Some Graph Algorithms

1. Depth-First Search (DFS)

2. Topological sort

3. Strongly connected components
4. Shortest paths in graphs

5. Graph colorings

1. Representation of graphs

Let G = (V, F) be a graph and let u,v € V.
e Adjacency list.
Adjlu] is a list of nodes adjacent to u

Memory space: O(|V| + |E|)
Disadvantage: there is no quick way to check if (u,v) € E.

e Adjacency matrix A(G) = a;;.

S 1, if (v,v;) € E
Y10, otherwise
Memory space: O(|V|?).
Advantage: one can save space by using bit encoding of a;;

One can also use both representations for oriented graphs.

2. Depth-First Search (DFS)

This procedure visits all vertices and edges of G = (Vz, F) and
colors the vertices in white, gray, and black.

Initially all vertices of GG are white. As soon as a vertex v is visited for
the first time, we color it gray. As soon as all adjacent to v vertices
have been visited, the color of v becomes black.

We assign to each vertex v € Vj; three labels: d[v], f[v] and 7|v]:

d[v]: the time interval when v becomes gray
flv]: the time interval when v becomes black

m|v]: the predecessor of v in DFS.

It holds:

d], flv] € {1,....2|Val},
dlv] < flv]

for any v € V.

The method constructs a spanning forest W of (&, defined by
Ew ={(m|v],v) | v € V, and 7|v] # nil}.

The edges of Fyy are called tree edges.

3

Algorithm 1 DFS(G, s);

for all u € Vi do
color|u] := white
m|u] ;= nil
time = (
for allu € V; do /* let s be the first vertex */
if (color|u] = white) then
DFS-VisiT(u)

DF'S-VisiT(u);
color|u] = gray
time = time + 1
dlu] = time
for all v € Adjlu] do
if (color|v] = white) then

mlv] = u
DFS-VisiT(v)
color|u] := black

time :=time + 1
flu] := time

The running time of DFS is O(|Vg| + |Eq|).

Figure 1: DFS on a directed graph

3. Properties of Depth-First Search

Theorem 1 Let G = (V, Eg) be an (oriented or non-oriented)
graph and u,v € Vi, u # v. Then either:
e the intervals |d|u|, f|u]] and |d|v], f|v]] are disjoint. or

e the interval [d|u], f|ul]| is a subinterval of |d|v], f|v]] and u is the
descendant of v in the DFS tree, or

e the interval [d|v], f|v]] is a subinterval of |d|u], f|u]] and v is the
descendant of u in the DFS tree.
Proof. Assume d[u] < d[v].

Case 1. Assume d[v] < f|u]. = v was discovered when u was gray
= v is a descendant of u.

Since v was discovered after u, if became black before u did.

= |d[v], flv]] C |d[u], flu]]

Case 2. Assume f|u] < d[v]. Since d|u] < flu] and d[v] < f|v],
dlu] < flu] < dv] < flv]

= intervals [d|u|, f|u]] and [d|v], f[v]] are disjoint. O

Corollary 1 A vertex v is a descendant of u (in DFS forest) if and

only if
dlu] < dv] < flv] < flu]

Theorem 2 Let G = (V, Eg) be an (oriented or non-oriented)
graph, and W be its DFS forest and u,v € V. Then v is the
descendant of u if and only if in time d|u] there exists a path from u
to v, consisting of white vertices only.

Proof.
“="_part: assume v is a descendant of © and w € u~> v. So, w is

a descendant of u = d[u] < dlw| = (C. 1) w is white at time d[u].

“«<"-part: assume any vertex on the path u ~» v is white at time
d|u], but v is not a descendant of u in the DFS tree.

WLOG assume any other vertex on u ~» v is a descendant of u and
let w be the predec. of v in u~» v (u~ w — v).

= (C. 1) flw] < flu]. v must be discovered after u but before w
turns black. Hence,

dlu] < dlv] < flw] < flu].

= (T. 1) [d[v], flv]] C [dlul, f[u]]
= (C. 1) v is a descendant of w. O

4. Topological Sort

Let G = (Vg, Eg) be a DAG (Directed Acyclic Graph), that is a
graph without oriented cycles or loops.

