
1 Flow Networks

1. Introduction

2. Maximum Flow

a. The Ford-Fulkerson method

b. The MAXFLOW-MINCUT theorem

c. The Edmonds-Karp algorithm

3. Applications

a. Connectivity of graphs

b. Matchings in bipartite graphs

1

1. Introduction

Definition 1 A network N = (V, E, s, t) is an oriented graph (V, E)
with a weight function c : E 7→ R≥0 and two special nodes s, t ∈ V
(source and sink).

If (u, v) 6∈ E we extend c(u, v) by setting c(u, v) = 0.

Definition 2 Let N = (V, E, s, t) be a network. A flow in N is a
function f : V × V 7→ R, such that:

• f (u, v) ≤ c(u, v) for any u, v ∈ V . (capacity constraint)

• f (u, v) = −f (v, u) for any u, v ∈ V . (symmetry)

• ∑
v∈V

f (u, v) = 0 for any u ∈ V − {s, t}. (flow conservation)

The number |f | =
∑

v∈V
f (s, v) is called the value on f .

Therefore, f (u, u) = 0 and
if (u, v) 6∈ E & (v, u) 6∈ E ⇒ f (u, v) = f (v, u) = 0.

Figure 1: Example of a flow network

2

The Problem:
Given a network N construct a flow f for N with maximum value
|f | (maximal flow). Important ideas:

• The residual network

• The augmenting path

• The minimum cut

Definition 3 Let N = (V, E, s, t) be a network with a flow f . For
each u, v ∈ V put

cf(u, v) = c(u, v)− f (u, v)

and define the residual network Nf = (V, Ef , s, t), where

Ef = {(u, v) ∈ V × V | cf(u, v) > 0}

Figure 2: Residual network and augmenting path

3

Lemma 1 Let N = (V, E, s, t) a network with flow f and let f ′ be
a flow on Nf . Then f + f ′ is a flow on N and |f + f ′| = |f |+ |f ′|.

Proof:
Obviously, it holds: (f + f ′)(u, v) = −(f + f ′)(v, u):

(f + f ′)(u, v) = f (u, v) + f ′(u, v)

= −f (v, u)− f ′(v, u)

= −(f (v, u) + f ′(v, u))

= −(f + f ′)(v, u).

Since f (u, v) ≤ c(u, v) and f ′(u, v) ≤ cf(u, v), one has:

(f + f ′)(u, v) = f (u, v) + f ′(u, v)

≤ f (u, v) + (c(u, v)− f (u, v)) = c(u, v).

Therefore: (u ∈ V − {s, t})
∑

v∈V
(f + f ′)(u, v) =

∑
v∈V

(f (u, v) + f ′(u, v))

=
∑

v∈V
f (u, v) +

∑
v∈V

f ′(u, v) = 0.

Finally:

|f + f ′| =
∑

v∈V
(f (s, v) + f ′(s, v))

=
∑

v∈V
f (s, v) +

∑
v∈V

f ′(s, v) = |f | + |f ′|. 2

4

2a. The Ford-Fulkerson method

Definition 4 Let N = (V, E, s, t) be a network with a flow f . The
augmenting path p is an oriented path s ; t in Nf .
We put cf(p) := min{cf(u, v) | (u, v) ∈ E(p)}.

Lemma 2 Let N = (V, E, s, t) be a network with a flow f and let
p be an augmenting path in Nf . Define:

fp(u, v) =

cf(p), if (u, v) ∈ E(p),
−cf(p), if (v, u) ∈ E(p),
0, otherwise

Then fp is a flow on Nf and |fp| = cf(p) > 0.

Corollary 1 Let N = (V, E, s, t) be a network with a flow f and
let p be an augmenting path in Nf . Furthermore, let f ′ = f + fp.
Then f ′ is a flow with |f ′| > |f |.

A general method:

1. Set f := 0.

2. while ∃augmenting path p in Nf

f := f + fp.

