Geometric Algorithms

- 1. Definitions
- 2. Line-Segment properties
- 3. Inner Points of polygons
- 4. Simple polygons
- 5. Convex hulls
- 6. Closest pair of points
- 7. Diameter of a point set

1. Objects

- 2-dimensional plane
- \bullet System of coordinates X-0-Y
- Points $\{p_i\}$, where $p_i = (x_i, y_i)$, $i = 1, 2, \dots, n$
- Segments $\overline{p_i p_j}$, $1 \le i < j \le n$
- Lines $p_i p_j$, $1 \le i < j \le n$

If $p_1 = (0,0)$ then we treat a segment p_1, p_2 as a vector p_2 .

We call two segments $\overline{p_1p_2}$ and $\overline{q_1q_2}$ intersecting if they have at least one common point.

We define a chain as a set of points $\{p_1, \ldots, p_n\}$ and segments $\{\overline{p_1p_2},\ldots,\overline{p_{n-1}p_n}\}.$

A polygon is a chain with $n \geq 3$ and $p_1 = p_n$. A polygon is called simple if no two its non-neighboring segments intersect.

A polygon divides the plane into the inner and the outer parts. A polygon P is called <u>convex</u> if for any two its inner points p and q, every point of the segment \overline{pq} is an inner point of P.

Specific features of Computational Geometry problems:

- A very large number of points (over 10^6).
- A large number of special cases
- Arithmetic operations have different costs:

Inexpensive: addition, subtraction, comparison, boolean Moderate: multiplication

Expensive: division, powers, arithmetic roots

2. Segment intersection test

The problem:

Instance: Segments $\overline{p_1p_2}$ and $\overline{p_3p_4}$ of positive lengths **Question:** Do the segments have a common point?

We apply a two-step method:

1. Quick rejection. Let $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$. Denote $\hat{x}_1 = \min\{x_1, x_2\}, \qquad \hat{x}_2 = \max\{x_1, x_2\}$ $\hat{y}_1 = \min\{y_1, y_2\}, \qquad \hat{y}_2 = \max\{y_1, y_2\}.$

Consider the rectangle $P = (\hat{p}_1, \hat{p}_2)$, where $\hat{p}_1 = (\hat{x}_1, \hat{y}_1)$ and $\hat{p}_2 = (\hat{x}_2, \hat{y}_2)$. Similarly, construct a rectangle $Q = (\hat{p}_3, \hat{p}_4)$. One has: $P \cap Q = \emptyset \Rightarrow \overline{p_1 p_2} \cap \overline{p_3 p_4} = \emptyset$. Now, $P \cap Q \neq \emptyset$ iff $(\hat{x}_1 \ge \hat{x}_3) \land (\hat{x}_4 \ge \hat{x}_1) \land (\hat{y}_1 \ge \hat{y}_3) \land (\hat{y}_4 \ge \hat{y}_1)$.

Figure 1: Quick elimination of non-intersecting segments

2. For $q_1=(x',y')$ and $q_2=(x'',y'')$ denote $q_1\times q_2=x'y''-x''y'$

One has:

- $\operatorname{sign}((p_3 p_1) \times (p_2 p_1)) \neq \operatorname{sign}((p_4 p_1) \times (p_2 p_1))$ $\Rightarrow \overline{p_1 p_2} \text{ and } \overline{p_3 p_4} \text{ do intersect}$
- sign $((p_3 p_1) \times (p_2 p_1)) = sign((p_4 p_1) \times (p_2 p_1))$ $\Rightarrow \overline{p_1 p_2}$ and $\overline{p_3 p_4}$ do not intersect

Figure 2: Proper intersection test

- $(p_3 p_1) \times (p_2 p_1) \neq 0$ and $(p_4 p_1) \times (p_2 p_1) = 0$ $\Rightarrow p_4 \in \overline{p_1 p_2}$
- $(p_3 p_1) \times (p_2 p_1) = 0$ and $(p_4 p_1) \times (p_2 p_1) = 0$ $\Rightarrow p_3 \in \overline{p_1 p_2}$ and $p_2 \in \overline{p_3 p_4}$

Figure 3: Improper intersection test

3. Inner points of polygons

The problem:

Instance: Polygon P and a point q = (x, y).

Question: Determine whether q is an inner point of P.

<u>Idea</u>: consider an external point s of P and compute how much times does the segment \overline{qs} intersect the boundary of P. If this number is even, then q is an external point, otherwise it is an inner one.