The Problem:
Construct a numbering ¢ : V' — {1,...,|V|}, such that:

(u—v) el = Y(u) < P(v)

f shor socks) 17/18
11/16 (undershorts :)
Y (watch) 9/10
12/15 (pants) shoes) 13/14

(a) 6/7 (belt

L s
(b) GDL@ @ndcrshonD—»G)mg @ a.hm > beﬁ @—:»\ jackel)

17/18 11/16 12/15 13/14 9/10 1/8 2/5

Figure 2: DAG and topological sort

Algorithm 2 ToP-SORT(G);

1. Call DF'S(G) to compute { f|u]}.

2. Place u to the head of the list as soon as f|u] is computed,;
return the list

Proof of of the correctness of this algorithm is based on the following
notion and lemma:

Definition 1 An edge (u,v) € Vg is called back edge if v is an
ancestor of u in the DFS tree (or u is a descendant of v).

Lemma 1 [1|. An oriented graph G is a DAG if and only if the DFS
forest has no back edges.

Proof:

"=" Assume dback edge (u,v)
= 1w is a descendant of v
= dpath v ~ u in GG and GG contains a cycle, a contradiction.

‘<" Assume (G contains a cycle C.
Let v be the first vertex of C' in DFS and (u,v) € E¢.
= 3"white” path v ~» u at time d[v]. (T. 2)
= u is a descendant of v and (u, v) is a back edge, a contradic-
tion. O

Theorem 3 [1|. Let G be a DAG. Then ToP-SORT(G) algorithm
constructs a topological sorting of GG.
Proof:

We show that Vu,v € V' (u # v)
(u,v) € Eg = flu] > f[v].

Consider an edge (u, v) explored by DFS.
= color(u) = gray and color(v) # gray.

(color(v) = gray = v is an ancestor of u
= (u,v) is a back edge.)

= color(v) € {white, black}.

a. [color(v) = white] = v is a descendant of u
= flo] < f [J
b. [color(v) = black] = flv] < du] < flul. O

The running time of TOP-SORT(G) is O(|Vg| + |Eq|).

10

5. Strongly connected components (SCC)

Definition 2 Let G = (Vz, E¢) be an oriented graph.

A strongly connected component is a maximal (by inclusion) vertex
set K C Vg, such that for any u,v € K there exist oriented paths
U~ v and v~ u.

The Problem:
Given G = (Vg, Eg), partition Vi into SCC.

Denote G = (V, E), where

El={(u—=v)|(v—u) e Eg.

Algorithm 3 SCC(G);

1. Call DF'S(G) to compute the numbers { f|u|}

2. Construct G*

3. Call DFS(G'), where the vertices are ordered according to f[u]
taken in decreasing order

4. Output the vertices of the DFS trees of G
as strongly connected components

The running time of SCC(G) is O(|Vg| + |Eg|).
Theorem 4 [1|. SCC(G) partitions Vi into SCCs.

11

Figure 3: DFS labeling and Strongly Connected Components

Lemma 2 Let C and C' be distinct SCC in directed graph G =
(Va, Eq). Let u,v € C, u',v" € C" and there Apath u ~» u'. Then
there is no path v’ ~» v.

Proof:
If v/ ~» v then there are paths u ~ v ~ v/ ~» v~ u, so u and v’
belong to the same component, a contradiction. O

For a set U C Vz denote
V) = mip{dfu)
fU) = max{flu]}

uwel

12

Lemma 3 Let C' and C' be distinct SCCs in directed graph G =
(Vig, Eg). If dedge (u,v) € Eg with w € C and v € C' then

F(C) > F(C).

Proof:

Case 1. Assume d(C') < d(C"), and let x € C, s.t. d(C') = d|z].
= at time d|z] all vertices of C' and C" are white

= VYw e C" dpath z ~ u — v~ w

= all vertices of C' and C" are descendants of x in DFS tree

= flz) = f(C) > f(C).

Case 2. Assume d(C') > d(C"), and let y € C', s.t. d(C") = d|y].

