{n} provide for each vertex j its predecessor $\pi_{i j}^{n}$ on a shortest path $i \leadsto j$.

$$
\begin{aligned}
& D^{(0)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(0)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \mathrm{NIL} & \mathrm{NIL} & \text { NIL } \\
4 & \mathrm{NIL} & 4 & \mathrm{NIL} & \mathrm{NIL} \\
\text { NIL } & \mathrm{NIL} & \mathrm{NIL} & 5 & \text { NIL }
\end{array}\right) \\
& D^{(1)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(1)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \mathrm{NIL} & \mathrm{NIL} & \text { NIL } \\
4 & 1 & 4 & \mathrm{NIL} & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 5 & \mathrm{NIL}
\end{array}\right) \\
& D^{(2)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(2)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 2 & 2 \\
\mathrm{NIL} & 3 & \mathrm{NIL} & 2 & 2 \\
4 & 1 & 4 & \mathrm{NIL} & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 5 & \mathrm{NIL}
\end{array}\right) \\
& D^{(3)}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{(3)}=\left(\begin{array}{ccccc}
\mathrm{NIL} & 1 & 1 & 2 & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 2 & 2 \\
\mathrm{NIL} & 3 & \mathrm{NIL} & 2 & 2 \\
4 & 3 & 4 & \mathrm{NIL} & 1 \\
\mathrm{NIL} & \mathrm{NIL} & \mathrm{NIL} & 5 & \mathrm{NIL}
\end{array}\right) \\
& D^{(4)}=\left(\begin{array}{rrrrr}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad \Pi^{(4)}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 4 & 2 & 1 \\
4 & \text { NIL } & 4 & 2 & 1 \\
4 & 3 & \mathrm{NIL} & 2 & 1 \\
4 & 3 & 4 & \text { NIL } & 1 \\
4 & 3 & 4 & 5 & \mathrm{NIL}
\end{array}\right) \\
& D^{(5)}=\left(\begin{array}{rrrrr}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad \Pi^{(5)}=\left(\begin{array}{ccccc}
\text { NIL } & 3 & 4 & 5 & 1 \\
4 & \text { NIL } & 4 & 2 & 1 \\
4 & 3 & \text { NIL } & 2 & 1 \\
4 & 3 & 4 & \text { NIL } & 1 \\
4 & 3 & 4 & 5 & \text { NIL }
\end{array}\right)
\end{aligned}
$$

Figure 6: Floyd-Warshall algorithm

Figure 7: Example graph for the Floyd-Warshall algorithm

$$
\begin{aligned}
& D^{i 91}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & 4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 1 j & \infty & \infty \\
2 & \infty & -5 & 0 & 0 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad 1^{16!}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NII. } & \text { NII. } & \text { NII. } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL } & \text { NIL } \\
4 & \text { NIL } & 4 & \text { NIL } & \text { NIL } \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right) \\
& D^{\prime \prime}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{\prime \prime \prime}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NLI } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & \text { NIL } & \text { NIL } \\
4 & 1 & 4 & \text { NII } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 3 & \text { NIL }
\end{array}\right) \\
& D^{2 \eta}=\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & -1 \\
2 & 5 & 5 & 0 & 2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad \Pi^{i P_{1}}=\left(\begin{array}{ccccc}
\text { NII } & 1 & 1 & 2 & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & 2 & 2 \\
4 & 1 & 4 & \text { NIL } & 1 \\
\text { NII. } & \text { NII. } & \text { NII. } & 5 & \text { NII. }
\end{array}\right) \\
& D^{(3)}-\left(\begin{array}{rrrrr}
0 & 3 & 8 & 4 & -1 \\
\infty & 0 & \infty & 1 & 7 \\
0 & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 5 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{array}\right) \quad\left[1^{31}-\left(\begin{array}{ccccc}
\text { NIL } & 1 & 1 & 2 & 1 \\
\text { NIL } & \text { NII. } & \text { NII. } & 2 & 2 \\
\text { NIL } & 3 & \text { NIL } & 2 & 2 \\
4 & 3 & 4 & \text { NIL } & 1 \\
\text { NIL } & \text { NIL } & \text { NIL } & 5 & \text { NIL }
\end{array}\right)\right. \\
& D^{i, j}=\left(\begin{array}{rrrrr}
0 & 3 & -1 & 4 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad \Pi^{4:}=\left(\begin{array}{ccccc}
\text { NIL } & 1 & 4 & 2 & 1 \\
4 & \text { NIL } & 1 & 2 & 1 \\
4 & 3 & \text { NIL } & 2 & 1 \\
4 & 3 & 4 & \text { NIL } & 1 \\
4 & 3 & 4 & 5 & \text { NIL }
\end{array}\right) \\
& V^{(5)}=\left(\begin{array}{rrrrr}
0 & 1 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 3 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{array}\right) \quad 1 I^{(9)}-\left(\begin{array}{ccccc}
\text { NII } & 3 & 4 & 5 & 1 \\
4 & \text { NIL } & 4 & 2 & 1 \\
4 & 3 & \text { NIL } & 2 & 1 \\
4 & 3 & 4 & \text { NIL } & 1 \\
4 & 3 & 4 & 5 & \text { NIL }
\end{array}\right)
\end{aligned}
$$

Figure 8: The Floyd-Warshall algorithm again

8. Graph Colorings

Definition $4 A$ coloring an assignment of colors to vertices such that no two adjacent nodes carry the same color.

