Geometric Algorithms

1. Definitions

2. Line-Segment properties
3. Inner Points of polygons
4. Simple polygons
5. Convex hulls
6. Closest pair of points
7. Diameter of a point set

1. Objects

- 2-dimensional plane
- System of coordinates $X-0-Y$
- Points $\left\{p_{i}\right\}$, where $p_{i}=\left(x_{i}, y_{i}\right), i=1,2, \ldots, n$
- Segments $\bar{p}_{i} p_{j}, 1 \leq i<j \leq n$
- Lines $p_{i}-p_{j}, 1 \leq i<j \leq n$

If $p_{1}=(0,0)$ then we treat a segment p_{1}, p_{2} as a vector p_{2}.
We call two segments $\overline{p_{1} p_{2}}$ and $\overline{q_{1} q_{2}}$ intersecting if they have at least one common point.

We define a chain as a set of points $\left\{p_{1}, \ldots, p_{n}\right\}$ and segments $\left\{\overline{p_{1} p_{2}}, \ldots, \overline{p_{n-1} p_{n}}\right\}$.

A polygon is a chain with $n \geq 3$ and $p_{1}=p_{n}$. A polygon is called simple if no two its non-neighboring segments intersect.

A polygon divides the plane into the inner and the outer parts. A polygon P is called convex if for any two its inner points p and q, every point of the segment $\overline{p q}$ is an inner point of P.

Specific features of Computational Geometry problems:

- A very large number of points (over 10^{6}).
- A large number of special cases
- Arithmetic operations have different costs:

Inexpensive: addition, subtraction, comparison, boolean Moderate: multiplication
Expensive: division, powers, arithmetic roots

2. Segment intersection test

The problem:
Instance: Segments $\overline{p_{1} p_{2}}$ and $\overline{p_{3} p_{4}}$ of positive lengths
Question: Do the segments have a common point?
We apply a two-step method:

1. Quick rejection.

Let $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$. Denote

$$
\begin{aligned}
\hat{x}_{1} & =\min \left\{x_{1}, x_{2}\right\}, & & \hat{x}_{2}=\max \left\{x_{1}, x_{2}\right\} \\
\hat{y}_{1} & =\min \left\{y_{1}, y_{2}\right\}, & & \hat{y}_{2}=\max \left\{y_{1}, y_{2}\right\} .
\end{aligned}
$$

Consider the rectangle $P=\left(\hat{p}_{1}, \hat{p}_{2}\right)$, where $\hat{p}_{1}=\left(\hat{x}_{1}, \hat{y}_{1}\right)$ and $\hat{p}_{2}=\left(\hat{x}_{2}, \hat{y}_{2}\right)$. Similarly, construct a rectangle $Q=\left(\hat{p}_{3}, \hat{p}_{4}\right)$.
One has: $P \cap Q=\emptyset \Rightarrow \overline{p_{1} p_{2}} \cap \overline{p_{3} p_{4}}=\emptyset$. Now, $P \cap Q \neq \emptyset$ iff $\left(\hat{x_{1}} \geq \hat{x_{3}}\right) \wedge\left(\hat{x_{4}} \geq \hat{x_{1}}\right) \wedge\left(\hat{y_{1}} \geq \hat{y_{3}}\right) \wedge\left(\hat{y_{4}} \geq \hat{y_{1}}\right)$.

Figure 1: Quick elimination of non-intersecting segments
2. For $q_{1}=\left(x^{\prime}, y^{\prime}\right)$ and $q_{2}=\left(x^{\prime \prime}, y^{\prime \prime}\right)$ denote

$$
q_{1} \times q_{2}=x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}
$$

One has:

