
NP-completeness

1. The complexity class P

a. Instance encodings

b. Formal languages

2. The complexity class NP

a. NP-completeness and reducibility

b. proofs of NP-completeness

3. Some NP-complete Problems

a. SAT

b. 3-SAT

c. Clique

d. Partition

e. k-coloring

f. 3D-Matching

1

1a. The complexity class P

An abstract problem is a relation on the sets of problem instances
and problem solutions.

Example 1 The shortest path problem:
Instance: A simple graph G and two vertices u, v.
Output: A shortest path u ; v in G (it such exists).

Decision problems:
A solution is of the form “Y” or “N”.

Example 2
Instance: A simple graph G, two vertices u, v, and k > 0.
Question: ∃u ; v in G of length ≤ k ?

Optimization problems:
Some function should be minimized or maximized.

Any “discrete optimization problem” can be formulated as a decision
problem.

Remark 1
Optimization problem is “easily solvable” ⇒ corresponding decision
problem is also “easily solvable”.

Optimization problem is “hardly solvable” ⇒ corresponding decision
problem is also “hardly solvable”.

2

An encoding is a mapping of the set of abstract object into the set
of binary strings.

Any algorithm that “solves” an abstract decision problem works with
an encoding of this problem. We call a problem with encoded instance
concrete problem.

Definition 1 We say that an algorithm solves a problem in time
O(T (n)) if for any instance encoding of length n the algorithm com-
putes a solution in time O(T (n)).

Definition 2 A concrete problem with instance encoding of size n
is solvable in polynomial time, if there exists an algorithm for solving
the problem in time O(nk) for come constant k (independent on n).

Definition 3 The complexity class P consists of the concrete deci-
sion problems solvable in polynomial time.

Let f be a mapping f : {0, 1}∗ 7→ {0, 1}∗. f is said to be computable
in polynomial time, if there exists an algorithm that for any x ∈
{0, 1}∗ constructs a sequence f (x) in polynomial time.

Let I be the set of all problem instances. We call two encodings e1

and e2 polynomially equivalent, if there exist computable in polyno-
mial time functions f12 and f21 such that for any i ∈ I one has:
f12(e1(i)) = e2(i) and f21(e2(i)) = e1(i).

Lemma 1 Let Q be an abstract decision problem and e1, e2 be poly-
nomially equivalent encodings of the set I = {i}. Then Q(e1(i)) ∈ P
⇐⇒ Q(e2(i)) ∈ P .

3

1b. A formal language framework

Let Σ = {0, 1}. A language L is a subset of Σ∗. Any decision
problem Q can be represented as the following language:

L = {x ∈ Σ∗ | Q(x) = 1}.

Definition 4 An algorithm A accepts x ∈ Σ∗, if its output A(x) =
1. The algorithm A rejects a string x ∈ Σ∗ if A(x) = 0.

The set L = {x ∈ Σ∗ | A(x) = 1} is the language accepted by
algorithm A.

A language L is decided by an algorithm A if for any x ∈ Σ∗ either
A accepts x or A rejects x.

Definition 5 A language L is accepted by algorithm A in in poly-
nomial time, if any x ∈ L with |x| = n is accepted by A in time
O(nk).

The language L is decided in polynomial time by an algorithm A, if
any x ∈ Σ∗ with |x| = n is decided by A in time O(nk).

Further definitions for the class P:

P = {L ⊆ Σ∗ | ∃A which decides L in polynomial time}.

Theorem 1 (Theorem 34.2, p.977)

P = {L ⊆ Σ∗ | L is accepted by a polyn.-time algorithm}.

4

2a. The complexity class NP

Let x and y be binary strings.

Definition 6 A verification algorithm is an algorithm with two pa-
rameters. We say A verifies a string x if ∃y such that A(x, y) = 1.

An algorithm A verifies a language L if:

L = {x ∈ Σ∗ | ∃y ∈ Σ∗ with A(x, y) = 1}.

Definition 7 The complexity class NP is the set of all languages L
for which there exists a polynomial-time verification algorithm A and
a constant c such that:

L = {x ∈ Σ∗ | ∃y with |y| = O(|x|c), A(x, y) = 1}.

Obviously, P ⊆ NP. The principal question is whether P 6= NP.

Definition 8 A language L1 is called polynomial-time reducible to
a language L2 if there exists a polynomial-time computable function
f : Σ∗ 7→ Σ∗ such that for all x ∈ Σ∗ one has:

x ∈ L1 ⇐⇒ f (x) ∈ L2.

