1 Flow Networks

1. Introduction
2. Maximum Flow
a. The Ford-Fulkerson method
b. The MAXFLOW-MINCUT theorem
c. The Edmonds-Karp algorithm
3. Applications
a. Connectivity of graphs
b. Matchings in bipartite graphs

1. Introduction

Definition 1 A network $N=(V, E, s, t)$ is an oriented graph (V, E) with a weight function $c: E \mapsto \mathbf{R}^{\geq 0}$ and two special nodes $s, t \in V$ (source and sink).

If $(u, v) \notin E$ we extend $c(u, v)$ by setting $c(u, v)=0$.
Definition 2 Let $N=(V, E, s, t)$ be a network. A flow in N is a function $f: V \times V \mapsto \mathbf{R}$, such that:

- $f(u, v) \leq c(u, v)$ for any $u, v \in V$.
- $f(u, v)=-f(v, u)$ for any $u, v \in V$.
- $\sum_{v \in V} f(u, v)=0$ for any $u \in V-\{s, t\}$.
(capacity constraint)
(symmetry)
(flow conservation)

The number $|f|=\sum_{v \in V} f(s, v)$ is called the value on f.
Therefore, $f(u, u)=0$ and if $(u, v) \notin E \&(v, u) \notin E \Rightarrow f(u, v)=f(v, u)=0$.

Figure 1: Example of a flow network

The Problem:

Given a network N construct a flow f for N with maximum value $|f|$ (maximal flow). Important ideas:

- The residual network
- The augmenting path
- The minimum cut

Definition 3 Let $N=(V, E, s, t)$ be a network with a flow f. For each $u, v \in V$ put

$$
c_{f}(u, v)=c(u, v)-f(u, v)
$$

and define the residual network $N_{f}=\left(V, E_{f}, s, t\right)$, where

$$
E_{f}=\left\{(u, v) \in V \times V \mid c_{f}(u, v)>0\right\}
$$

(a)

(c)

(b)

(d)

Figure 2: Residual network and augmenting path

Lemma 1 Let $N=(V, E, s, t)$ a network with flow f and let f^{\prime} be a flow on N_{f}. Then $f+f^{\prime}$ is a flow on N and $\left|f+f^{\prime}\right|=|f|+\left|f^{\prime}\right|$.

Proof:

Obviously, it holds: $\left(f+f^{\prime}\right)(u, v)=-\left(f+f^{\prime}\right)(v, u)$:

$$
\begin{aligned}
\left(f+f^{\prime}\right)(u, v) & =f(u, v)+f^{\prime}(u, v) \\
& =-f(v, u)-f^{\prime}(v, u) \\
& =-\left(f(v, u)+f^{\prime}(v, u)\right) \\
& =-\left(f+f^{\prime}\right)(v, u)
\end{aligned}
$$

Since $f(u, v) \leq c(u, v)$ and $f^{\prime}(u, v) \leq c_{f}(u, v)$, one has:

$$
\begin{aligned}
\left(f+f^{\prime}\right)(u, v) & =f(u, v)+f^{\prime}(u, v) \\
& \leq f(u, v)+(c(u, v)-f(u, v))=c(u, v)
\end{aligned}
$$

Therefore: $\quad(u \in V-\{s, t\})$

$$
\begin{aligned}
\sum_{v \in V}\left(f+f^{\prime}\right)(u, v) & =\sum_{v \in V}\left(f(u, v)+f^{\prime}(u, v)\right) \\
& =\sum_{v \in V} f(u, v)+\sum_{v \in V} f^{\prime}(u, v)=0
\end{aligned}
$$

Finally:

$$
\begin{aligned}
\left|f+f^{\prime}\right| & =\sum_{v \in V}\left(f(s, v)+f^{\prime}(s, v)\right) \\
& =\sum_{v \in V} f(s, v)+\sum_{v \in V} f^{\prime}(s, v)=|f|+\left|f^{\prime}\right|
\end{aligned}
$$

2a. The Ford-Fulkerson method

Definition 4 Let $N=(V, E, s, t)$ be a network with a flow f. The augmenting path p is an oriented path $s \leadsto t$ in N_{f}.
We put $c_{f}(p):=\min \left\{c_{f}(u, v) \mid(u, v) \in E(p)\right\}$.