= at time d|y] all vertices of C’ are white
= all vertices of C"’ are descendants of y, so f[y| = f(C")

Since Ju — v, there is no path v ~> u (Lemma 2)
= all vertices of C' are white at time f|y]

= VYw € C, flw] > fly] = f(C) > fly] = f(C") =

Corollary 2 Let C and C' be distinct SCCs in directed graph G =
(Va, Eg). If Jedge (u,v) € ET with u € C and v € C' then

F(C) < F(C).

Proof: (u,v) € BT = (v,u) € E. Since the SCCs in G and G are
the same, Lemma 3 implies f(C') < f(C"). O

13

Proof of Theorem 4:

Claim: the vertices of each tree constructed in step 3 form a SCC.
Induction on the number k of DFS trees. Trivial for £ = 0.

Assume each of the first k trees is a SCC and consider the (k+ 1)-th
tree T'= (Vp, Er). Let u be its root and u € C' for some SCC C.
We show C = V.

At time the DFS on G? visits u, all vertices of C' are white
= all vertices of C' are descendants of u in DFS tree
= Ywel, weVp, ie.

C CVp
To show the equality, assume C' C V7 and let v be the first vertex
of Vi — C visited by the DFS on G'. Let v € C" for some SCC C".
= f(C) < f(C") (Cor. 2)

= all vertices of C’ have already been visited, a contradiction. O

14

6. Shortest Path Algorithms

e Generalities

e Part |. Single source shortest paths
— The Bellman-Ford algorithm
— Dijkstra’s algorithm

e Part |l. All pairs shortest paths
— The Floyd-Warshall algorithm

15

6a. Generalities

Let G = (V, Eg) be an oriented graph and let w : Eg — R be

a weight function. Let P = (vy,...,v;) be a (oriented) path in G.
We define

w(P) = f w(v;_1, ;).

i=1
For u,v € V put
min w(P), if Ipath v~ v

5(“, ’U) —] P=(u~w) .
00, otherwise.
Definition 3 A path P = (u ~» v) is called shortest path, if
w(P) = 6(u,v).

Problems:
Given G = (V, E¢) and a weight function w.

e Let s € V. Find a shortest path from s to any vertex of GG.

e Find a shortest path between any pair of vertices of G.

We represent a path P by the set of predecessors {m|v]} for v € P,
and define the predecessor graph by

G = (V;, E;), where
Ve = {v eV |nx #NIL}U{s}
Er = {(rlv],v) € E|veVr—{s}]

16

Part |. Single-source shortest paths

Assume G contains no cycle of negative weight.
We construct a shortest paths tree G' = (V' E'):

o V' ={v eV |Jpath s~ v}.
e (/ is a tree rooted in s.

/
e Vv € V' the path s s v is also a shortest path s S

Lemma 4 Let (vy,...,v;) be a shortest path v; ~» vi. Then
(Viy ..., v;) is a shortest path v; ~ v;, for all 1 < i < j <k.

Lemma 5

a. Let (vy,...,v,u) be a path vy ~ u and (vy,u) € E. Then
d(vy,u) < (v, vg) + w(vg, u).

b. Let (vi,...,vr,u) be a shortest path vy ~» u and (v, u) € E.

Then

d(v1,u) = d(v, vk) + w(vg, w).

Algorithm 4 INITIALIZE-SS(G, w);

for eachv €V do
d[v] :== 00
m[v] ;= NIL

—

17

6b. Relaxation
Let (u,v) € Eg.

Algorithm 5 RELAX(u, v, w);

if (d[v] > d|u] + w(u,v)) then
d[[v]] = d|u] + w(u, v)

Assume the procedure INITIALIZE-SS has been applied to a graph
G = (Vig, Eg). The relaxation satisfies the following properties:

Lemma 6 Let (u,v) € Eg. Then right after calling RELAX (u, v, w)
one has
dlv] < d[u] + w(u,v).

Lemma 7
a. djv] > 0(s,v) for all v € V.
b. If dlv] = 6(s,v) then no further call of RELAX modifies d|v].