3. return f

5

2b. The MAXFLOW-MINCUT theorem

Definition 5 A cut (S, T) in a network N = (V, E, s, t) is a par-
tition of the vertex set V ′ = S ∪ T , such that s ∈ S, t ∈ T and
S ∩ T = ∅.

We define:

f (S, T) =
∑

u∈S

∑
v∈T

f (u, v)

c(S, T) =
∑

u∈S

∑
v∈T

c(u, v).

Figure 3: An (S, T)-cut in a network

Lemma 3 Let N = (V, E, s, t) be a network with a flow f and let
(S, T) be a cut in N . Then f (S, T) = |f |.

Proof:

f (S, T) =
∑

u∈S

∑
v∈T

f (u, v) =
∑

u∈S

∑
v∈V

f (u, v)− ∑
u∈S

∑
v∈S

f (u, v)

=
∑

u∈S

∑
v∈V

f (u, v)

=
∑

v∈V
f (s, v) +

∑
u∈S−s

∑
v∈V

f (u, v)

=
∑

v∈V
f (s, v) = |f |. 2

6

Theorem 1 (MAXFLOW-MINCUT theorem)
Let N = (V, E, s, t) be a network with a flow f . The following
statements are equivalent:

1. f is a flow with maximum value |f |.
2. The network Nf has no augmenting path.

3. |f | = c(S, T) for some cut (S, T) of N .

Proof:

(1)⇒(2):
Assume Nf contains an augmenting path p.
(Corollary 1) ⇒ |f + fp| > |f |, a contradiction

(2)⇒(3):
Denote:

S = {v ∈ V | ∃path s ; v in Nf}, T = V − S.

Then (S, T) is a cut and f (u, v) = c(u, v) for u ∈ S and v ∈ T .
(Lemma 3) ⇒ |f | = f (S, T) = c(S, T).

(3)⇒(1): Let (S, T) be a cut.

|f | = f (S, T) =
∑

u∈S

∑
v∈T

f (u, v)

≤ ∑
u∈S

∑
v∈T

c(u, v) = c(S, T).

Since [|f | = c(S, T)] ⇒ |f | is maximum. 2

7

2c. The Ford-Fulkerson algorithm

Algorithm 1 Ford-Fulkerson(N, s, t);

for all (u, v) ∈ E do
f [u, v] := 0
f [v, u] := 0

while (∃augmenting path p in Nf) do
cf(p) := min{cf(u, v) | (u, v) ∈ p}
for all (u, v) ∈ p do

f [u, v] := f [u, v] + cf(p)
f [v, u] := −f [u, v]

If all the costs c(u, v) are integer numbers then the running time of
Ford-Fulkerson is O(|E| · |f ∗|), where |f ∗| is the value of the
maximum flow constructed by the algorithm.

Figure 4: A very slow termination of the basic method

8

Example 1

Figure 5: Execution of the basic Ford-Fulkerson algorithm

9

2c. The Edmonds-Karp algorithm

Let all the costs c(u, v) be rational. Furthermore, assume that any
augmenting path p constructed by Ford-Fulkerson is a shortest
path s ; t in Nf constructed by the DFS. So implemented Ford-
Fulkerson method is called Edmonds-Karp algorithm.

Let δf(u, v) denote the length of the shortest path u ; v in Nf

(w.r.t. the weights w(e) = 1 for every e ∈ E).

Lemma 4 After every execution of the while -loop in the Edmonds-
Karp algorithm the values δf(s, v) are increasing monotonically for
all v ∈ V − {s, t}.

Proof:
Assume the contrary and let v be the first vertex, s.t. δf ′(s, v) <
δf(s, v), where the flow f ′ is obtained from f by a single augmenta-
tion.

Let p = s ; u → v be a shortest path in Nf ′, so (u, v) ∈ Ef ′ and

δf ′(s, u) = δf ′(s, v)− 1 (1)

By the choice of u:
δf ′(s, u) ≥ δf(s, u). (2)

We claim (u, v) 6∈ Ef because otherwise

δf(s, v) ≤ δf(s, u) + 1

≤ δf ′(s, u) + 1 (by (2))

= δf ′(s, v) (by (1)).