Lemma 2 Let $N=(V, E, s, t)$ be a network with a flow f and let p be an augmenting path in N_{f}. Define:

$$
f_{p}(u, v)= \begin{cases}c_{f}(p), & \text { if }(u, v) \in E(p), \\ -c_{f}(p), & \text { if }(v, u) \in E(p), \\ 0, & \text { otherwise }\end{cases}
$$

Then f_{p} is a flow on N_{f} and $\left|f_{p}\right|=c_{f}(p)>0$.
Corollary 1 Let $N=(V, E, s, t)$ be a network with a flow f and let p be an augmenting path in N_{f}. Furthermore, let $f^{\prime}=f+f_{p}$. Then f^{\prime} is a flow with $\left|f^{\prime}\right|>|f|$.

A general method:

1. Set $f:=0$.
2. while ヨaugmenting path p in N_{f}

$$
f:=f+f_{p} .
$$

3. return f

2b. The MAXFLOW-MINCUT theorem

Definition 5 A cut (S, T) in a network $N=(V, E, s, t)$ is a partition of the vertex set $V^{\prime}=S \cup T$, such that $s \in S, t \in T$ and $S \cap T=\emptyset$.

We define:

$$
\begin{aligned}
f(S, T) & =\sum_{u \in S} \sum_{v \in T} f(u, v) \\
c(S, T) & =\sum_{u \in S} \sum_{v \in T} c(u, v) .
\end{aligned}
$$

Figure 3: An (S, T)-cut in a network

Lemma 3 Let $N=(V, E, s, t)$ be a network with a flow f and let (S, T) be a cut in N. Then $f(S, T)=|f|$.

Proof:

$$
\begin{aligned}
f(S, T) & =\sum_{u \in S} \sum_{v \in T} f(u, v)=\sum_{u \in S} \sum_{v \in V} f(u, v)-\sum_{u \in S} \sum_{v \in S} f(u, v) \\
& =\sum_{u \in S} \sum_{v \in V} f(u, v) \\
& =\sum_{v \in V} f(s, v)+\sum_{u \in S-s} \sum_{v \in V} f(u, v) \\
& =\sum_{v \in V} f(s, v)=|f| . \quad \square
\end{aligned}
$$

Theorem 1 (MAXFLOW-MINCUT THEOREM)

Let $N=(V, E, s, t)$ be a network with a flow f. The following statements are equivalent:

1. f is a flow with maximum value $|f|$.
2. The network N_{f} has no augmenting path.
3. $|f|=c(S, T)$ for some cut (S, T) of N.

Proof:

$(1) \Rightarrow(2)$:
Assume N_{f} contains an augmenting path p.
(Corollary 1) $\Rightarrow\left|f+f_{p}\right|>|f|$, a contradiction
$(2) \Rightarrow(3):$
Denote:

$$
S=\left\{v \in V \mid \exists \text { path } s \leadsto v \text { in } N_{f}\right\}, \quad T=V-S
$$

Then (S, T) is a cut and $f(u, v)=c(u, v)$ for $u \in S$ and $v \in T$.
(Lemma 3) $\Rightarrow|f|=f(S, T)=c(S, T)$.
$(3) \Rightarrow(1): \quad$ Let (S, T) be a cut.

$$
\begin{aligned}
|f|=f(S, T) & =\sum_{u \in S} \sum_{v \in T} f(u, v) \\
& \leq \sum_{u \in S} \sum_{v \in T} c(u, v)=c(S, T)
\end{aligned}
$$

Since $[|f|=c(S, T)] \Rightarrow|f|$ is maximum.

2c. The Ford-Fulkerson algorithm

Algorithm 1 Ford-Fulkerson (N, s, t);

for all $(u, v) \in E$ do

$$
\begin{aligned}
f[u, v] & :=0 \\
f[v, u]: & =0
\end{aligned}
$$

while (\exists augmenting path p in N_{f}) do
$c_{f}(p):=\min \left\{c_{f}(u, v) \mid(u, v) \in p\right\}$
for all $(u, v) \in p$ do
$f[u, v]:=f[u, v]+c_{f}(p)$
$f[v, u]:=-f[u, v]$

If all the costs $c(u, v)$ are integer numbers then the running time of Ford-Fulkerson is $O\left(|E| \cdot\left|f^{*}\right|\right)$, where $\left|f^{*}\right|$ is the value of the maximum flow constructed by the algorithm.