Proof:
a. The inequality is valid right after the initialization, since
d|s] =0 2> d(s,s) and djv] = 00 > (s, v) for v # s.

18

Let v be the first vertex for which RELAX provides d[v] < (s, v).
Then for (u,v) € Eq right after calling RELAX(u, v, w) one has:

du] + w(u,v) = d[v]
< (s, v)
< (s, u) + w(u,v) (by L. 5a)

Hence, d|u| < d(s, u), contradicting the choice of v.

b. Since d[v] > §(s,v) and RELAX does not increase the values of
d|-], the assertion is true. O

Lemma 8 Let s ~» u — v be a shortest path s % v and (u,v) €
Eq. If prior to the call of RELAX(u,v,w) one has dlu] = (s, u),
then d|v| = 0(s,v) for all times afterwards.

Proof:
d|u] = (s, u) prior to the call of RELAX (u, v, w)
= d|u| = d(s,u) after the call (L. 7b).
One has:

dlv] < dlu] +w(u,v) (L. 6)
o(s,u) +w(u,v)
d(s,v) (L. 5b).

1A

On the other hand, by L. 7a one has d[v] > d(s,v). O

19

Lemma 9 Assume G contains no negative-weight loop reachable
from s and d|v] = (s, v) holds for any v € V. Then the graph G
is a shortest paths tree.

Proof. We follow the definition of the shortest paths tree.

e /(s,v) < oo only for vertices v reachable from s.
d|v] < 0o & T|v] # NIL.

e Assume there exist 2 different paths from s to v:

Ph=s~u~x—2~0

Py =s~u~y— 2~ 0,

where (z, 2), (y,2) € E'. Then: x = 7|z] and y = 7|z
= x = v, a contradiction.

e let P = (s~ v) be a path (in G') and P = vy, ..., v, where
s=vpand v =wv;. Fort=1,...,k one has:

w(P) = X w(vi—1,v;)

(0(s,v;) — (s, vi1))
= d(s,v;) — (s, vp)
d(s, vg)-
Hence: w(P) = 6(s,v;), so P is a shortest path. O

I
.
L= 1

20

6c. The Bellman-Ford-Algorithm

The Algorithm returns TRUE iff G does not contain a negative-weight
cycle that is reachable from s, and runs in O(|V| - |E|) time.

Algorithm 6 BELLMAN-FORD(G, w, s);

INITIALIZE-SS(G, w, s)
fori:=1 to|V]|—1 do
for every (u,v) € E do
RELAX (u, v, w)
for every (u,v) € E do
if (d[v] > d|u] + w(u,v)) then
return FALSE
return TRUE

Figure 4: Bellman-Ford Algorithm

21

Lemma 10 Assume GG does not contain a negative-weight cycle that
is reachable from s. Then after |V | — 1 iterations of the first loop
one has: d\v] = §(u,v) for any v € V that is reachable from s.

Proof. Let v € V' be reachable from s and P = (vy,...,v;) be a
shortest path vy = s~ v =v;. Then k < |V] — 1.

We show by induction on 7 that d|v;| = (s, v;) after first ¢ iterations
of the for -loop.

Induction basis: i = 0: d|vg| = 6(s,vy) = 0.

Induction step: assume d|v;_1] = (s, v;_1). Since the edge (v;_1, v;)
is relaxed on the i-th iteration of the loop, the assertion follows from
L. 8. O

Corollary 3 Vertex v is reachable from s iff the BELLMAN-FORD
algorithm terminates with d[v] < oo.

Theorem 5 If G contains no negative-weight loop that is reachable
from s, then the algorithm returns TRUE and the shortest paths from
s are provided by the pred. subgraph GG.. If G contains such a loop,
then the algorithm returns FALSE.

If G does not contain a negative-weight loop reachable from s, then
d|v] = 6(s,v) follows from L. 10 and its corollary.

The predecessor subgraph G is a shortest-path tree (L. 9).

22

We show that the algorithm returns TRUE. For (u,v) € Eg one has:
dlv] = d(s,v) < d(s,u) +w(u,v) (L. 5a)
= du] + w(u,v).