A k-coloring is a coloring that uses k different colors $\{1,2, \ldots, k\}$.
The chromatic number $\chi(G)$ of a graph G is the smaller k for which G admits a k-coloring.

A coloring that uses exactly $\chi(G)$ colors is called minimal.
It holds:

$$
\chi\left(K_{n}\right)=n, \quad \chi\left(C_{2 n}\right)=2, \quad \chi\left(C_{2 n+1}\right)=3 .
$$

Theorem 7 A graph G is 2-colorable iff it has no loop of an odd length.

Sketch of proof:
" \Longrightarrow " Obvious.
" $\Longleftarrow " ~ T h e ~ f o l l o w i n g ~ a l g o r i t h m ~ d e v i l e r s ~ a ~ 2-c o l o r i n g ~ f o r ~ G ~ i f ~ o n e ~ e x i s t s ~$ and returns FALSE otherwise.

Let Q be (a FIFO)-Queue.

Algorithm 9 Bipartite (G);

Choose any node $v \in V$ and color it with 1
$Q:=\{v\}$
repeat while $Q \neq \emptyset$
$u:=$ head (Q)
$S:=\operatorname{Adj}[u]$
for all $w \in S$
do if color $[w]=$ color $[u]$
then Graph is not bipartite. FALSE
Color every uncolored node w in S with color $3-\operatorname{color}[w]$ and add it to Q.
$Q:=Q-\{u\}$
return 2-coloring

Let $\omega(G)$ be the size of a maximum clique in G.
Theorem 8 lt holds:

$$
\omega(G) \leq \chi(G) \leq \Delta(G)+1
$$

The lower bound is obvious. The following algorithm constructs a coloring satisfying the upper bound.

Algorithm 10 Coloring (G);

Choose $v \in V$ and color it with color 1
$V^{\prime}:=V-\{v\}$
repeat while $V^{\prime} \neq \emptyset$
Choose $u \in V^{\prime}$
$S:=\operatorname{Adj}[u]$
Color u with the smallest unused color number in S
$V^{\prime}:=V^{\prime}-\{u\}$
return largest used color number
Remark 1 For any two numbers Δ, k with $2 \leq k \leq \Delta$ there exists a G with maximum degree Δ and $\chi(G)=k$.

A general method for computing $\chi(G)$:
Definition 5 Let $G=(V, E)$ be a graph and $a, b \in V,(a, b) \notin E$. Define
$G: a b=\left(V^{\prime}, E^{\prime}\right)$, where

$$
\begin{aligned}
V^{\prime}= & (V-\{a, b\}) \cup\{z\}, \quad(z \notin V) \\
E^{\prime}= & (E-\{(x, y) \mid x \in V, y \in\{a, b\}\}) \cup\{(x, z) \mid x \notin\{a, b\}, \\
& \text { and either }(x, a) \in E \text { or }(x, b) \in E\} . \\
G / a b= & \left(V, E^{\prime \prime}\right), \text { where } E^{\prime \prime}=E \cup(a, b) .
\end{aligned}
$$

A coloring of G satisfying color $(a)=\operatorname{color}(b)$ also provides a coloring of G : ab. Similarly, a coloring of G satisfying $\operatorname{color}(a) \neq$ color (b) provides a correct coloring of $G / a b$.

Repeat the above operations until the resulting graph is a clique. If the smallest-size clique consists of k nodes, then $\chi(G)=k$.

This method leads to an exponential running time, in general.

Example:

Figure 9: Graph coloring with a DP algorithm

Coloring of special graph classes

Definition 6 A graph $G=(V, E)$ is called interval graph if it can be represented by a set of intervals on a line as the set of nodes. An edge of G only exists between overlapping intervals.

Theorem 9 Let G be an interval graph. Then $\chi(G)=\omega(G)$ and a greedy algorithm returns a coloring consisting of $\omega(G)$ colors.

Definition $7 A$ graph $G=(V, E)$ is called planar if it can be drawn on a plane so that no two edges have a proper intersection.

Theorem 10 (Euler)

Let $G=(V, E)$ be a planar connected graph with $|V|=n,|E|=e$ and f be the number of its faces. Then:

$$
n-e+f=2 .
$$

Corollary 4

1. Let $G=(V, E)$ be a planar graph with $|V|=n,|E|=e$. Then:

$$
e \leq 3 \cdot n-6
$$

2. Let $G=(V, E)$ be a planar graph with $|V| \geq 4$. Then G has a node of degree ≤ 5.

Proof:

1. Every face consists of ≥ 3 edges, and every edge belongs to 2 faces. Therefore, counting the number of edges by different ways one has $3 f \leq 2 e$. Furthermore, using the Euler identity,

$$
e=n+f-2 \leq n+2 e / 3-2
$$

which implies $e \leq 3 \cdot n-6$.
2. If the degree of each vertex is at least 6 , then: $2 e \geq 6 n$, which is equivalent to $e \geq 3 n$.

Theorem 11 Every planar graph is 6-colorable.
With a more deep analysis one can also prove
Theorem 12 Every planar graph is 5-colorable.
A very difficult prove that involves many days of non-stop computing shows

Theorem 13 Every planar graph is 4-colorable.
However, not all planar graphs are 3-colorable (e.g. K_{4}). As we will see later, a problem to determine if G admits a 3-coloring is intractable!