10

Now, (u, v) 6∈ Ef and (u, v) ∈ Ef ′.
⇒ ∃shortest path s ; v → u ; t in Nf . One has

δf(s, v) = δf(s, u)− 1

≤ δf ′(s, u)− 1 (by (2))

= δf ′(s, v)− 2 (by (1))

which contradicts to δf ′(s, v) < δf(s, v). 2

Theorem 2 The number of times the while -loop in the
Edmonds-Karp algorithm is executed is O(|V | · |E|).

Proof:
After each augmentation the distance from s to at least one vertex
strictly increases.

For any v ∈ V − {s, t} one has δf(s, v) ∈ {1, . . . , |E|,∞}, so
δf(s, v) takes on at most |E|+1 values in the coarse of the algorithm.

By L. 4 the δf(s, v) does not decrease. So the number of times the
while -loop is executed does not exceed the number of steps to lift
all δf(s, v) up to their final values. This number does not exceed
|E| + 1 for each vertex v, so the total number of steps is not larger
than |V | · (|E| + 1) = O(|V | · |E|). 2

Therefore, the running time of the Edmonds-Karp algorithm is
O(|V | · |E|2).

11

3a. Connectivity of graphs

Definition 6 An undirected graph G = (V, E) is called κ-connected
if for any two its vertices u, v ∈ V (u 6= v) there exist κ vertex
disjoint paths u ; v.

Definition 7 Let G = (V, E) be a non-oriented graph and a, b ∈ V .
A set S ⊆ V is called (a, b) vertex separator, if {a, b} ⊂ V − S and
any path a ; b in G contains a vertex of S.

N(a, b) := minimum size of an (a, b) vertex separator.
p(a, b) := maximum size of a set of vertex-disjoint paths a ; b.

Theorem 3 (Menger’s Theorem)
If (a, b) 6∈ E then N(a, b) = p(a, b).

Proof: (using flows)
Given G = (V, E), construct the following network NG = (V ′, E ′, s, t):

• ∀v ∈ V : put v′, v′′ in V ′ and the edge (v′, v′′) (internal edges).
Set: s = a′′ and t = b′.

• ∀(u, v) ∈ E: put (u′′, v′) and (v′′, u′) in NG. (external edges)

Also set:

c(u, v) =

1, for all internal edges
∞, for all external edges

12

We show that for a maximal flow f from s to t one has:

|f | = p(a, b).

There exist p(a, b) vertex-disjoint paths a ; b in G:

a ; v1 ; · · · ; vl = b.

⇒ there exist p(a, b) vertex-disjoint paths s ; t in NG:

s = a′′ ; v′1 ; v′′1 ; · · · ; v′l ; v′′l = t

⇒ |f | ≥ p(a, b).

Assume f is a maximal flow in NG s.t. f (e) ∈ {0, 1} ∀e ∈ E ′.
⇒ each s ; t-path contributes 1 to f
⇒ there exist at least |f | paths, i.e. p(a, b) ≥ |f |. 2

Menger’s Theorem leads to a method for computing N(a, b):

1. Construct the network NG as in Theorem 3.

2. Find a maximal flow f in NG from s to t.

3. Find the minimum-size edge-cut C in NG.

4. Construct corresponding (a, b) vertex separator from C in G.

κ vertex connectivity:
For all pairs (a, b) of vertices with (a, b) 6∈ E compute the minimal
vertex separator and find κ.

13

Edge-connectivity of Graphs

Definition 8 A non-oriented graph G = (V, E) is called κ edge-
connected if for any two its vertices u, v ∈ V (u 6= v) there exist κ
edge-disjoint paths.

Definition 9 Let G = (V, E) be an undirected graph and a, b ∈ V .
A set S ⊆ E is called (a, b) edge-separator, if any path a ; b
contains an edge of S.

K(a, b) := minimum size of (a, b)-separator.
q(a, b) := maximum size of a set of edge-disjoint paths a ; b.

Theorem 4 It holds: K(a, b) = q(a, b).