(a)

(b)

(c)

Figure 4: A very slow termination of the basic method

Example 1

(a)

(c)

Figure 5: Execution of the basic Ford-Fulkerson algorithm

2c. The Edmonds-Karp algorithm

Let all the costs $c(u, v)$ be rational. Furthermore, assume that any augmenting path p constructed by Ford-Fulkerson is a shortest path $s \leadsto t$ in N_{f} constructed by the DFS. So implemented FordFulkerson method is called Edmonds-Karp algorithm.

Let $\delta_{f}(u, v)$ denote the length of the shortest path $u \leadsto v$ in N_{f} (w.r.t. the weights $w(e)=1$ for every $e \in E$).

Lemma 4 After every execution of the while -loop in the EdmondsKARP algorithm the values $\delta_{f}(s, v)$ are increasing monotonically for all $v \in V-\{s, t\}$.

Proof:

Assume the contrary and let v be the first vertex, s.t. $\delta_{f^{\prime}}(s, v)<$ $\delta_{f}(s, v)$, where the flow f^{\prime} is obtained from f by a single augmentation.

Let $p=s \leadsto u \rightarrow v$ be a shortest path in $N_{f^{\prime}}$, so $(u, v) \in E_{f^{\prime}}$ and

$$
\begin{equation*}
\delta_{f^{\prime}}(s, u)=\delta_{f^{\prime}}(s, v)-1 \tag{1}
\end{equation*}
$$

By the choice of u :

$$
\begin{equation*}
\delta_{f^{\prime}}(s, u) \geq \delta_{f}(s, u) . \tag{2}
\end{equation*}
$$

We claim $(u, v) \notin E_{f}$ because otherwise

$$
\begin{array}{rlr}
\delta_{f}(s, v) & \leq \delta_{f}(s, u)+1 \\
& \leq \delta_{f^{\prime}}(s, u)+1 \quad(\text { by }(2)) \\
& =\delta_{f^{\prime}}(s, v) & (\text { by }(1)) .
\end{array}
$$

Now, $(u, v) \notin E_{f}$ and $(u, v) \in E_{f^{\prime}}$.
$\Rightarrow \exists$ shortest path $s \leadsto v \rightarrow u \leadsto t$ in N_{f}. One has

$$
\begin{align*}
\delta_{f}(s, v) & =\delta_{f}(s, u)-1 \\
& \leq \delta_{f^{\prime}}(s, u)-1 \quad(\text { by }(2)) \tag{2}\\
& =\delta_{f^{\prime}}(s, v)-2 \quad(\text { by }(1))
\end{align*}
$$

which contradicts to $\delta_{f^{\prime}}(s, v)<\delta_{f}(s, v)$.

Theorem 2 The number of times the while -loop in the Edmonds-KARP algorithm is executed is $O(|V| \cdot|E|)$.

Proof:

After each augmentation the distance from s to at least one vertex strictly increases.
For any $v \in V-\{s, t\}$ one has $\delta_{f}(s, v) \in\{1, \ldots,|E|, \infty\}$, so $\delta_{f}(s, v)$ takes on at most $|E|+1$ values in the coarse of the algorithm.

By L. 4 the $\delta_{f}(s, v)$ does not decrease. So the number of times the while -loop is executed does not exceed the number of steps to lift all $\delta_{f}(s, v)$ up to their final values. This number does not exceed $|E|+1$ for each vertex v, so the total number of steps is not larger than $|V| \cdot(|E|+1)=O(|V| \cdot|E|)$.

Therefore, the running time of the EDMONDS-KARP algorithm is $O\left(|V| \cdot|E|^{2}\right)$.

3a. Connectivity of graphs

Definition 6 An undirected graph $G=(V, E)$ is called κ-connected if for any two its vertices $u, v \in V(u \neq v)$ there exist κ vertex disjoint paths $u \leadsto v$.

