
Geometric Algorithms

1. Definitions

2. Line-Segment properties

3. Inner Points of polygons

4. Simple polygons

5. Convex hulls

6. Closest pair of points

7. Diameter of a point set

1. Objects

• 2-dimensional plane

• System of coordinates X − 0− Y
• Points {pi}, where pi = (xi, yi), i = 1, 2, . . . , n

• Segments pipj, 1 ≤ i < j ≤ n

• Lines pi − pj, 1 ≤ i < j ≤ n

If p1 = (0, 0) then we treat a segment p1, p2 as a vector p2.

We call two segments p1p2 and q1q2 intersecting if they have at least
one common point.

1

We define a chain as a set of points {p1, . . . , pn} and segments
{p1p2, . . . , pn−1pn}.

A polygon is a chain with n ≥ 3 and p1 = pn. A polygon is called
simple if no two its non-neighboring segments intersect.

A polygon divides the plane into the inner and the outer parts. A
polygon P is called convex if for any two its inner points p and q,
every point of the segment pq is an inner point of P .

Specific features of Computational Geometry problems:

• A very large number of points (over 106).

• A large number of special cases

• Arithmetic operations have different costs:

Inexpensive: addition, subtraction, comparison, boolean

Moderate: multiplication

Expensive: division, powers, arithmetic roots

2

2. Segment intersection test

The problem:
Instance: Segments p1p2 and p3p4 of positive lengths
Question: Do the segments have a common point?

We apply a two-step method:

1. Quick rejection.
Let p1 = (x1, y1) and p2 = (x2, y2). Denote

x̂1 = min{x1, x2}, x̂2 = max{x1, x2}
ŷ1 = min{y1, y2}, ŷ2 = max{y1, y2}.

Consider the rectangle P = (p̂1, p̂2), where p̂1 = (x̂1, ŷ1) and
p̂2 = (x̂2, ŷ2). Similarly, construct a rectangle Q = (p̂3, p̂4).

One has: P ∩ Q = ∅ ⇒ p1p2 ∩ p3p4 = ∅. Now, P ∩ Q 6= ∅ iff
(x̂1 ≥ x̂3) ∧ (x̂4 ≥ x̂1) ∧ (ŷ1 ≥ ŷ3) ∧ (ŷ4 ≥ ŷ1).

Figure 1: Quick elimination of non-intersecting segments

3

2. For q1 = (x′, y′) and q2 = (x′′, y′′) denote

q1 × q2 = x′y′′ − x′′y′

One has:

• sign((p3 − p1)× (p2 − p1)) 6= sign((p4 − p1)× (p2 − p1))
⇒ p1p2 and p3p4 do intersect

• sign((p3 − p1)× (p2 − p1)) = sign((p4 − p1)× (p2 − p1))
⇒ p1p2 and p3p4 do not intersect

Figure 2: Proper intersection test

• (p3 − p1)× (p2 − p1) 6= 0 and (p4 − p1)× (p2 − p1) = 0
⇒ p4 ∈ p1p2
• (p3 − p1)× (p2 − p1) = 0 and (p4 − p1)× (p2 − p1) = 0
⇒ p3 ∈ p1p2 and p2 ∈ p3p4

Figure 3: Improper intersection test

4

3. Inner points of polygons

The problem:
Instance: Polygon P and a point q = (x, y).
Question: Determine whether q is an inner point of P .

Idea: consider an external point s of P and compute how much times
does the segment qs intersect the boundary of P . If this number is
even, then q is an external point, otherwise it is an inner one.

If P consists of points {p0, . . . , pn−1} and segments {e0, . . . , en−1},
with ei = pip(i+1) mod n, we consider the vertical line q − s.

Algorithm 1 Point-in-Polygon(P, q);
Let s be an external point of P and let L = q − s
c = 0
for i = 0 to n− 1

if ei ∩ L is just 1 point /* BE CAREFUL !!! */
c = c + 1

if c is odd
Inside = true

else
Inside = false

return c

This method will have a problem if ei ∩ L ∈ {pi, p(i+1) mod n}, but it
is easy to fix it.

The running time of the algorithm is O(n).

5

4. Simple Polygons

Instance: Set of points {p1, . . . , pn}.
Problem: Construct a simple polygon with nodes in these points.

Let n ≥ 3 and assume p1, p2, p3 are not collinear. We set the origin
0 in an inner point of the triangle p1, p2, p3 (i.e. in its center of
gravity).

Furthermore, define the order of points L as follows:
pi ≤L pj ⇐⇒

(i) 6 (p1, 0, pi) < 6 (p1, 0, pj) (6 is the angle), or

(ii) if 6 (p1, 0, pi) = 6 (p1, 0, pj), then dist(0, pi) < dist(0, pj).