Proof:
Given G = (V, E), construct the network NG = (V, E ′, a, b), where
for each edge (u, v) ∈ E there are two oriented edges (a, b) and
(b, a). Set the capacity for each edge to be 1.

Let f be a maximal flow in NG. Then |f | = q(a, b). 2

Theorem 4 leads to computing K(a, b) via computing q(a, b). We
apply this Method for all a, b ∈ V and find the κ edge-connectivity.

14

3b. Matching in bipartite graphs

Definition 10 Let G = (V, E) be an undirected graph. A set M ⊆
E is called matching if the edges in M have no common vertices. A
matching is called maximum if it has a maximum number of edges.

The Problem:
Given a bipartite graph G = (V1 ∪ V2, E), construct a maximum
matching.

Let NG = (V ′, E ′, s, t) be the following network:

V ′ = V1 ∪ V2 ∪ {s, t}
E ′ = {(s, u) | u ∈ V1}

∪{(u, v) | u ∈ V1, v ∈ V2, (u, v) ∈ E}
∪{(v, t) | v ∈ V2}

c(u, v) = 1 for every (u, v) ∈ E ′

Figure 6: Maximum matching in bipartite graphs

15

Theorem 5 Let G = (V1 ∪ V2, E) be a bipartite graph. For any
matching M there is a flow f in NG with |f | = |M |. For any
integer-valued flow f in NG there exists a matching M in G with
|M | = |f |.

Proof:
Let M be a matching in G. Consider the following flow:

f (s, u) = f (u, v) = f (v, t) = 1

f (u, s) = f (v, u) = f (t, v) = −1

for (u, v) ∈ M and f (u, v) = 0 otherwise.
For any (u, v) ∈ M there exists a path s ; u ; v ; t.
Let S = {s} ∪ V1 and T = {t} ∪ V2.
Then (S, T) is a cut in NG and (Lemma 3) |f | = |M |.

Let f be an integer-valued flow in NG. Consider

M = {(u, v) | u ∈ V1, v ∈ V2, f (u, v) > 0}.

Then M is a matching with |M | = |f |. 2

16

Corollary 2 The size of a maximum matching in G equals to the
value of a maximum flow in in NG.

Proof:
Let M be a maximum matching. Consider the flow f as in the proof
of Theorem 5.
Assume f is not maximum. ⇒ ∃ an integer-valued flow f ′ in NG

with |f ′| > |f |.
(Theorem 5) ⇒ there is a matching M ′ in G with

|M ′| = |f ′| > |f | = |M |.
So, M is not a maximum matching, a contradiction. 2

17

Let G = (V, E) be a graph and A ⊆ V . Define:

N(A) = {v ∈ V − A | (v, w) ∈ E, w ∈ A}.

Theorem 6 (P. Hall)
Let G = (V1 ∪ V2, E) be a bipartite graph. G has a matching M
with |M | = |V1| ⇐⇒ for any subset A ⊆ V1 one has:

|N(A)| ≥ |A|.

Proof:
⇒ Obvious.

⇐ Let |N(A)| ≥ |A| for any A ⊆ V1. Let f be a maximal integer-
valued flow in NG and S ⊆ V ′ be the vertices of the residual
network which are reachable from s. Then |f | = c(S, T), where
T = V (NG)− S.

Let v ∈ S ∩ V1 and (v, w) ∈ E(NG). We show w ∈ S.
Assume w 6∈ S ⇒ f (v, w) = 1 (otherwise w ∈ S).
f (s, v) = 0 ⇒ ∑

u∈V (NG) f (v, u) 6= 0, a contradiction.

Hence: N(S ∩ V1) ⊆ S. Therefore:
(v, w) ∈ E(VG), v ∈ S, w ∈ T ⇒ v = s or w = t.
Since S ∩ V2 = N(S ∩ V1), then:

|f | = |V1 − S| + |N(S ∩ V1)| ≥ |V1 − S| + |S ∩ V1| = |V1| ≥ |f |.

(Theorem 5) ⇒ G has a matching with |V1| edges. 2

Corollary 3 Any regular bipartite graph has a perfect matching.

18