Hence, the if -condition in RELAX is not satisfied for every edge,
so the algorithm returns TRUE.

Assume GG contains a negative-weight loop C' = (v, ..., v;) (with
vy = Vi) that is reachable from s. So,

k

_le(vi_l,vi) < 0.

1=

If the algorithm returns TRUE , then
d[UZ] S d[’l}i_l] + UJ(?)i_l, Uz'); for 1 = 1, Ceey k.
Summing up these inequalities results in:
k k k
Y dlv] < ¥ dvia] + 3 w(vieg, v;).
1=1 i=1 1=1

Since vy = vy, all d-values are finite, and each vertex appears in the
sums exactly once,

which implies

k
0< '21 w(v;_1, ;).

This contradiction implies that the algorithm returns FALSE. O

23

6d. Dijkstra’s Algorithm

Assume w(u,v) > 0 for all (u,v) € Eg.

Algorithm 7 DIJKSTRA(G, w, s);
INITIALIZE-SS(G, s)
S=0;, Q=V(QG)
while (Q #0) do

u = EXTRACT-MIN(Q)

S =SU{u}

for each v € Adj|u]

RELAX (u, v, w)

Figure 5: Dijkstra’s Algorithm

The running time of DIJKSTRA Algorithm is O(|V|?). With a care-
ful implementation it can run in O(|V|log |V |+ | E|) time.

24

Theorem 6 Let G = (V, Eq) be a graph with non-negative edge
weights w. Then the DIJKSTRA Algorithm provides d|u| = (s, u)
Vu e V.

Proof:
We show that at time when w is included in S'it holds: d|u| = d(s, u).

Assume Ju such that d|u| > d(s,u) and let u be the first such vertex.
Then u is reachable from s and u # s.

Let P = (s <% u) be a shortest path and (z,y) € Eg be the first
edge of Pwithz € S, y € S. Then P = (s ~ & — y ~ u),
dlx] = (s, x) and d[y| = d(s,y) (by L. 8). Therefore,

dly] = o(s,y) < 0(s,u) < dlu].

However, since y € V — S when u was chosen: d[u] < d]y].
= d|u] = (s, u), a contradiction. O

Since predecessor subgraph G is a shortest-path tree (L. 9), the last
theorem proves the correctness of Dijkstra’s algorithm.

25

Part |l. All pairs shortest paths

Since the running time of DIJKSTRA algorithm is O(|V]?), one can
construct all shortest paths in O(|V|?) time if the weight function is
non-negative.

If G contains no cycle of negative weight, the BELLMAN-FORD
algorithm constructs a solution in O(|V[*) time.

We will develop a better algorithm.

We represent a graph G = (Vg, Eg) with the vertex set V' =

{vi,...,v,} by its ajacency matrix w;;, where
0, ifi—=j
w;; =3 w(vi,v;), if i # j and (v;,v,) € B
00, if - # 7 and (v;,v;) € E

The shortest paths will be defined by the matrix of predecessors
Il = {7'('2'3'}.

We assume that G contains no cycle of negative weight.

26

7. The Floyd-Warshall algorithm

Let P = (v1,..., ;) be a shortest path v; ~ v;. We call the vertices
Vg, ..., U1 (if they exist) inner nodes of the path P.

Denote the vertices of G by {1,2,...,n}. Fori,j € V and given k
consider shortest paths ¢ ~» 5 with the inner nodes belonging to the
set {1,...,k}. Let P be such a path (if it exists).

o If £ & P then all the inner nodes of 7 ~» j are taken from the
set {1,...,k —1}. So P is also a shortest path with the inner
nodes of the set {1,...,k—1}.

o If £ € P then split P into two paths: P, = (¢« — k) and
P, = (k — j). Then Py is a shortest path i ~» k with all inner
nodes of the set {1,...,k — 1}, and the same holds for P.

Denote by dfj the weight of the shortest path ¢« ~» 5 with all inner
nodes of the set {1,...,k}. One has:

wij, if k=20

k
dij = min {dfj_l, dit + dﬁj_l}, it k> 1.