If P consists of points $\{p_0, \ldots, p_{n-1}\}$ and segments $\{e_0, \ldots, e_{n-1}\}$, with $e_i = \overline{p_i p_{(i+1) \mod n}}$, we consider the vertical line q - s.

```
\begin{array}{l} \underline{\textbf{Algorithm 1}} \; \text{POINT-IN-POLYGON}(P,q);\\ \hline \textbf{Let $s$ be an external point of $P$ and let $L = q - s$}\\ c = 0\\ \textbf{for $i = 0$ to $n - 1$}\\ \textbf{if $e_i \cap L$ is just 1 point } /* \; \text{BE CAREFUL !!! */}\\ c = c + 1\\ \hline \textbf{if $c$ is odd}\\ & \\ \textbf{Inside = TRUE}\\ \textbf{else}\\ & \\ \textbf{Inside = FALSE}\\ \textbf{return $c$} \end{array}
```

This method will have a problem if $e_i \cap L \in \overline{\{p_i, p_{(i+1) \mod n}\}}$, but it is easy to fix it.

The running time of the algorithm is O(n).

4. Simple Polygons

Instance: Set of points $\{p_1, \ldots, p_n\}$.

Problem: Construct a simple polygon with nodes in these points.

Let $n \ge 3$ and assume p_1, p_2, p_3 are not collinear. We set the origin 0 in an inner point of the triangle p_1, p_2, p_3 (i.e. in its center of gravity).

Furthermore, define the order of points \mathcal{L} as follows: $p_i \leq_{\mathcal{L}} p_j \iff$

 $(i) \angle (p_1, 0, p_i) < \angle (p_1, 0, p_j)$ (\angle is the angle), or

(ii) if $\angle(p_1, 0, p_i) = \angle(p_1, 0, p_j)$, then dist $(0, p_i) < dist(0, p_j)$.

Algorithm 2 POLYGON (p_1, \ldots, p_n) ;

- 1. Sort the points p_1, \ldots, p_n w.r.t the order \mathcal{L} .
- 2. for i = 1 to n 1

Connect the point number i in Order \mathcal{L} with point number $i + 1 \mod n$ in \mathcal{L}

3. return Polygon

The running time of POLYGON is determined by sorting and is $O(n \log n)$.

The Convex Polygon Inclusion Problem: (CPI) Given a convex polygon P and a point z. Determine whether z is an inner point of P.

Proposition 1 The CPI-Problem is solvable in $O(\log n)$ with a O(n) preprocessing.

Proof. Let q be an inner point of the polygon $\{p_1, \ldots, p_n\}$. The half-infinite lines $q - p_i$ split the plane in n sectors.

We introduce the polar coordinate system (r, φ) originated in q and compute the angles $\angle(p_i)$, $i = 1, \ldots, n$.

Algorithm 3

1. Find i with $\angle(p_i) \leq \angle(z) < \angle(p_{i+1})$.

2. If the segments $\overline{q, z}$ and $\overline{p_i, p_{i+1}}$ intersect properly, then z is an external point. Otherwise z is an inner point.

A polygon $P = \{p_1, \ldots, p_n\}$ is called <u>star polygon</u>, if there exists an inner point q of P, such that each point of the segment $\overline{q, p_i}$ is an inner point of P.

Corollary 1 The CPI problem for star polygons is solvable in time $O(\log n)$ with O(n) preprocessing time.

5. Convex Hull

Definition 1 The convex hull CH(Q) for a set of points Q is the minimum convex polygon that contains all points of Q.

Figure 4: Example of a convex hull

Trivial solution: $O(n^2)$ operations. We design an algorithm with the running time $O(n \log n)$. The fastest known method requires just $O(n \log(|CH(Q)|))$ operations.

Remark 1 Let p_0, p_1, p_2 be points. One has:

$$(p_1 - p_0) \times (p_2 - p_0) : \begin{cases} > 0 \Leftrightarrow \overrightarrow{p_0 p_2} & \text{is counterclockwise to } \overrightarrow{p_0 p_1} \\ = 0 \Leftrightarrow \overrightarrow{p_0 p_1} & \text{and } \overrightarrow{p_0 p_2} & \text{are collinear} \\ < 0 \Leftrightarrow \overrightarrow{p_0 p_2} & \text{is clockwise to } \overrightarrow{p_0 p_1} \end{cases}$$

Figure 5: Checking for clockwise position

Let $Q = \{p_0, \ldots, p_n\}$ $(n \ge 2)$ and let p_0 be the point with the minimum y-coordinate. If there exist several such points, take as p_0 the one that has the minimum x-coordinate.

