NP-completeness

1. The complexity class P
a. Instance encodings
b. Formal languages
2. The complexity class NP
a. NP-completeness and reducibility
b. proofs of NP-completeness
3. Some NP-complete Problems
a. SAT
b. 3 -SAT
c. Clique
d. Partition
e. k-Coloring
f. 3D-Matching

1a. The complexity class P

An abstract problem is a relation on the sets of problem instances and problem solutions.

Example 1 The SHORTEST PATH problem:
Instance: A simple graph G and two vertices u, v.
Output: A shortest path $u \leadsto v$ in G (it such exists).
Decision problems:
A solution is of the form " Y " or " N ".

Example 2

Instance: A simple graph G, two vertices u, v, and $k>0$.
Question: $\exists u \leadsto v$ in G of length $\leq k$?
Optimization problems:
Some function should be minimized or maximized.
Any "discrete optimization problem" can be formulated as a decision problem.

Remark 1

Optimization problem is "easily solvable" \Rightarrow corresponding decision problem is also "easily solvable".
Optimization problem is "hardly solvable" \Rightarrow corresponding decision problem is also "hardly solvable".

An encoding is a mapping of the set of abstract object into the set of binary strings.

Any algorithm that "solves" an abstract decision problem works with an encoding of this problem. We call a problem with encoded instance concrete problem.

Definition 1 We say that an algorithm solves a problem in time $O(T(n))$ if for any instance encoding of length n the algorithm computes a solution in time $O(T(n))$.

Definition 2 A concrete problem with instance encoding of size n is solvable in polynomial time, if there exists an algorithm for solving the problem in time $O\left(n^{k}\right)$ for come constant k (independent on n).

Definition 3 The complexity class P consists of the concrete decision problems solvable in polynomial time.

Let f be a mapping $f:\{0,1\}^{*} \mapsto\{0,1\}^{*} . f$ is said to be computable in polynomial time, if there exists an algorithm that for any $x \in$ $\{0,1\}^{*}$ constructs a sequence $f(x)$ in polynomial time.

Let I be the set of all problem instances. We call two encodings e_{1} and e_{2} polynomially equivalent, if there exist computable in polynomial time functions f_{12} and f_{21} such that for any $i \in I$ one has: $f_{12}\left(e_{1}(i)\right)=e_{2}(i)$ and $f_{21}\left(e_{2}(i)\right)=e_{1}(i)$.

Lemma 1 Let Q be an abstract decision problem and e_{1}, e_{2} be polynomially equivalent encodings of the set $I=\{i\}$. Then $Q\left(e_{1}(i)\right) \in P$ $\Longleftrightarrow Q\left(e_{2}(i)\right) \in P$.

1b. A formal language framework

Let $\Sigma=\{0,1\}$. A language L is a subset of Σ^{*}. Any decision problem Q can be represented as the following language:

$$
L=\left\{x \in \Sigma^{*} \mid Q(x)=1\right\} .
$$

Definition 4 An algorithm A accepts $x \in \Sigma^{*}$, if its output $A(x)=$ 1. The algorithm A rejects a string $x \in \Sigma^{*}$ if $A(x)=0$.

The set $L=\left\{x \in \Sigma^{*} \mid A(x)=1\right\}$ is the language accepted by algorithm A.

A language L is decided by an algorithm A if for any $x \in \Sigma^{*}$ either A accepts x or A rejects x.

Definition 5 A language L is accepted by algorithm A in in polynomial time, if any $x \in L$ with $|x|=n$ is accepted by A in time $O\left(n^{k}\right)$.
The language L is decided in polynomial time by an algorithm A, if any $x \in \Sigma^{*}$ with $|x|=n$ is decided by A in time $O\left(n^{k}\right)$.

Further definitions for the class P :
$P=\left\{L \subseteq \Sigma^{*} \mid \exists A\right.$ which decides L in polynomial time $\}$.
Theorem 1 (Theorem 34.2, p.977)

$$
P=\left\{L \subseteq \Sigma^{*} \mid L \text { is accepted by a polyn.-time algorithm }\right\} .
$$

2a. The complexity class NP

Let x and y be binary strings.
Definition $6 A$ verification algorithm is an algorithm with two parameters. We say A verifies a string x if $\exists y$ such that $A(x, y)=1$.