- $\operatorname{sign}\left(\left(p_{3}-p_{1}\right) \times\left(p_{2}-p_{1}\right)\right) \neq \operatorname{sign}\left(\left(p_{4}-p_{1}\right) \times\left(p_{2}-p_{1}\right)\right)$
$\Rightarrow \overline{p_{1} p_{2}}$ and $\overline{p_{3} p_{4}}$ do intersect
- $\operatorname{sign}\left(\left(p_{3}-p_{1}\right) \times\left(p_{2}-p_{1}\right)\right)=\operatorname{sign}\left(\left(p_{4}-p_{1}\right) \times\left(p_{2}-p_{1}\right)\right)$
$\Rightarrow \overline{p_{1} p_{2}}$ and $\overline{p_{3} p_{4}}$ do not intersect

Figure 2: Proper intersection test

- $\left(p_{3}-p_{1}\right) \times\left(p_{2}-p_{1}\right) \neq 0$ and $\left(p_{4}-p_{1}\right) \times\left(p_{2}-p_{1}\right)=0$ $\Rightarrow p_{4} \in \overline{p_{1} p_{2}}$
- $\left(p_{3}-p_{1}\right) \times\left(p_{2}-p_{1}\right)=0$ and $\left(p_{4}-p_{1}\right) \times\left(p_{2}-p_{1}\right)=0$ $\Rightarrow p_{3} \in \overline{p_{1} p_{2}}$ and $p_{2} \in \overline{p_{3} p_{4}}$

Figure 3: Improper intersection test

3. Inner points of polygons

The problem:
Instance: Polygon P and a point $q=(x, y)$.
Question: Determine whether q is an inner point of P.
Idea: consider an external point s of P and compute how much times does the segment $\overline{q s}$ intersect the boundary of P. If this number is even, then q is an external point, otherwise it is an inner one.
If P consists of points $\left\{p_{0}, \ldots, p_{n-1}\right\}$ and segments $\left\{e_{0}, \ldots, e_{n-1}\right\}$, with $e_{i}=\overline{p_{i}} p_{(i+1) \bmod n}$, we consider the vertical line $q-s$.

Algorithm 1 Point-in-Polygon (P, q);

Let s be an external point of P and let $L=q-s$
$c=0$
for $i=0$ to $n-1$
if $e_{i} \cap L$ is just 1 point $\quad / *$ BE CAREFUL !!! */

$$
c=c+1
$$

if c is odd Inside $=$ TRUE
else
Inside $=$ FALSE
return c
This method will have a problem if $e_{i} \cap L \in\left\{p_{i}, p_{(i+1) \bmod n}\right\}$, but it is easy to fix it.

The running time of the algorithm is $O(n)$.

4. Simple Polygons

Instance: Set of points $\left\{p_{1}, \ldots, p_{n}\right\}$.
Problem: Construct a simple polygon with nodes in these points.
Let $n \geq 3$ and assume p_{1}, p_{2}, p_{3} are not collinear. We set the origin 0 in an inner point of the triangle p_{1}, p_{2}, p_{3} (i.e. in its center of gravity).
Furthermore, define the order of points \mathcal{L} as follows:
$p_{i} \leq_{\mathcal{L}} p_{j} \Longleftrightarrow$
(i) $\angle\left(p_{1}, 0, p_{i}\right)<\angle\left(p_{1}, 0, p_{j}\right)$ (\angle is the angle), or
(ii) if $\angle\left(p_{1}, 0, p_{i}\right)=\angle\left(p_{1}, 0, p_{j}\right)$, then $\operatorname{dist}\left(0, p_{i}\right)<\operatorname{dist}\left(0, p_{j}\right)$.

Algorithm $2 \operatorname{Polygon}\left(p_{1}, \ldots, p_{n}\right)$;

1. Sort the points p_{1}, \ldots, p_{n} w.r.t the order \mathcal{L}.
2. for $i=1$ to $n-1$

Connect the point number i in $\operatorname{Order} \mathcal{L}$ with point number $i+1 \bmod n$ in \mathcal{L}
3. return Polygon

The running time of Polygon is determined by sorting and is $O(n \log n)$.

The Convex Polygon Inclusion Problem: (CPI)

Given a convex polygon P and a point z. Determine whether z is an inner point of P.

Proposition 1 The CPI-Problem is solvable in $O(\log n)$ with a $O(n)$ preprocessing.

