1 Flow Networks

- 1. Introduction
- 2. Maximum Flow
 - a. The Ford-Fulkerson method
 - b. The MAXFLOW-MINCUT theorem
 - c. The Edmonds-Karp algorithm
- 3. Applications
 - a. Connectivity of graphs
 - b. Matchings in bipartite graphs

1. Introduction

Definition 1 A <u>network</u> N = (V, E, s, t) is an oriented graph (V, E) with a weight function $c : E \mapsto \mathbb{R}^{\geq 0}$ and two special nodes $s, t \in V$ (<u>source and sink</u>).

If $(u, v) \not\in E$ we extend c(u, v) by setting c(u, v) = 0.

Definition 2 Let N = (V, E, s, t) be a network. A <u>flow</u> in N is a function $f : V \times V \mapsto \mathbf{R}$, such that:

• $f(u,v) \le c(u,v)$ for any $u,v \in V$. (capacity constraint)

•
$$f(u,v) = -f(v,u)$$
 for any $u, v \in V$. (symmetry)

• $\sum_{v \in V} f(u, v) = 0$ for any $u \in V - \{s, t\}$. (flow conservation)

The number $|f| = \sum_{v \in V} f(s, v)$ is called the <u>value</u> on f.

Therefore, f(u, u) = 0 and if $(u, v) \notin E \& (v, u) \notin E \Rightarrow f(u, v) = f(v, u) = 0$.

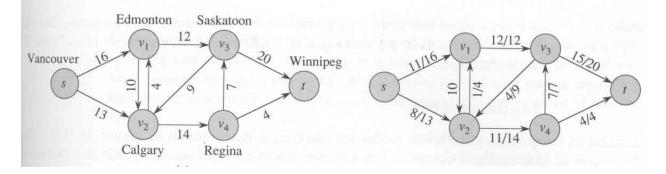


Figure 1: Example of a flow network

The Problem:

Given a network N construct a flow f for N with maximum value |f| (maximal flow). Important ideas:

- The residual network
- The augmenting path
- The minimum cut

Definition 3 Let N = (V, E, s, t) be a network with a flow f. For each $u, v \in V$ put

$$c_f(u,v) = c(u,v) - f(u,v)$$

and define the <u>residual network</u> $N_f = (V, E_f, s, t)$, where

$$E_f = \{ (u, v) \in V \times V \mid c_f(u, v) > 0 \}$$

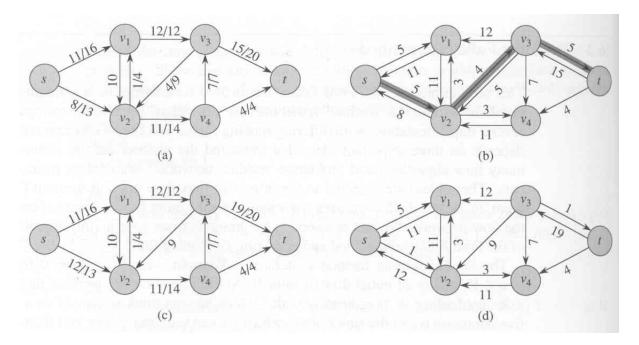


Figure 2: Residual network and augmenting path

Lemma 1 Let N = (V, E, s, t) a network with flow f and let f' be a flow on N_f . Then f + f' is a flow on N and |f + f'| = |f| + |f'|.

Proof:

Obviously, it holds: (f + f')(u, v) = -(f + f')(v, u):

$$(f + f')(u, v) = f(u, v) + f'(u, v)$$

= $-f(v, u) - f'(v, u)$
= $-(f(v, u) + f'(v, u))$
= $-(f + f')(v, u).$

Since
$$f(u, v) \leq c(u, v)$$
 and $f'(u, v) \leq c_f(u, v)$, one has:
 $(f + f')(u, v) = f(u, v) + f'(u, v)$
 $\leq f(u, v) + (c(u, v) - f(u, v)) = c(u, v)$

Therefore: $(u \in V - \{s, t\})$ $\sum_{v \in V} (f + f')(u, v) = \sum_{v \in V} (f(u, v) + f'(u, v))$ $= \sum_{v \in V} f(u, v) + \sum_{v \in V} f'(u, v) = 0.$

Finally:

$$\begin{aligned} |f + f'| &= \sum_{v \in V} (f(s, v) + f'(s, v)) \\ &= \sum_{v \in V} f(s, v) + \sum_{v \in V} f'(s, v) = |f| + |f'|. \quad \Box \end{aligned}$$

2a. The Ford-Fulkerson method

Definition 4 Let N = (V, E, s, t) be a network with a flow f. The <u>augmenting path</u> p is an oriented path $s \rightsquigarrow t$ in N_f . We put $c_f(p) := \min\{c_f(u, v) \mid (u, v) \in E(p)\}.$

Lemma 2 Let N = (V, E, s, t) be a network with a flow f and let p be an augmenting path in N_f . Define:

$$f_p(u,v) = \begin{cases} c_f(p), & \text{if } (u,v) \in E(p), \\ -c_f(p), & \text{if } (v,u) \in E(p), \\ 0, & \text{otherwise} \end{cases}$$

Then f_p is a flow on N_f and $|f_p| = c_f(p) > 0$.