An algorithm A verifies a language L if:

$$
L=\left\{x \in \Sigma^{*} \mid \exists y \in \Sigma^{*} \text { with } A(x, y)=1\right\} .
$$

Definition 7 The complexity class NP is the set of all languages L for which there exists a polynomial-time verification algorithm A and a constant c such that:

$$
L=\left\{x \in \Sigma^{*} \mid \exists y \text { with }|y|=O\left(|x|^{c}\right), A(x, y)=1\right\} .
$$

Obviously, $P \subseteq$ NP. The principal question is whether $P \neq N P$.

Definition 8 A language L_{1} is called polynomial-time reducible to a language L_{2} if there exists a polynomial-time computable function $f: \Sigma^{*} \mapsto \Sigma^{*}$ such that for all $x \in \Sigma^{*}$ one has:

$$
x \in L_{1} \quad \Longleftrightarrow \quad f(x) \in L_{2}
$$

(denotation $L_{1} \leq_{P} L_{2}$).
We write $L_{1} \equiv L_{2}$ if $L_{1} \leq_{P} L_{2}$ and $L_{2} \leq_{P} L_{1}$.

Lemma 2 Let $L_{1}, L_{2} \subseteq \Sigma^{*}$ be languages and $L_{1} \leq_{P} L_{2} . L_{2} \in P$ implies $L_{1} \in P$.

Definition 9 Let $L \subseteq \Sigma^{*}$ be a language.

1. L is called $N P$-hard if $L^{\prime} \leq_{P} L$ for any language $L^{\prime} \in N P$.
2. The language L is called L NP-complete if L is $N P$-hard and $L \in$ $N P$ (denotation $L \in$ NPC).

Theorem 2

1. If some NP-complete problem is solvable in polynomial time then $P=N P$.
2. If some problem of NP is not solvable in polynomial time then no other NP-complete problem is solvable in polynomial time.

Proof.

1. Let $L \in \mathrm{NPC}$ and $L \in \mathrm{P}$.
$\Rightarrow L^{\prime} \leq_{P} L$ for any problem $L^{\prime} \in$ NP (Definition 9).
$\Rightarrow L^{\prime} \in \mathrm{P}$ (Lemma 2).
2. Assume $\exists L \in \mathrm{NP}$ with $L \notin \mathrm{P}$.

Let $L^{\prime} \in \mathrm{NPC} . \Rightarrow L \leq_{P} L^{\prime}$ (Definition 9).
Now if $L^{\prime} \in \mathrm{P}$ then $L \in \mathrm{P}$ (Lemma 2), a contradiction.

2b. Proofs of NP-completeness
Lemma 3 Let L be a language such that $L^{\prime} \leq_{P} L$ for some $L^{\prime} \in$ NPC. Then L is NP-hard. If additionally, $L \in N P$, then $L \in N P C$.

Proof. $L^{\prime} \in \mathrm{NPC} \Rightarrow L^{\prime \prime} \leq_{P} L^{\prime}$ for any $L^{\prime \prime} \in \mathrm{NP}$.
Furthermore, since $L^{\prime} \leq_{P} L \Rightarrow L^{\prime \prime} \leq_{P} L$
$\Rightarrow L$ is NP-hard.
$\Rightarrow L \in \mathrm{NPC}$ if $L \in \mathrm{NP}$.

To prove NP-completeness:

1. Show: $L \in$ NP.
2. Choose an appropriate language L^{\prime} (problem) for which it is know that it is NP-complete.
3. Design an algorithm that computes a function f mapping every instance x of L^{\prime} to an instance $f(x)$ for L.
4. Prove that $x \in L^{\prime} \Leftrightarrow f(x) \in L$ for any $x \in\{0,1\}^{*}$.
5. Show that the function f is polynomial-time computable.

Theorem 3 (Cook).

One has:

$$
\text { SAT } \in \text { NPC. }
$$

3. Some NP-complete problems

SATISFIABILITY (SAT):
Instance: Boolean formula F.
Question: Is F satisfiable?
3-SAT:
Similar to SAT, but each clause in the formula has 3 literals.
Clique:
Instance: Graph G and $k \in I N$.
Question: Does G contain a k-clique?
Ham-Cycle (HC):
Instance: Graph $G=(V, E)$.
Question: Does G contain a simple cycle of length $|V|$?
Vertex-Cover (VC):
Instance: Graph G and $k \in I N$.
Question: Is there a set $C \subset V$ of size k such that any edge of G is incident to some vertex of C ?

Theorem $4 \quad 3$-SAT \in NFC.

Proof. We show $\mathrm{SAT} \leq_{P} 3$-SAT.
Given a boolean formula f (instance for SAT), we construct an instance f^{\prime} for 3 -SAT.