Proof. Let q be an inner point of the polygon $\left\{p_{1}, \ldots, p_{n}\right\}$. The half-infinite lines $q-p_{i}$ split the plane in n sectors.

We introduce the polar coordinate system (r, φ) originated in q and compute the angles $\angle\left(p_{i}\right), i=1, \ldots, n$.

Algorithm 3

1. Find i with $\angle\left(p_{i}\right) \leq \angle(z)<\angle\left(p_{i+1}\right)$.
2. If the segments $\overline{q, z}$ and $\overline{p_{i}, p_{i+1}}$ intersect properly, then z is an external point.
Otherwise z is an inner point.
A polygon $P=\left\{p_{1}, \ldots, p_{n}\right\}$ is called star polygon, if there exists an inner point q of P, such that each point of the segment $\overline{q, p_{i}}$ is an inner point of P.

Corollary 1 The CPI problem for star polygons is solvable in time $O(\log n)$ with $O(n)$ preprocessing time.

5. Convex Hull

Definition 1 The convex hull $C H(Q)$ for a set of points Q is the minimum convex polygon that contains all points of Q.

Figure 4: Example of a convex hull

Trivial solution: $O\left(n^{2}\right)$ operations. We design an algorithm with the running time $O(n \log n)$. The fastest known method requires just $O(n \log (|C H(Q)|))$ operations.

Remark 1 Let p_{0}, p_{1}, p_{2} be points. One has:

$$
\left(p_{1}-p_{0}\right) \times\left(p_{2}-p_{0}\right):\left\{\begin{array}{l}
>0 \Leftrightarrow \overrightarrow{p_{0} p_{2}} \text { is counterclockwise to }{\overrightarrow{p_{0} p_{1}}}_{1} \\
=0 \Leftrightarrow{\overrightarrow{p_{0} p}}_{1} \text { and }{\overrightarrow{p_{0} p_{2}}}_{2} \text { are collinear } \\
<0 \Leftrightarrow{\overrightarrow{p_{0} p_{2}}}_{2} \text { is clockwise to }{\overrightarrow{p_{0} p}}_{1}
\end{array}\right.
$$

(a)

(b)

Figure 5: Checking for clockwise position

Let $Q=\left\{p_{0}, \ldots, p_{n}\right\}(n \geq 2)$ and let p_{0} be the point with the minimum y-coordinate. If there exist several such points, take as p_{0} the one that has the minimum x-coordinate.

We assume that the points $\left\{p_{1}, \ldots, p_{n}\right\}$ are sorted according to the angles of vectors ${\overrightarrow{p_{0}}}_{1}$ in the counterclockwise order. If more than one point has the same angle with p_{0} we leave in Q only the one with the maximum distance from p_{0}.

We use a stack S. The procedure $\operatorname{Top}(S)$ returns the top element of the stack without modifying it. Similarly, the procedure NeXt-To- $\operatorname{Top}(S)$ returns the second top element of S.

Algorithm 4 Graham-Scan (Q);

$\operatorname{Push}\left(p_{0}, S\right)$
$\operatorname{Push}\left(p_{1}, S\right)$
$\operatorname{Push}\left(p_{2}, S\right)$
for $i=3$ to $m \quad / /$ here $m \leq n$
while p_{i} is to the right of Next-To-Top $(S), \operatorname{Top}(S)$
$\operatorname{Pop}(S)$
$\operatorname{Push}\left(p_{i}, S\right)$
return S

$$
p_{10^{\circ}}
$$

p_{12} 。
p_{10}.

Figure 6: The Graham scan algorithm

Figure 7: The Graham scan algorithm (continued)

Theorem 1 A point p is in stack S of the Graham-Scan algorithm iff $p \in C H(Q)$.

Proof.
We show $p_{t} \notin S \Rightarrow p_{t} \notin C H(Q)$.