(denotation L1 ≤P L2).

We write L1 ≡ L2 if L1 ≤P L2 and L2 ≤P L1.

5

Lemma 2 Let L1, L2 ⊆ Σ∗ be languages and L1 ≤P L2. L2 ∈ P
implies L1 ∈ P .

Definition 9 Let L ⊆ Σ∗ be a language.

1. L is called NP-hard if L′ ≤P L for any language L′ ∈ NP.

2. The language L is called L NP-complete if L is NP-hard and L ∈
NP (denotation L ∈ NPC).

Theorem 2

1. If some NP-complete problem is solvable in polynomial time then
P=NP.

2. If some problem of NP is not solvable in polynomial time then no
other NP-complete problem is solvable in polynomial time.

Proof.

1. Let L ∈ NPC and L ∈ P.
⇒ L′ ≤P L for any problem L′ ∈ NP (Definition 9).
⇒ L′ ∈ P (Lemma 2).

2. Assume ∃L ∈ NP with L 6∈ P.
Let L′ ∈ NPC. ⇒ L ≤P L′ (Definition 9).
Now if L′ ∈ P then L ∈ P (Lemma 2), a contradiction. 2

6

2b. Proofs of NP-completeness

Lemma 3 Let L be a language such that L′ ≤P L for some L′ ∈
NPC. Then L is NP-hard. If additionally, L ∈ NP, then L ∈ NPC.

Proof. L′ ∈ NPC ⇒ L′′ ≤P L′ for any L′′ ∈ NP.
Furthermore, since L′ ≤P L ⇒ L′′ ≤P L
⇒ L is NP-hard.
⇒ L ∈ NPC if L ∈ NP.

To prove NP-completeness:

1. Show: L ∈ NP.

2. Choose an appropriate language L′ (problem) for which it is know
that it is NP-complete.

3. Design an algorithm that computes a function f mapping every
instance x of L′ to an instance f (x) for L.

4. Prove that x ∈ L′ ⇔ f (x) ∈ L for any x ∈ {0, 1}∗.
5. Show that the function f is polynomial-time computable.

Theorem 3 (Cook).
One has:

SAT ∈ NPC.

7

3. Some NP-complete problems

�
�

�
�Partition

�
�

�
�VC

�
�

�
�Clique

�
�

�
�TSP

�
�

�
�HC

�
�

�
�3-SAT

�
�

�
�SAT

?

??

?

�
���

H
HHj

Satisfiability (SAT):
Instance: Boolean formula F .
Question: Is F satisfiable?

3-SAT:
Similar to SAT, but each clause in the formula has 3 literals.

Clique:
Instance: Graph G and k ∈ IN .
Question: Does G contain a k-clique?

Ham-Cycle (HC):
Instance: Graph G = (V, E).
Question: Does G contain a simple cycle of length |V |?

Vertex-Cover (VC):
Instance: Graph G and k ∈ IN .
Question: Is there a set C ⊂ V of size k such that any edge
of G is incident to some vertex of C?

8

Theorem 4 3-SAT ∈ NPC.

Proof. We show SAT ≤P 3-SAT.
Given a boolean formula f (instance for SAT), we construct an
instance f ′ for 3-SAT.

Step 1. For any “internal subformula” we create a new variable yi.

Example 3

f = ((x1 → x2) ∨ ¬((¬x1 ↔ x3) ∨ x4)) ∧ ¬x2

f ′ = y1 ∧ (y1 ↔ (y2 ∧ ¬x2))

∧ (y2 ↔ (y3 ∨ y4))

∧ (y3 ↔ (x1 → x2))

∧ (y4 ↔ ¬y5)

∧ (y5 ↔ (y6 ∨ x4))

∧ (y6 ↔ (¬x1 ↔ x3))

9

Step 2. Write every clause Ci in f ′ in CNF and obtain a formula f ′′.

y1 y2 x2 (y1 ↔ (y2 ∧ ¬x2))
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

Ci = (¬y1∨¬y2∨¬x2)∧(¬y1∨y2∨¬x2)∧(¬y1∨y2∨x2)∧(y1∨¬y2∨x2).

Step 3. Expand every clause Ci in f ′′ to make it depending on exactly
3 variables and obtain a formula f ′′′.

• Ci = l1 ∨ l2 ∨ l3 ⇒ C ′
i := Ci ∈ f ′′′.