Definition 7 Let $G=(V, E)$ be a non-oriented graph and $a, b \in V$. A set $S \subseteq V$ is called (a, b) vertex separator, if $\{a, b\} \subset V-S$ and any path $a \leadsto b$ in G contains a vertex of S.
$N(a, b):=$ minimum size of an (a, b) vertex separator.
$p(a, b):=$ maximum size of a set of vertex-disjoint paths $a \leadsto b$.

Theorem 3 (Menger's Theorem)

If $(a, b) \notin E$ then $N(a, b)=p(a, b)$.
Proof: (using flows)
Given $G=(V, E)$, construct the following network $N_{G}=\left(V^{\prime}, E^{\prime}, s, t\right)$:

- $\forall v \in V$: put $v^{\prime}, v^{\prime \prime}$ in V^{\prime} and the edge ($v^{\prime}, v^{\prime \prime}$) (internal edges). Set: $s=a^{\prime \prime}$ and $t=b^{\prime}$.
- $\forall(u, v) \in E$: put $\left(u^{\prime \prime}, v^{\prime}\right)$ and $\left(v^{\prime \prime}, u^{\prime}\right)$ in N_{G}. (external edges)

Also set:

$$
c(u, v)=\left\{\begin{array}{lr}
1, & \text { for all internal edges } \\
\infty, & \text { for all external edges }
\end{array}\right.
$$

We show that for a maximal flow f from s to t one has:

$$
|f|=p(a, b)
$$

There exist $p(a, b)$ vertex-disjoint paths $a \leadsto b$ in G :

$$
a \leadsto v_{1} \leadsto \cdots \leadsto v_{l}=b .
$$

\Rightarrow there exist $p(a, b)$ vertex-disjoint paths $s \leadsto t$ in N_{G} :

$$
s=a^{\prime \prime} \leadsto v_{1}^{\prime} \leadsto v_{1}^{\prime \prime} \leadsto \cdots \leadsto v_{l}^{\prime} \leadsto v_{l}^{\prime \prime}=t
$$

$\Rightarrow|f| \geq p(a, b)$.
Assume f is a maximal flow in N_{G} s.t. $f(e) \in\{0,1\} \forall e \in E^{\prime}$.
\Rightarrow each $s \sim t$-path contributes 1 to f
\Rightarrow there exist at least $|f|$ paths, i.e. $p(a, b) \geq|f|$.
Menger's Theorem leads to a method for computing $N(a, b)$:

1. Construct the network N_{G} as in Theorem 3.
2. Find a maximal flow f in N_{G} from s to t.
3. Find the minimum-size edge-cut C in N_{G}.
4. Construct corresponding (a, b) vertex separator from C in G.
κ vertex connectivity:
For all pairs (a, b) of vertices with $(a, b) \notin E$ compute the minimal vertex separator and find κ.

Edge-connectivity of Graphs

Definition 8 A non-oriented graph $G=(V, E)$ is called κ edgeconnected if for any two its vertices $u, v \in V(u \neq v)$ there exist κ edge-disjoint paths.

Definition 9 Let $G=(V, E)$ be an undirected graph and $a, b \in V$. A set $S \subseteq E$ is called (a, b) edge-separator, if any path $a \leadsto b$ contains an edge of S.
$K(a, b):=$ minimum size of (a, b)-separator. $q(a, b):=$ maximum size of a set of edge-disjoint paths $a \leadsto b$.

Theorem 4 It holds: $K(a, b)=q(a, b)$.

Proof:

Given $G=(V, E)$, construct the network $N_{G}=\left(V, E^{\prime}, a, b\right)$, where for each edge $(u, v) \in E$ there are two oriented edges (a, b) and (b, a). Set the capacity for each edge to be 1 .

Let f be a maximal flow in N_{G}. Then $|f|=q(a, b)$.
Theorem 4 leads to computing $K(a, b)$ via computing $q(a, b)$. We apply this Method for all $a, b \in V$ and find the κ edge-connectivity.

3b. Matching in bipartite graphs
Definition 10 Let $G=(V, E)$ be an undirected graph. A set $M \subseteq$ E is called matching if the edges in M have no common vertices. A matching is called maximum if it has a maximum number of edges.

The Problem:

Given a bipartite graph $G=\left(V_{1} \cup V_{2}, E\right)$, construct a maximum matching.