We assume that the points $\{p_1, \ldots, p_n\}$ are sorted according to the angles of vectors $\overrightarrow{p_0p_1}$ in the counterclockwise order. If more than one point has the same angle with p_0 we leave in Q only the one with the maximum distance from p_0 .

We use a stack S. The procedure $\operatorname{TOP}(S)$ returns the top element of the stack without modifying it. Similarly, the procedure NEXT-TO- $\operatorname{TOP}(S)$ returns the second top element of S.

Algorithm 4 GRAHAM-SCAN(Q);

```
\begin{array}{l} \operatorname{Push}(p_0,S)\\ \operatorname{Push}(p_1,S)\\ \operatorname{Push}(p_2,S)\\ \text{for }i=3 \ \text{to }m \qquad // \ \text{here }m\leq n\\ \text{ while }p_i \ \text{is to the right of NEXT-TO-TOP}(S), \operatorname{TOP}(S)\\ \operatorname{PoP}(S)\\ \operatorname{Push}(p_i,S)\\ \text{ return }S \end{array}
```


Figure 6: The Graham scan algorithm

Figure 7: The Graham scan algorithm (continued)

Theorem 1 A point p is in stack S of the GRAHAM-SCAN algorithm iff $p \in CH(Q)$.

Proof.

We show $p_t \notin S \Rightarrow p_t \notin CH(Q)$.

Figure 8: Correctness of the Graham scan

Indeed, if
$$p_t \notin S$$
 then $p_t \in \Delta(p_0, p_i, p_r)$, where $p_t = \operatorname{TOP}(S)$ and $p_r = \operatorname{NEXT-TO-TOP}(S)$ at time *i*. Hence, $p_t \notin CH(Q)$.
 $\Rightarrow \quad CH(Q) \subseteq S$

To prove the converse, we show by induction on i that on the i-th iteration of the for -loop S consists of the points of $CH(Q_i)$ only. $\Rightarrow \qquad S \subseteq CH(Q)$

The running time: Sorting takes $O(n \log n)$ time.

Both POP and PUSH take O(1) time.

The entire while -loop is executed O(n) times, since each point is put on stack exactly once (and popped out of stack at most once).

 \Rightarrow Total running time is $O(n \log n)$.

6. Finding a closest pair of points

Instance: A set of points $P = \{p_1, \ldots, p_n\}$. **Problem:** Find a pair of points with minimum distance.

Trivial solution: check all $\binom{n}{2}$ pairs of points. This leads to a $\Theta(n^2)$ algorithm.

We apply the Divide and Conquer method to solve the problem in time $O(n \log n)$.

The algorithm consists of the following steps:

- **Divide:** Split the set P by a vertical line ℓ into two parts P_L and P_R $(|P_L| = \lfloor n/2 \rfloor, |P_R| = \lceil n/2 \rceil)$. If some points are on ℓ assign them arbitrarily to P_L or P_R .
- **Conquer:** Find closest neighbors in P_L and P_R (let δ_L and δ_R be the shortest distances and $\delta = \min{\{\delta_L, \delta_R\}}$). Sort the points in P_L and P_R w.r.t. x- and y-coordinates and create the sorted arrays X_L , X_R , Y_L and Y_R .
- **Combine:** The nearest neighbors x, y of P are either on distance δ (i.e. $x, y \in P_L$ or $x, y \in P_R$) or $x \in P_L$, $y \in P_R$. We can consider only those points that are on distance at most δ from ℓ (the Y'-zone).

To find a closest pair (x, y) with $x \in P_L$, $y \in P_R$ we do the following:

- 1. Sort the points of Y' w.r.t. the y-coordinate.
- 2. For each $p \in Y'$ construct all points of Y' within the distance δ from p and find the shortest distance δ_p between them.
- 3. Return $\min\{\delta, \min_p \delta_p\}$.

Figure 9: Finding a closest pair of points

If the points of the Y'-zone are sorted according to the y-coordinate, one needs to consider for every point $p \in Y'$ only up to 5 points of Y'.