Corollary 1 Let N = (V, E, s, t) be a network with a flow f and let p be an augmenting path in N_f . Furthermore, let $f' = f + f_p$. Then f' is a flow with |f'| > |f|.

A general method:

- 1. Set f := 0.
- 2. while \exists augmenting path p in N_f $f := f + f_p$.
- 3. return f

2b. The MAXFLOW-MINCUT theorem

Definition 5 A <u>cut</u> (S,T) in a network N = (V, E, s, t) is a partition of the vertex set $V' = S \cup T$, such that $s \in S$, $t \in T$ and $S \cap T = \emptyset$.

We define:

$$f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v)$$
$$c(S,T) = \sum_{u \in S} \sum_{v \in T} c(u,v).$$

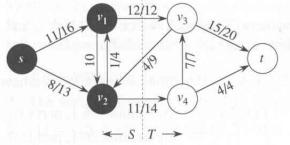


Figure 3: An (S, T)-cut in a network

Lemma 3 Let N = (V, E, s, t) be a network with a flow f and let (S,T) be a cut in N. Then f(S,T) = |f|.

Proof:

$$\begin{split} f(S,T) &= \sum_{u \in S} \sum_{v \in T} f(u,v) = \sum_{u \in S} \sum_{v \in V} f(u,v) - \sum_{u \in S} \sum_{v \in S} f(u,v) \\ &= \sum_{u \in S} \sum_{v \in V} f(u,v) \\ &= \sum_{v \in V} f(s,v) + \sum_{u \in S-s} \sum_{v \in V} f(u,v) \\ &= \sum_{v \in V} f(s,v) = |f|. \quad \Box \end{split}$$

Theorem 1 (MAXFLOW-MINCUT THEOREM) Let N = (V, E, s, t) be a network with a flow f. The following statements are equivalent:

- 1. f is a flow with maximum value |f|.
- 2. The network N_f has no augmenting path.
- 3. |f| = c(S,T) for some cut (S,T) of N.

Proof:

(1) \Rightarrow (2): Assume N_f contains an augmenting path p. (Corollary 1) $\Rightarrow |f + f_p| > |f|$, a contradiction

 $(2) \Rightarrow (3):$

Denote:

$$S = \{v \in V \mid \exists \mathsf{path} \ s \rightsquigarrow v \text{ in } N_f\}, \quad T = V - S.$$

Then (S,T) is a cut and $f(u,v) = c(u,v)$ for $u \in S$ and $v \in T$.
(Lemma 3) $\Rightarrow |f| = f(S,T) = c(S,T).$

(3) \Rightarrow (1): Let (S,T) be a cut. $|f| = f(S,T) = \sum_{u \in S} \sum_{v \in T} f(u,v)$ $\leq \sum_{u \in S} \sum_{v \in T} c(u,v) = c(S,T).$ Since $[|f| = c(S,T)] \Rightarrow |f|$ is maximum.

2c. The Ford-Fulkerson algorithm

Algorithm 1 FORD-FULKERSON(N, s, t);

$$\begin{array}{ll} \mathbf{for \ all} \ (u,v) \in E & \mathbf{do} \\ f[u,v] := 0 \\ f[v,u] := 0 \end{array}$$

while (\exists augmenting path p in N_f) do $c_f(p) := \min\{c_f(u, v) \mid (u, v) \in p\}$ for all $(u, v) \in p$ do $f[u, v] := f[u, v] + c_f(p)$ f[v, u] := -f[u, v]

If all the costs c(u, v) are integer numbers then the running time of FORD-FULKERSON is $O(|E| \cdot |f^*|)$, where $|f^*|$ is the value of the maximum flow constructed by the algorithm.