We put these numbers into a matrix D" = {d};}, where dj; = 4(,)
for 1 <1 <73 <n.

27

Algorithm 8 FLOYD-WARSHALL(W)

n = #rows(W)
DV =W
for £:=1 ton do
for ::=1 ton do
for j:=1 ton do
dfj ‘= min {df}‘l, di dléj_l}

return D"

The running time of FLOYD-WARSHALL algorithm is O(n?).

Construction of shortest paths

We construct a series of matrices: I1°,... II" with IT* = {m}.}, where

k

m;; is the predecessor of j on a shortest path ¢ ~ j with all inner

nodes of the set {1,...,k}.

0 _ NIL, if ¢ = 7 or w;; = 00
Y 1, if ¢ 7&] and Wi < Q.

For k£ > 1 define:

k_{ " ,n‘dk < di + d!

Mij = 7Tk] . if dk 1 d +d,@j_1.

The elements of I1" provide for each vertex j its predecessor 7 on
a shortest path 7 ~ j.

28

NIL |
2 Z
NIL NIL
NIL NIL
5 NIL

NIL
4

NIL NIL

NIL |
NIL NIL NIL
3
NIL

NIL
4
NIL

7

e —
taRgge

gig e
® g g
g ¥
©g88"g

D(O:-

NiL

2 2
NIL NIL NIL
4 NI 1

5 NIL

NIL. NIL

NIL 1

NIL NIL NIL
‘)J
1

NIL
4
NIL

I
=
]

- B e B S
A

grgee
Smﬂc_.vmw
3045%

°ge8

—
—_—
—

NIL

2
2
2
5

NIL

1
NIL NIL NIL
.3 NIL

1
NIL NIL NIL

NIL

Il
_—
]
e

Q

2
2
2
I

NIL NIL

NIL

NIL

NIL
4

4
1
5
-5 0

304|_

ﬂuwm.}u

—_
o
Q

NIL NIL 5 NIL

NIL

-

3

L]

— — p— —

NIL

5
2
2
NIL
5

NIL

o on I~ o OO

Figure 6: Floyd-Warshall algorithm

29

6

Figure 7: Example graph for the Floyd-Warshall algorithm

n 3 R =] WL 1 1w |

o M oea 7 NT. NT. NN 2 2

DUl e 4w x W= s 4 Mo NI NIL

I ma -3 0 4 wiL 4 miL NiL

ex oo oo B 0 ,J NIL NIL ML 5 ML
> 3 oo —4 \ a1 1 o |

oo 0 oo 1 7 MIL NIL N 2 2

DU=| s 4 0 8 o M'=]l uL 31 KNo ML NILL
2 5 - 0 -2 4 | 4 mu |

T \ MIL NIL NI > NIL
F 0 3 85 4 -4 n. 1 1 2 [
ovw 0 = 1 7 ML NIL wWoL 2 2
D= o 4 0 5 1 "= s 3 w 2 2
PR S0 2 4 1 4 wm |

Ve o a0 RO ML own wm. 5 wm./
F 03 8 4 -4 ML 1 1 2 1
: 0 oo 7 NIL NN wm. 2 2
T2 I T I | 3 _ | s 3 w202
2 -1 -5 1 =2 4 3 4 o |
\ x oo £ 0 NIL NIL WML Nu_/‘

0 3 -1 4 -4 ML i 4 2 1
3 0 -4 1 -1 4 ML 2 1
D=7 4 05 13 n* = 4 EREES T} | B 1
2 -1 -5 0 -2 4 3 4 wn L

8 b 1 6 o] 4 3 4 i B
[} 1 -3 2 —4 KIL 3 4 5 1
3 o -4 | ~1 4 w4 2 1
oA =17 4 g 5 3 10% = 4 3 w2 1
2 -1 -5 0 =2 4 3 4 w1

B 5 1 & D 4 3 4 § WL

Figure 8: The Floyd-Warshall algorithm again

30

8. Graph Colorings

Definition 4 A coloring an assignment of colors to vertices such that
no two adjacent nodes carry the same color.

A k-coloring is a coloring that uses k different colors {1,2, ... k}.