Figure 8: Correctness of the Graham scan
Indeed, if $p_{t} \notin S$ then $p_{t} \in \Delta\left(p_{0}, p_{i}, p_{r}\right)$, where $p_{t}=\operatorname{Top}(S)$ and $p_{r}=\operatorname{Next-To-Top}(S)$ at time i. Hence, $p_{t} \notin C H(Q)$.

$$
\Rightarrow \quad C H(Q) \subseteq S
$$

To prove the converse, we show by induction on i that on the i-th iteration of the for -loop S consists of the points of $C H\left(Q_{i}\right)$ only.

$$
\Rightarrow \quad S \subseteq C H(Q)
$$

The running time: Sorting takes $O(n \log n)$ time. Both Pop and Push take $O(1)$ time.
The entire while -loop is executed $O(n)$ times, since each point is put on stack exactly once (and popped out of stack at most once). \Rightarrow Total running time is $O(n \log n)$.

6. Finding a closest pair of points

Instance: A set of points $P=\left\{p_{1}, \ldots, p_{n}\right\}$.
Problem: Find a pair of points with minimum distance.
Trivial solution: check all ($\left.\begin{array}{l}n \\ 2\end{array}\right)$ pairs of points. This leads to a $\Theta\left(n^{2}\right)$ algorithm.

We apply the Divide and Conquer method to solve the problem in time $O(n \log n)$.

The algorithm consists of the following steps:
Divide: Split the set P by a vertical line ℓ into two parts P_{L} and P_{R} $\left(\left|P_{L}\right|=\lfloor n / 2\rfloor,\left|P_{R}\right|=\lceil n / 2\rceil\right.$). If some points are on ℓ assign them arbitrarily to P_{L} or P_{R}.
Conquer: Find closest neighbors in P_{L} and P_{R} (let δ_{L} and δ_{R} be the shortest distances and $\left.\delta=\min \left\{\delta_{L}, \delta_{R}\right\}\right)$. Sort the points in P_{L} and P_{R} w.r.t. x - and y-coordinates and create the sorted arrays X_{L}, X_{R}, Y_{L} and Y_{R}.
Combine: The nearest neighbors x, y of P are either on distance δ (i.e. $x, y \in P_{L}$ or $x, y \in P_{R}$) or $x \in P_{L}, y \in P_{R}$. We can consider only those points that are on distance at most δ from ℓ (the Y^{\prime}-zone).

To find a closest pair (x, y) with $x \in P_{L}, y \in P_{R}$ we do the following:

1. Sort the points of Y^{\prime} w.r.t. the y-coordinate.
2. For each $p \in Y^{\prime}$ construct all points of Y^{\prime} within the distance δ from p and find the shortest distance δ_{p} between them.
3. Return $\min \left\{\delta, \min _{p} \delta_{p}\right\}$.

Figure 9: Finding a closest pair of points

If the points of the Y^{\prime}-zone are sorted according to the y-coordinate, one needs to consider for every point $p \in Y^{\prime}$ only up to 5 points of Y^{\prime}.

Implementation details

We can efficiently construct the sorted arrays Y_{L}, Y_{R} (needed for the recursive calls) from Y (sorted array of all points y-coordinates) as follows:

Algorithm 5

1. Initialize empty arrays Y_{L} and Y_{R}.
2. for $i=1$ to $|Y|$
3. if $\left(Y[i] \in P_{L}\right)$
4. add $Y[i]$ to Y_{L}
5. else
6. add $Y[i]$ to Y_{R}

This procedure runs in linear time. Similarly sort arrays X_{L} and X_{R} can be constructed from X (needed for finding the line ℓ).

If the array Y of all y-coordinates is sorted (an $O(n \log n)$ preprocessing), the sorted array Y^{\prime} can be constructed in $O(n)$ time instead of $O(n \log n)$ (important!).
Therefore, for the running time $T(n)$ one has:

$$
T(n)=2 \cdot T(n / 2)+O(n),
$$

which implies $T(n)=O(n \log n)$.
Hence, the total running time $(T(n)+O(n \log n)$ preprocessing $)$ is $O(n \log n)$.