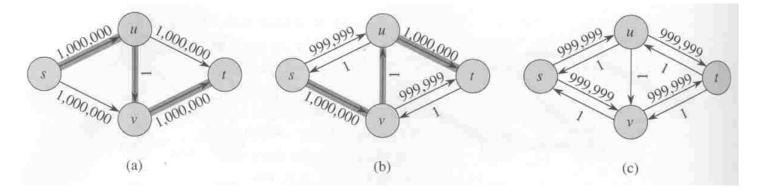


Figure 4: A very slow termination of the basic method

Example 1

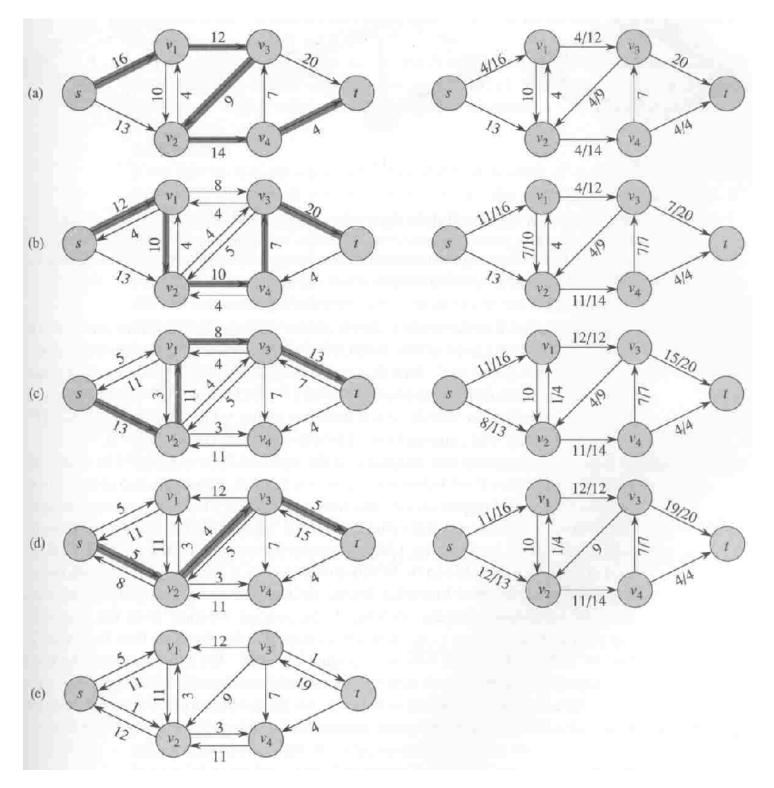


Figure 5: Execution of the basic Ford-Fulkerson algorithm

2c. The Edmonds-Karp algorithm

Let all the costs c(u, v) be rational. Furthermore, assume that any augmenting path p constructed by FORD-FULKERSON is a shortest path $s \rightsquigarrow t$ in N_f constructed by the DFS. So implemented Ford-Fulkerson method is called EDMONDS-KARP algorithm.

Let $\delta_f(u, v)$ denote the length of the shortest path $u \rightsquigarrow v$ in N_f (w.r.t. the weights w(e) = 1 for every $e \in E$).

Lemma 4 After every execution of the while -loop in the EDMONDS-KARP algorithm the values $\delta_f(s, v)$ are increasing monotonically for all $v \in V - \{s, t\}$.

Proof:

Assume the contrary and let v be the first vertex, s.t. $\delta_{f'}(s,v) < \delta_f(s,v)$, where the flow f' is obtained from f by a single augmentation.

Let $p = s \rightsquigarrow u \rightarrow v$ be a shortest path in $N_{f'}$, so $(u, v) \in E_{f'}$ and

$$\delta_{f'}(s,u) = \delta_{f'}(s,v) - 1 \tag{1}$$

By the choice of *u*:

$$\delta_{f'}(s,u) \ge \delta_f(s,u). \tag{2}$$

We claim $(u, v) \notin E_f$ because otherwise

$$\begin{split} \delta_f(s,v) &\leq \delta_f(s,u) + 1 \\ &\leq \delta_{f'}(s,u) + 1 \qquad (\text{by (2)}) \\ &= \delta_{f'}(s,v) \qquad (\text{by (1)}). \end{split}$$

Now, $(u, v) \not\in E_f$ and $(u, v) \in E_{f'}$. $\Rightarrow \exists$ shortest path $s \rightsquigarrow v \rightarrow u \rightsquigarrow t$ in N_f . One has

$$\begin{split} \delta_f(s,v) &= \delta_f(s,u) - 1 \\ &\leq \delta_{f'}(s,u) - 1 \qquad (\text{by (2)}) \\ &= \delta_{f'}(s,v) - 2 \qquad (\text{by (1)}) \end{split}$$

 \square

which contradicts to $\delta_{f'}(s,v) < \delta_f(s,v)$.