Algorithm 2 Polygon(p1, . . . , pn);

1. Sort the points p1, . . . , pn w.r.t the order L.
2. for i = 1 to n− 1

Connect the point number i in Order L
with point number i + 1 mod n in L

3. return Polygon

The running time of Polygon is determined by sorting and is
O(n log n).

6

The Convex Polygon Inclusion Problem: (CPI)
Given a convex polygon P and a point z. Determine whether z is an
inner point of P .

Proposition 1 The CPI-Problem is solvable in O(log n) with a O(n)
preprocessing.

Proof. Let q be an inner point of the polygon {p1, . . . , pn}. The
half-infinite lines q − pi split the plane in n sectors.

We introduce the polar coordinate system (r, ϕ) originated in q and
compute the angles 6 (pi), i = 1, . . . , n.

Algorithm 3

1. Find i with 6 (pi) ≤ 6 (z) < 6 (pi+1).
2. If the segments q, z and pi, pi+1 intersect properly,

then z is an external point.
Otherwise z is an inner point.

A polygon P = {p1, . . . , pn} is called star polygon, if there exists an
inner point q of P , such that each point of the segment q, pi is an
inner point of P .

Corollary 1 The CPI problem for star polygons is solvable in time
O(log n) with O(n) preprocessing time.

7

5. Convex Hull

Definition 1 The convex hull CH(Q) for a set of points Q is the
minimum convex polygon that contains all points of Q.

Figure 4: Example of a convex hull

Trivial solution: O(n2) operations. We design an algorithm with the
running time O(n log n). The fastest known method requires just
O(n log(|CH(Q)|)) operations.

8

Remark 1 Let p0, p1, p2 be points. One has:

(p1 − p0)× (p2 − p0) :

> 0 ⇔ −→
p0p2 is counterclockwise to

−→
p0p1

= 0 ⇔ −→
p0p1 and

−→
p0p2 are collinear

< 0 ⇔ −→
p0p2 is clockwise to

−→
p0p1

Figure 5: Checking for clockwise position

9

Let Q = {p0, . . . , pn} (n ≥ 2) and let p0 be the point with the
minimum y-coordinate. If there exist several such points, take as p0
the one that has the minimum x-coordinate.

We assume that the points {p1, . . . , pn} are sorted according to the
angles of vectors

−→
p0p1 in the counterclockwise order. If more than

one point has the same angle with p0 we leave in Q only the one with
the maximum distance from p0.

We use a stack S. The procedure Top(S) returns the top element
of the stack without modifying it. Similarly, the procedure Next-
to-Top(S) returns the second top element of S.

Algorithm 4 Graham-Scan(Q);

Push(p0, S)
Push(p1, S)
Push(p2, S)
for i = 3 to m // here m ≤ n

while pi is to the right of Next-to-Top(S),Top(S)
Pop(S)

Push(pi, S)
return S

10

Figure 6: The Graham scan algorithm

11

Figure 7: The Graham scan algorithm (continued)

12

Theorem 1 A point p is in stack S of the Graham-Scan algo-
rithm iff p ∈ CH(Q).

Proof.

We show pt 6∈ S ⇒ pt 6∈ CH(Q).

Figure 8: Correctness of the Graham scan

Indeed, if pt 6∈ S then pt ∈ ∆(p0, pi, pr), where pt = Top(S) and
pr = Next-to-Top(S) at time i. Hence, pt 6∈ CH(Q).

⇒ CH(Q) ⊆ S

To prove the converse, we show by induction on i that on the i-th
iteration of the for -loop S consists of the points of CH(Qi) only.

⇒ S ⊆ CH(Q)

The running time: Sorting takes O(n log n) time.
Both Pop and Push take O(1) time.
The entire while -loop is executed O(n) times, since each point is
put on stack exactly once (and popped out of stack at most once).

⇒ Total running time is O(n log n).

13

6. Finding a closest pair of points

Instance: A set of points P = {p1, . . . , pn}.
Problem: Find a pair of points with minimum distance.

Trivial solution: check all
(
n
2

)
pairs of points. This leads to a Θ(n2)

algorithm.

We apply the Divide and Conquer method to solve the problem in
time O(n log n).

The algorithm consists of the following steps:

Divide: Split the set P by a vertical line ` into two parts PL and PR
(|PL| = bn/2c, |PR| = dn/2e). If some points are on ` assign
them arbitrarily to PL or PR.

Conquer: Find closest neighbors in PL and PR (let δL and δR be
the shortest distances and δ = min{δL, δR}). Sort the points
in PL and PR w.r.t. x- and y-coordinates and create the sorted
arrays XL, XR, YL and YR.