Step 1. For any "internal subformula" we create a new variable y_{i}.
Example 3

$$
f=\left(\left(x_{1} \rightarrow x_{2}\right) \vee \neg\left(\left(\neg x_{1} \leftrightarrow x_{3}\right) \vee x_{4}\right)\right) \wedge \neg x_{2}
$$

$$
\begin{aligned}
f^{\prime}=y_{1} & \wedge\left(y_{1} \leftrightarrow\left(y_{2} \wedge \neg x_{2}\right)\right) \\
& \wedge\left(y_{2} \leftrightarrow\left(y_{3} \vee y_{4}\right)\right) \\
& \wedge\left(y_{3} \leftrightarrow\left(x_{1} \rightarrow x_{2}\right)\right) \\
& \wedge\left(y_{4} \leftrightarrow \neg y_{5}\right) \\
& \wedge\left(y_{5} \leftrightarrow\left(y_{6} \vee x_{4}\right)\right) \\
& \wedge\left(y_{6} \leftrightarrow\left(\neg x_{1} \leftrightarrow x_{3}\right)\right)
\end{aligned}
$$

Step 2. Write every clause C_{i} in f^{\prime} in CNF and obtain a formula $f^{\prime \prime}$.

$$
\begin{gathered}
\begin{array}{rrr|r}
y_{1} & y_{2} & x_{2} & \left(y_{1} \leftrightarrow\left(y_{2} \wedge \neg x_{2}\right)\right) \\
\hline 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array} \\
C_{i}=\left(\neg y_{1} \vee \neg y_{2} \vee \neg x_{2}\right) \wedge\left(\neg y_{1} \vee y_{2} \vee \neg x_{2}\right) \wedge\left(\neg y_{1} \vee y_{2} \vee x_{2}\right) \wedge\left(y_{1} \vee \neg y_{2} \vee x_{2}\right) .
\end{gathered}
$$

Step 3. Expand every clause C_{i} in $f^{\prime \prime}$ to make it depending on exactly 3 variables and obtain a formula $f^{\prime \prime \prime}$.

$$
\begin{aligned}
& \text { - } C_{i}=l_{1} \vee l_{2} \vee l_{3} \Rightarrow C_{i}^{\prime}:=C_{i} \in f^{\prime \prime \prime} . \\
& \text { - } C_{i}=l_{1} \vee l_{2} \Rightarrow C_{i}^{\prime}:=\left(l_{1} \vee l_{2} \vee p\right) \wedge\left(l_{1} \vee l_{2} \vee \neg p\right) . \\
& \text { - } C_{i}=l \Rightarrow C_{i}^{\prime}:=(l \vee p \vee q) \wedge(l \vee \neg p \vee q) \wedge(l \vee p \vee \neg q) \wedge(l \vee \neg p \vee \neg q) .
\end{aligned}
$$

The formula f is satisfiable $\Longleftrightarrow f^{\prime \prime \prime}$ is satisfiable.
The formula $f^{\prime \prime \prime}$ is constructible in polynomial time.
Therefore, 3 -SAT \in NP.

Clique:

Instance: A graph G and $k \in I N$.
Question: Does G contain a clique of size k ?

Theorem 5 Clique \in NPC.

Proof. Obviously, Clique \in NP.
We show: 3 -SAT $\leq{ }_{P}$ CLIQUE. Let $f=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{k}$ be an instance for 3 -SAT with $C_{i}=l_{1}^{i} \vee l_{2}^{i} \vee l_{3}^{i}$.

Construct a graph $G=(V, E)$ with $V=\left\{v_{1}^{i}, v_{2}^{i}, v_{3}^{i} \mid i=1, \ldots, k\right\}$ and $\left(v_{r}^{i}, v_{s}^{j}\right) \in E$ iff $i \neq j$ and $l_{r}^{i} \neq \neg l_{s}^{j}$.

Example:

The formula f is satisfiable $\Longleftrightarrow G$ contains a clique with k vertices.
The graph G is constructible in polynomial time.

Vertex Cover (VC):
Instance: A graph $G=(V, E)$ and $k \in I N$.
Question: Is there a subset $C \subset V$ with $|C|=k$ s.t. each edge of G is incident to some vertex of C ?

Theorem $6 \quad \mathrm{VC} \in \mathrm{NPC}$.

Proof. Obviously, VC \in NP.
We show: Clique \leq_{P} VC.
For a graph $G=(V, E)$ we define its complement $\bar{G}=(V, \bar{E})$.
Then G has a clique of size k iff G has a VC of size $|V|-k$.