Theorem 2 The number of times the while -loop in the EDMONDS-KARP algorithm is executed is $O(|V| \cdot |E|)$.

Proof:

After each augmentation the distance from s to at least one vertex strictly increases.

For any $v \in V - \{s, t\}$ one has $\delta_f(s, v) \in \{1, \ldots, |E|, \infty\}$, so $\delta_f(s, v)$ takes on at most |E|+1 values in the coarse of the algorithm.

By L. 4 the $\delta_f(s, v)$ does not decrease. So the number of times the **while** -loop is executed does not exceed the number of steps to lift all $\delta_f(s, v)$ up to their final values. This number does not exceed |E| + 1 for each vertex v, so the total number of steps is not larger than $|V| \cdot (|E| + 1) = O(|V| \cdot |E|)$.

Therefore, the running time of the EDMONDS-KARP algorithm is $O(|V|\cdot |E|^2).$

3a. Connectivity of graphs

Definition 6 An undirected graph G = (V, E) is called κ -connected if for any two its vertices $u, v \in V$ ($u \neq v$) there exist κ vertex disjoint paths $u \rightsquigarrow v$.

Definition 7 Let G = (V, E) be a non-oriented graph and $a, b \in V$. A set $S \subseteq V$ is called (a, b) vertex separator, if $\{a, b\} \subset V - S$ and any path $a \rightsquigarrow b$ in G contains a vertex of S.

$$\begin{split} N(a,b) &:= \text{minimum size of an } (a,b) \text{ vertex separator.} \\ p(a,b) &:= \text{maximum size of a set of vertex-disjoint paths } a \rightsquigarrow b. \end{split}$$

Theorem 3 (MENGER'S THEOREM) If $(a, b) \notin E$ then N(a, b) = p(a, b).

Proof: (using flows) Given G = (V, E), construct the following network $N_G = (V', E', s, t)$:

- $\forall v \in V$: put v', v'' in V' and the edge (v', v'') (internal edges). Set: s = a'' and t = b'.
- $\forall (u,v) \in E$: put (u'',v') and (v'',u') in N_G . (external edges)

Also set:

$$c(u,v) = \begin{cases} 1, & \text{for all internal edges} \\ \infty, & \text{for all external edges} \end{cases}$$

We show that for a maximal flow f from s to t one has:

|f| = p(a, b).

There exist p(a, b) vertex-disjoint paths $a \rightsquigarrow b$ in G:

$$a \rightsquigarrow v_1 \rightsquigarrow \cdots \rightsquigarrow v_l = b_l$$

 \Rightarrow there exist p(a, b) vertex-disjoint paths $s \rightsquigarrow t$ in N_G :

$$s = a'' \rightsquigarrow v_1' \rightsquigarrow v_1'' \rightsquigarrow \cdots \rightsquigarrow v_l' \rightsquigarrow v_l'' = t$$

 $\Rightarrow |f| \ge p(a,b).$

Assume f is a maximal flow in N_G s.t. $f(e) \in \{0, 1\} \forall e \in E'$. \Rightarrow each $s \rightsquigarrow t$ -path contributes 1 to f \Rightarrow there exist at least |f| paths, i.e. $p(a, b) \ge |f|$.

 \square

Menger's Theorem leads to a method for computing N(a, b):

- 1. Construct the network N_G as in Theorem 3.
- 2. Find a maximal flow f in N_G from s to t.
- 3. Find the minimum-size edge-cut C in N_G .
- 4. Construct corresponding (a, b) vertex separator from C in G.

 κ vertex connectivity:

For all pairs (a, b) of vertices with $(a, b) \notin E$ compute the minimal vertex separator and find κ .

Edge-connectivity of Graphs

Definition 8 A non-oriented graph G = (V, E) is called κ edgeconnected if for any two its vertices $u, v \in V$ ($u \neq v$) there exist κ edge-disjoint paths.

Definition 9 Let G = (V, E) be an undirected graph and $a, b \in V$. A set $S \subseteq E$ is called (a, b) edge-separator, if any path $a \rightsquigarrow b$ contains an edge of S.

$$\begin{split} K(a,b) &:= \text{minimum size of } (a,b)\text{-separator.} \\ q(a,b) &:= \text{maximum size of a set of edge-disjoint paths } a \rightsquigarrow b. \end{split}$$

Theorem 4 It holds: K(a, b) = q(a, b).

Proof:

Given G = (V, E), construct the network $N_G = (V, E', a, b)$, where for each edge $(u, v) \in E$ there are two oriented edges (a, b) and (b, a). Set the capacity for each edge to be 1.