7. Diameter of a point set

Consider the two following problems:
Diameter
Given n points in the plane, find a pair with maximum distance.
Disjointness
Given two sets A, B of positive numbers, determine if $A \cap B \neq \emptyset$.
Theorem 2 (Ben-Or, 1983)
To solve the Disjointness problem, $\Omega(n \log n)$ comparisons are necessary.

We transform Disjointness into Diameter:
Let A, B be an instance for Disjointness.
Denote by C the disk of radius 1 centered in $(0,0)$.
For $a_{i} \in A$ let a_{i}^{\prime} be the intersection of C and the line $y=a_{i} x$ for $x>0$.
For $b_{j} \in B$ let b_{j}^{\prime} be the intersection of C and the line $y=b_{j} x$ for $x<0$.
Consider the set $\left\{a_{i}^{\prime}\right\} \cup\left\{b_{j}^{\prime}\right\}$ as an instance for Diameter.
One has: $\operatorname{Diam}\left(\left\{a_{i}^{\prime}\right\} \cup\left\{b_{j}^{\prime}\right\}\right)=2 \Leftrightarrow A \cap B \neq \emptyset$.
This implies:
Theorem 3 To find the diameter of a set of n points, $\Omega(n \log n)$ operations are necessary.

Theorem 4 (Hocking-Young, 1961)
The diameter of a set of points equals the diameter of its convex hull.

Theorem 5 (Yaglom-Boltyanskii, 1961)
The diameter of a convex polygon is the maximum distance between its parallel tangent lines.

We call two points of a convex polygon antipodal, if there exist two parallel tangent lines passing through these points.

Our goal is, therefore, to find all pairs of antipodal points.

Let P be a simple polygon and let its points p_{0}, \ldots, p_{n-1} be numbered in the counterclockwise order. Starting in some point $p_{i} \in P$, we visit the points of P in the cyclic order to find the first point $q_{R} \in P$ with a maximum distance from the line $\left(p_{i-1}, p_{i}\right)$ (the point indices are considered modulo n).

After that, keeping going in the same direction, we find a point q_{L} with maximum distance from the line $\left(p_{i}, p_{i+1}\right)$.

The set of points between q_{R} and q_{L} (inclusive) determine all points that are antipodal to p_{i} (see the next page).

In the following pseudocode, the method $\operatorname{Next}\left(p_{i}\right)$ returns the point next to p_{i} in the cyclic order (i.e. the point $p_{i+1} \bmod n$).

Figure 10: Seach for all points antipodal to p_{i} (points between q_{R} and q_{L})

Figure 11: Computing the diameter of a polygon (here $\overline{p_{1} p_{2}} \| \overline{p_{6} p_{7}}$)

Algorithm 6 AntiPairs;

1. $i:=n-1$
2. $q:=p_{0}$
3. while $\operatorname{Dist}\left(p_{i}, p_{i+1} ; \operatorname{Next}(q)\right)>\operatorname{Dist}\left(p_{i}, p_{i+1} ; q\right)$
$q:=\operatorname{Next}(q)$
4. $q_{0}:=q$
5. while $q \neq p_{0}$ do
6. $\quad i:=i+1(\bmod n)$
7. $\operatorname{Output}\left(p_{i}, q\right)$
8. \quad while $\operatorname{Dist}\left(p_{i}, p_{i+1} ; \operatorname{Next}(q)\right) \geq \operatorname{Dist}\left(p_{i}, p_{i+1} ; q\right)$
9. $\quad q:=\operatorname{Next}(q)$
10. if $\left(p_{i}, q\right) \neq\left(q_{0}, p_{0}\right) \operatorname{Output}\left(p_{i}, q\right)$
11. else break

Since the number of pairs of parallel segments of the polygon it at most $\lfloor n / 2\rfloor$, the number of antipodal pairs is at most $3 n / 2$. So:

Theorem 6 The diameter of a convex polygon can be found in $O(n)$ time.

Corollary 2 The diameter of a set of n points can be found in $O(n \log n)$ time.

Corollary 3 The diameter of a simple polygon can be found in a linear time.