Indeed:
If G has a k-clique $V^{\prime} \subset V$ then $V \backslash V^{\prime}$ is a VC.
On the other hand, if \bar{G} has a VC V^{\prime} of size $\left|V^{\prime}\right|=|V|-k$, then $\forall u, v \in V$ if $(u, v) \in \bar{E}$ then $u \in V^{\prime}$ or $v \in V^{\prime}$.
The contraposition of this implication is:
$\forall u, v \in V$ if $u \notin V^{\prime}$ and $v \notin V^{\prime}$ then $(u, v) \in E$. In other words, $V \backslash V^{\prime}$ is a clique.

Partition:
Instance: A set $S=\{s\}$ of integers and $t \in I N$.
Question: Is there a subset $S^{\prime} \subseteq S$ with $\sum_{s \in S^{\prime}} s=t$?
Theorem $7 \quad$ Partition \in NPC.

Proof. Obviously, Partition \in NP.
We show: VC \leq_{P} Partition.
Let $G=(V, E)$ be an instance for VC with

$$
V=\left\{v_{0}, \ldots, v_{n-1}\right\} \quad \text { and } \quad E=\left\{e_{0}, \ldots, e_{m-1}\right\}
$$

We represent G by its $n \times m$ incidence matrix $B=\left\{b_{i j}\right\}$, where

$$
b_{i j}=\left\{\begin{array}{l}
1, \text { if } e_{i} \text { is incident to } v_{j} \\
0, \text { otherwise }
\end{array}\right.
$$

B	$e_{4} e_{3} e_{2} e_{1} e_{0}$
v_{0}	00101
v_{1}	10010
v_{2}	11000
v_{3}	00100
v_{4}	01011

Example 4

$B \quad e_{4} e_{3} e_{2} e_{1} e_{0}$

For $i=0, \ldots, n-1$ and $j=0, \ldots, m-1$ put:

$$
x_{i}=4^{m}+\sum_{j=0}^{m-1} b_{i j} 4^{j}, \quad y_{j}=4^{j}, \quad t=k \cdot 4^{m}+\sum_{j=0}^{m-1} 2 \cdot 4^{j}
$$

and extend the matrix B :

$$
\begin{aligned}
& x_{0}=100101=1041 \\
& \rightarrow x_{1}=110010=1284 \\
& x_{2}=111000=1344 \\
& \rightarrow x_{3}=100100=1040 \\
& \rightarrow x_{4}=101011=1093 \\
& \rightarrow y_{0}=000001=1 \\
& y_{1}=000010=4 \\
& \rightarrow y_{2}=000100=16 \\
& \rightarrow y_{3}=001000=64 \\
& \begin{array}{rlllllll}
\rightarrow y_{4}= & 0 & 1 & 0 & 0 & 0 & 0 & = \\
\hline t= & 3 & 2 & 2 & 2 & 2 & 2=3754
\end{array}
\end{aligned}
$$

It holds: G has vertex cover of size $k \Longleftrightarrow$
$\exists S^{\prime} \subseteq S$ with $\sum_{s \in S^{\prime}} s=t$.

3-Coloring:
Instance: A graph $G=(V, E)$.
Question: Is G 3-colorable ?
Theorem $8 \quad 3$-Coloring \in NPC.
Proof. Obviously, 3-Coloring \in NP.
We show: 3 -SAT $\leq_{P} 3$-Coloring.
Let $f=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ (here $\left.f=f\left(x_{1}, \ldots, x_{n}\right)\right)$ be an instance for 3-SAT. We construct for every clause $C_{i}=l_{1} \vee l_{2} \vee l_{3}$ a graph $G_{i}=\left(V_{i}, E_{i}\right), 1 \leq i \leq m:$

Assume the vertices l_{1}, l_{2}, l_{3} are colored with color 0 or 1 . Then v_{6} can be colored with color 1 or $2 \Longleftrightarrow \exists l_{i}, 1 \leq i \leq 3$ colored with 1 . We construct an instance $G=(V, E)$ for 3-Coloring:

$$
\begin{aligned}
V & =\{a, b\} \bigcup_{i=1}^{m} V_{i} \\
E & =\{(a, b)\} \cup\left\{\left(a, x_{i}\right),\left(a, \bar{x}_{i}\right),\left(x_{i}, \bar{x}_{i}\right) \mid 1 \leq i \leq n\right\} \bigcup_{i=1}^{m} E_{i} .
\end{aligned}
$$

It holds: f is satisfiable $\Longleftrightarrow G$ is 3-colorable.