Let f be a maximal flow in N_G . Then |f| = q(a, b).

Theorem 4 leads to computing K(a, b) via computing q(a, b). We apply this Method for all $a, b \in V$ and find the κ edge-connectivity.

3b. Matching in bipartite graphs

Definition 10 Let G = (V, E) be an undirected graph. A set $M \subseteq E$ is called <u>matching</u> if the edges in M have no common vertices. A matching is called <u>maximum</u> if it has a maximum number of edges.

The Problem:

Given a bipartite graph $G = (V_1 \cup V_2, E)$, construct a maximum matching.

Let $N_G = (V', E', s, t)$ be the following network:

$$V' = V_1 \cup V_2 \cup \{s, t\}$$

$$E' = \{(s, u) \mid u \in V_1\}$$

$$\cup\{(u, v) \mid u \in V_1, v \in V_2, (u, v) \in E\}$$

$$\cup\{(v, t) \mid v \in V_2\}$$

$$c(u, v) = 1 \text{ for every } (u, v) \in E'$$

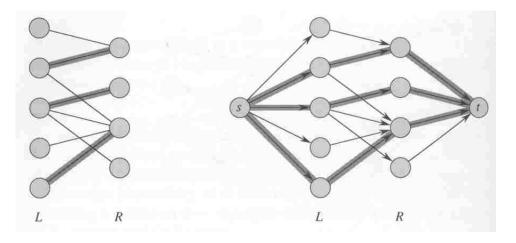


Figure 6: Maximum matching in bipartite graphs

Theorem 5 Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. For any matching M there is a flow f in N_G with |f| = |M|. For any integer-valued flow f in N_G there exists a matching M in G with |M| = |f|.

Proof:

Let M be a matching in G. Consider the following flow:

$$f(s, u) = f(u, v) = f(v, t) = 1$$

$$f(u, s) = f(v, u) = f(t, v) = -1$$

for $(u, v) \in M$ and f(u, v) = 0 otherwise. For any $(u, v) \in M$ there exists a path $s \rightsquigarrow u \rightsquigarrow v \rightsquigarrow t$. Let $S = \{s\} \cup V_1$ and $T = \{t\} \cup V_2$. Then (S, T) is a cut in N_G and (Lemma 3) |f| = |M|.

Let f be an integer-valued flow in N_G . Consider

 $M = \{ (u, v) \mid u \in V_1, v \in V_2, f(u, v) > 0 \}.$

Then M is a matching with |M| = |f|.

Corollary 2 The size of a maximum matching in G equals to the value of a maximum flow in in N_G .

Proof:

Let M be a maximum matching. Consider the flow f as in the proof of Theorem 5.

Assume f is not maximum. $\Rightarrow \exists$ an integer-valued flow f' in N_G with |f'| > |f|.

(Theorem 5) \Rightarrow there is a matching M' in G with

$$|M'| = |f'| > |f| = |M|.$$

 \square

So, M is not a maximum matching, a contradiction.

Let G = (V, E) be a graph and $A \subseteq V$. Define:

$$N(A) = \{ v \in V - A \mid (v, w) \in E, \ w \in A \}.$$

Theorem 6 (P. Hall)

Let $G = (V_1 \cup V_2, E)$ be a bipartite graph. G has a matching M with $|M| = |V_1| \iff$ for any subset $A \subseteq V_1$ one has:

 $|N(A)| \ge |A|.$

Proof:

 \Rightarrow Obvious.

 \Leftarrow Let $|N(A)| \ge |A|$ for any $A \subseteq V_1$. Let f be a maximal integervalued flow in N_G and $S \subseteq V'$ be the vertices of the residual network which are reachable from s. Then |f| = c(S,T), where $T = V(N_G) - S$.

Let
$$v \in S \cap V_1$$
 and $(v, w) \in E(N_G)$. We show $w \in S$.
Assume $w \notin S \Rightarrow f(v, w) = 1$ (otherwise $w \in S$).
 $f(s, v) = 0 \Rightarrow \sum_{u \in V(N_G)} f(v, u) \neq 0$, a contradiction.
Hence: $N(S \cap V_1) \subseteq S$. Therefore:
 $(v, w) \in E(V_G), v \in S, w \in T \Rightarrow v = s \text{ or } w = t$.

Since $S \cap V_2 = N(S \cap V_1)$, then:

 $|f| = |V_1 - S| + |N(S \cap V_1)| \ge |V_1 - S| + |S \cap V_1| = |V_1| \ge |f|.$

(Theorem 5) \Rightarrow G has a matching with $|V_1|$ edges.

Corollary 3 Any regular bipartite graph has a perfect matching.