Combine: The nearest neighbors x, y of P are either on distance
δ (i.e. x, y ∈ PL or x, y ∈ PR) or x ∈ PL, y ∈ PR. We can
consider only those points that are on distance at most δ from `
(the Y ′-zone).

14

To find a closest pair (x, y) with x ∈ PL, y ∈ PR we do the following:

1. Sort the points of Y ′ w.r.t. the y-coordinate.

2. For each p ∈ Y ′ construct all points of Y ′ within the distance δ
from p and find the shortest distance δp between them.

3. Return min{δ, min
p
δp}.

Figure 9: Finding a closest pair of points

If the points of the Y ′-zone are sorted according to the y-coordinate,
one needs to consider for every point p ∈ Y ′ only up to 5 points of
Y ′.

15

Implementation details

We can efficiently construct the sorted arrays YL, YR (needed for the
recursive calls) from Y (sorted array of all points y-coordinates) as
follows:

Algorithm 5
1. Initialize empty arrays YL and YR.
2. for i = 1 to |Y |
3. if (Y [i] ∈ PL)
4. add Y [i] to YL
5. else
6. add Y [i] to YR

This procedure runs in linear time. Similarly sort arrays XL and XR

can be constructed from X (needed for finding the line `).

If the array Y of all y-coordinates is sorted (an O(n log n) prepro-
cessing), the sorted array Y ′ can be constructed in O(n) time instead
of O(n log n) (important!).

Therefore, for the running time T (n) one has:

T (n) = 2 · T (n/2) + O(n),

which implies T (n) = O(n log n).

Hence, the total running time (T (n) + O(n log n) preprocessing) is
O(n log n).

16

7. Diameter of a point set

Consider the two following problems:

Diameter
Given n points in the plane, find a pair with maximum distance.

Disjointness
Given two sets A,B of positive numbers, determine if A ∩B 6= ∅.

Theorem 2 (Ben-Or, 1983)
To solve the Disjointness problem, Ω(n log n) comparisons are
necessary.

We transform Disjointness into Diameter:

Let A,B be an instance for Disjointness.
Denote by C the disk of radius 1 centered in (0, 0).
For ai ∈ A let a′i be the intersection of C and the line y = aix for
x > 0.
For bj ∈ B let b′j be the intersection of C and the line y = bjx for
x < 0.
Consider the set {a′i} ∪ {b′j} as an instance for Diameter.
One has: Diam({a′i} ∪ {b′j}) = 2 ⇔ A ∩B 6= ∅.

This implies:

Theorem 3 To find the diameter of a set of n points, Ω(n log n)
operations are necessary.

17

Theorem 4 (Hocking-Young, 1961)
The diameter of a set of points equals the diameter of its convex hull.

Theorem 5 (Yaglom-Boltyanskii, 1961)
The diameter of a convex polygon is the maximum distance between
its parallel tangent lines.

We call two points of a convex polygon antipodal, if there exist two
parallel tangent lines passing through these points.

Our goal is, therefore, to find all pairs of antipodal points.

Let P be a simple polygon and let its points p0, . . . , pn−1 be num-
bered in the counterclockwise order. Starting in some point pi ∈ P ,
we visit the points of P in the cyclic order to find the first point
qR ∈ P with a maximum distance from the line (pi−1, pi) (the point
indices are considered modulo n).

After that, keeping going in the same direction, we find a point qL
with maximum distance from the line (pi, pi+1).

The set of points between qR and qL (inclusive) determine all points
that are antipodal to pi (see the next page).

In the following pseudocode, the method Next(pi) returns the point
next to pi in the cyclic order (i.e. the point pi+1 mod n).

18

Figure 10: Seach for all points antipodal to pi (points between qR and qL)

19

Figure 11: Computing the diameter of a polygon (here p1p2 ‖ p6p7)

20

Algorithm 6 AntiPairs;
1. i := n− 1
2. q := p0
3. while Dist(pi, pi+1;Next(q)) > Dist(pi, pi+1; q)

q := Next(q)
4. q0 := q

5. while q 6= p0 do
6. i := i + 1 (mod n)
7. Output(pi, q)
8. while Dist(pi, pi+1;Next(q)) ≥ Dist(pi, pi+1; q)
9. q := Next(q)
10. if (pi, q) 6= (q0, p0) Output(pi, q)
11. else break

Since the number of pairs of parallel segments of the polygon it at
most bn/2c, the number of antipodal pairs is at most 3n/2. So:

Theorem 6 The diameter of a convex polygon can be found in O(n)
time.

Corollary 2 The diameter of a set of n points can be found in
O(n log n) time.

Corollary 3 The diameter of a simple polygon can be found in a
linear time.

21