The chromatic number x(G) of a graph G is the smaller k for which
GG admits a k-coloring.

A coloring that uses exactly x(G) colors is called minimal.

It holds:
X(Kn> =N, X(CZTL> = 2, X(CQTH—l) = 3.

Theorem 7 A graph G is 2-colorable iff it has no loop of an odd
length.

Sketch of proof:
“—>" Obvious.

“<—=" The following algorithm devilers a 2-coloring for (& if one exists
and returns FALSE otherwise.

31

Let (@ be (a FIFO)-Queue.

Algorithm 9 BIPARTITE(G);

Choose any node v € V' and color it with 1
Q= (v}
repeat while Q # ()
u = head(Q)
S = Adj|ul
for all w € S
do if color|w| = color|u]
then Graph is not bipartite. FALSE
Color every uncolored node w in S with color 3 — color|w]
and add it to Q).

Q:=Q —{u}

return 2-coloring

Let w(G) be the size of a maximum clique in G.

Theorem 8 /t holds:
w(G) < x(G) <AG) + 1.

The lower bound is obvious. The following algorithm constructs a
coloring satisfying the upper bound.

32

Algorithm 10 COLORING(G);

Choose v € V' and color it with color 1
V=V —{v}
repeat while V' £ ()

Choose u € V'

S = Adj|ul
Color u with the smallest unused color number in S
V=V — {u}

return largest used color number

Remark 1 For any two numbers A\, k with 2 < k < A there exists
a G with maximum degree A and x(G) = k.

A general method for computing x(G):

Definition 5 Let G = (V, E) be a graph and a,b €V, (a,b) € E.
Define
G :ab= (V' E'), where
Ve (Ve b)) UL}, (¢ V)
E' = (E—A{(z,y) [z € V.ye{a,b}}) U{(z,2) | = € {a,b},
and either (x,a) € E or (x,b) € E}.

G/ab= (V,E"), where E" = E U (a,b).

33

A coloring of G satisfying color(a) = color(b) also provides a col-
oring of G : ab. Similarly, a coloring of G satisfying color(a) #
color(b) provides a correct coloring of G'/ab.

Repeat the above operations until the resulting graph is a clique. If
the smallest-size clique consists of k& nodes, then x(G) = k.

This method leads to an exponential running time, in general.

Example:

IS l i r Iy e

1 1 H
‘ | |) ()

o & if et a4q §oad o h

Figure 9: Graph coloring with a DP algorithm

34

Coloring of special graph classes

Definition 6 A graph G = (V, E) is called interval graph if it can
be represented by a set of intervals on a line as the set of nodes. An
edge of G only exists between overlapping intervals.

Theorem 9 Let G be an interval graph. Then x(G) = w(G) and a
greedy algorithm returns a coloring consisting of w(G) colors.

Definition 7 A graph G = (V, E) is called planar if it can be drawn
on a plane so that no two edges have a proper intersection.

Theorem 10 (Euler)
Let G = (V, E) be a planar connected graph with |V| =n, |E| =€
and f be the number of its faces. Then:

n—e+ f =2
Corollary 4

1. Let G = (V, E) be a planar graph with |V| =n, |E| = e. Then:
e <3-n—~0.

2. Let G = (V, E) be a planar graph with |V| > 4. Then G has a
node of degree < 5.

35

Proof:

1. Every face consists of > 3 edges, and every edge belongs to 2
faces. Therefore, counting the number of edges by different ways
one has 3f < 2e. Furthermore, using the Euler identity,

e=n+f—2<n+2e/3—2,
which implies e < 3-n — 6.

2. If the degree of each vertex is at least 6, then: 2e > 6n, which is
equivalent to e > 3n. O

Theorem 11 Every planar graph is 6-colorable.

With a more deep analysis one can also prove
Theorem 12 Every planar graph is 5-colorable.

A very difficult prove that involves many days of non-stop computing
shows

Theorem 13 Every planar graph is 4-colorable.

However, not all planar graphs are 3-colorable (e.g. Kj4). As we
will see later, a problem to determine if G admits a 3-coloring is
intractable!

36