Implementation details

We can efficiently construct the sorted arrays Y_L , Y_R (needed for the recursive calls) from Y (sorted array of all points y-coordinates) as follows:

Algorithm 5

```
1. Initialize empty arrays Y_L and Y_R.
```

- 2. for i = 1 to |Y|
- 3. if $(Y[i] \in P_L)$
- 4. add Y[i] to Y_L
- 5. else
- 6. add Y[i] to Y_R

This procedure runs in linear time. Similarly sort arrays X_L and X_R can be constructed from X (needed for finding the line ℓ).

If the array Y of all y-coordinates is sorted (an $O(n \log n)$ preprocessing), the sorted array Y' can be constructed in O(n) time instead of $O(n \log n)$ (important!).

Therefore, for the running time T(n) one has:

$$T(n) = 2 \cdot T(n/2) + O(n),$$

which implies $T(n) = O(n \log n)$.

Hence, the total running time $(T(n) + O(n \log n) \text{ preprocessing})$ is $O(n \log n)$.

7. Diameter of a point set

Consider the two following problems:

DIAMETER

Given n points in the plane, find a pair with maximum distance.

DISJOINTNESS Given two sets A, B of positive numbers, determine if $A \cap B \neq \emptyset$.

Theorem 2 (Ben-Or, 1983)

To solve the DISJOINTNESS problem, $\Omega(n \log n)$ comparisons are necessary.

We transform **DISJOINTNESS** into **DIAMETER**:

Let A, B be an instance for DISJOINTNESS. Denote by C the disk of radius 1 centered in (0, 0). For $a_i \in A$ let a'_i be the intersection of C and the line $y = a_i x$ for x > 0. For $b_j \in B$ let b'_j be the intersection of C and the line $y = b_j x$ for x < 0. Consider the set $\{a'_i\} \cup \{b'_j\}$ as an instance for DIAMETER. One has: $\text{Diam}(\{a'_i\} \cup \{b'_j\}) = 2 \Leftrightarrow A \cap B \neq \emptyset$.

This implies:

Theorem 3 To find the diameter of a set of n points, $\Omega(n \log n)$ operations are necessary.

Theorem 4 (Hocking-Young, 1961) The diameter of a set of points equals the diameter of its convex hull.

Theorem 5 (Yaglom-Boltyanskii, 1961)

The diameter of a convex polygon is the maximum distance between its parallel tangent lines.

We call two points of a convex polygon <u>antipodal</u>, if there exist two parallel tangent lines passing through these points.

Our goal is, therefore, to find all pairs of antipodal points.

Let P be a simple polygon and let its points p_0, \ldots, p_{n-1} be numbered in the counterclockwise order. Starting in some point $p_i \in P$, we visit the points of P in the cyclic order to find the first point $q_R \in P$ with a maximum distance from the line (p_{i-1}, p_i) (the point indices are considered modulo n).

After that, keeping going in the same direction, we find a point q_L with maximum distance from the line (p_i, p_{i+1}) .

The set of points between q_R and q_L (inclusive) determine all points that are antipodal to p_i (see the next page).

In the following pseudocode, the method $NEXT(p_i)$ returns the point next to p_i in the cyclic order (i.e. the point $p_{i+1 \mod n}$).

Figure 10: Seach for all points antipodal to p_i (points between q_R and q_L)

Figure 11: Computing the diameter of a polygon (here $\overline{p_1p_2} \parallel \overline{p_6p_7}$)

Algorithm 6 ANTIPAIRS;

1.
$$i := n - 1$$

2. $q := p_0$
3. while $\text{Dist}(p_i, p_{i+1}; \text{NEXT}(q)) > \text{Dist}(p_i, p_{i+1}; q)$
 $q := \text{NEXT}(q)$
4. $q_0 := q$

5. while
$$q \neq p_0$$
 do
6. $i := i + 1 \pmod{n}$
7. $\operatorname{Output}(p_i, q)$
8. while $\operatorname{Dist}(p_i, p_{i+1}; \operatorname{NEXT}(q)) \geq \operatorname{Dist}(p_i, p_{i+1}; q)$
9. $q := \operatorname{NEXT}(q)$
10. if $(p_i, q) \neq (q_0, p_0) \operatorname{Output}(p_i, q)$
11. else break

Since the number of pairs of parallel segments of the polygon it at most $\lfloor n/2 \rfloor$, the number of antipodal pairs is at most 3n/2. So:

Theorem 6 The diameter of a convex polygon can be found in O(n) time.

Corollary 2 The diameter of a set of n points can be found in $O(n \log n)$ time.

Corollary 3 The diameter of a simple polygon can be found in a linear time.