Let $N_{G}=\left(V^{\prime}, E^{\prime}, s, t\right)$ be the following network:
$V^{\prime}=V_{1} \cup V_{2} \cup\{s, t\}$
$E^{\prime}=\left\{(s, u) \mid u \in V_{1}\right\}$
$\cup\left\{(u, v) \mid u \in V_{1}, v \in V_{2},(u, v) \in E\right\}$
$\cup\left\{(v, t) \mid v \in V_{2}\right\}$
$c(u, v)=1$ for every $(u, v) \in E^{\prime}$

Figure 6: Maximum matching in bipartite graphs

Theorem 5 Let $G=\left(V_{1} \cup V_{2}, E\right)$ be a bipartite graph. For any matching M there is a flow f in N_{G} with $|f|=|M|$. For any integer-valued flow f in N_{G} there exists a matching M in G with $|M|=|f|$.

Proof:

Let M be a matching in G. Consider the following flow:

$$
\begin{aligned}
& f(s, u)=f(u, v)=f(v, t)=1 \\
& f(u, s)=f(v, u)=f(t, v)=-1
\end{aligned}
$$

for $(u, v) \in M$ and $f(u, v)=0$ otherwise.
For any $(u, v) \in M$ there exists a path $s \leadsto u \leadsto v \leadsto t$.
Let $S=\{s\} \cup V_{1}$ and $T=\{t\} \cup V_{2}$.
Then (S, T) is a cut in N_{G} and (Lemma 3) $|f|=|M|$.
Let f be an integer-valued flow in N_{G}. Consider

$$
M=\left\{(u, v) \mid u \in V_{1}, v \in V_{2}, f(u, v)>0\right\} .
$$

Then M is a matching with $|M|=|f|$.

Corollary 2 The size of a maximum matching in G equals to the value of a maximum flow in in N_{G}.

Proof:

Let M be a maximum matching. Consider the flow f as in the proof of Theorem 5.
Assume f is not maximum. $\Rightarrow \exists$ an integer-valued flow f^{\prime} in N_{G} with $\left|f^{\prime}\right|>|f|$.
(Theorem 5) \Rightarrow there is a matching M^{\prime} in G with

$$
\left|M^{\prime}\right|=\left|f^{\prime}\right|>|f|=|M|
$$

So, M is not a maximum matching, a contradiction.

Let $G=(V, E)$ be a graph and $A \subseteq V$. Define:

$$
N(A)=\{v \in V-A \mid(v, w) \in E, w \in A\} .
$$

Theorem 6 (P. Hall)
Let $G=\left(V_{1} \cup V_{2}, E\right)$ be a bipartite graph. G has a matching M with $|M|=\left|V_{1}\right| \Longleftrightarrow$ for any subset $A \subseteq V_{1}$ one has:

$$
|N(A)| \geq|A|
$$

Proof:

\Rightarrow Obvious.
\Leftarrow Let $|N(A)| \geq|A|$ for any $A \subseteq V_{1}$. Let f be a maximal integervalued flow in N_{G} and $S \subseteq V^{\prime}$ be the vertices of the residual network which are reachable from s. Then $|f|=c(S, T)$, where $T=V\left(N_{G}\right)-S$.
Let $v \in S \cap V_{1}$ and $(v, w) \in E\left(N_{G}\right)$. We show $w \in S$.
Assume $w \notin S \Rightarrow f(v, w)=1$ (otherwise $w \in S$).
$f(s, v)=0 \Rightarrow \sum_{u \in V\left(N_{G}\right)} f(v, u) \neq 0$, a contradiction.
Hence: $N\left(S \cap V_{1}\right) \subseteq S$. Therefore:
$(v, w) \in E\left(V_{G}\right), v \in S, w \in T \Rightarrow v=s$ or $w=t$.
Since $S \cap V_{2}=N\left(S \cap V_{1}\right)$, then:
$|f|=\left|V_{1}-S\right|+\left|N\left(S \cap V_{1}\right)\right| \geq\left|V_{1}-S\right|+\left|S \cap V_{1}\right|=\left|V_{1}\right| \geq|f|$.
(Theorem 5) $\Rightarrow G$ has a matching with $\left|V_{1}\right|$ edges.
Corollary 3 Any regular bipartite graph has a perfect matching.