• Ci = l1 ∨ l2 ⇒ C ′
i := (l1 ∨ l2 ∨ p) ∧ (l1 ∨ l2 ∨ ¬p).

• Ci = l⇒ C ′
i := (l∨p∨q)∧(l∨¬p∨q)∧(l∨p∨¬q)∧(l∨¬p∨¬q).

The formula f is satisfiable ⇐⇒ f ′′′ is satisfiable.

The formula f ′′′ is constructible in polynomial time.

Therefore, 3-SAT ∈ NP. 2

10

Clique:
Instance: A graph G and k ∈ IN .
Question: Does G contain a clique of size k ?

Theorem 5 Clique ∈ NPC.

Proof. Obviously, Clique ∈ NP.

We show: 3-SAT ≤P Clique. Let f = C1 ∧C2 ∧ · · · ∧Ck be an
instance for 3-SAT with Ci = li1 ∨ li2 ∨ li3.

Construct a graph G = (V, E) with V = {vi
1, v

i
2, v

i
3 | i = 1, ..., k}

and (vi
r, v

j
s) ∈ E iff i 6= j and lir 6= ¬ljs.

Example:

f = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

The formula f is satisfiable ⇐⇒ G contains a clique with k vertices.

The graph G is constructible in polynomial time. 2

11

Vertex Cover (VC):
Instance: A graph G = (V, E) and k ∈ IN .
Question: Is there a subset C ⊂ V with |C| = k s.t. each edge
of G is incident to some vertex of C?

Theorem 6 VC ∈ NPC.

Proof. Obviously, VC ∈ NP.
We show: Clique ≤P VC.

For a graph G = (V, E) we define its complement G = (V, E).

Then G has a clique of size k iff G has a VC of size |V | − k.

Indeed:
If G has a k-clique V ′ ⊂ V then V \ V ′ is a VC.

On the other hand, if G has a VC V ′ of size |V ′| = |V | − k, then
∀u, v ∈ V if (u, v) ∈ E then u ∈ V ′ or v ∈ V ′.
The contraposition of this implication is:
∀u, v ∈ V if u 6∈ V ′ and v 6∈ V ′ then (u, v) ∈ E.
In other words, V \ V ′ is a clique. 2

12

Partition:
Instance: A set S = {s} of integers and t ∈ IN .
Question: Is there a subset S ′ ⊆ S with

∑
s∈S′

s = t ?

Theorem 7 Partition ∈ NPC.

Proof. Obviously, Partition ∈ NP.
We show: VC ≤P Partition.

Let G = (V, E) be an instance for VC with

V = {v0, ..., vn−1} and E = {e0, ..., em−1}.

We represent G by its n×m incidence matrix B = {bij}, where

bij =

1, if ei is incident to vj

0, otherwise

v v

v v

v

����
��������

�
�

�
�

�
�

b
b

b
b

b
b

b
b

bb�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�

v0

v4

v3 v2

v1

e0

e1

e4e2
e3

v4

v3

v2

v1

v0

e4e3e2e1e0

v4

v3

0 0 1 0 1
1 0 0 1 0
1 1 0 0 0
0 0 1 0 0
0 1 0 1 1

B

13

Example 4
v v

v v

v

����
��������

�
�

�
�

�
�

b
b

b
b

b
b

b
b

bb�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�

v0

v4

v3 v2

v1

e0

e1

e4e2
e3

v4

v3

v2

v1

v0

e4e3e2e1e0

v4

v3

0 0 1 0 1
1 0 0 1 0
1 1 0 0 0
0 0 1 0 0
0 1 0 1 1

B

For i = 0, ..., n− 1 and j = 0, ...,m− 1 put:

xi = 4m +
m−1∑
j=0

bij4
j, yj = 4j, t = k · 4m +

m−1∑
j=0

2 · 4j

and extend the matrix B:

x0 = 1 0 0 1 0 1 = 1041
→ x1 = 1 1 0 0 1 0 = 1284

x2 = 1 1 1 0 0 0 = 1344
→ x3 = 1 0 0 1 0 0 = 1040
→ x4 = 1 0 1 0 1 1 = 1093
→ y0 = 0 0 0 0 0 1 = 1

y1 = 0 0 0 0 1 0 = 4
→ y2 = 0 0 0 1 0 0 = 16
→ y3 = 0 0 1 0 0 0 = 64
→ y4 = 0 1 0 0 0 0 = 256

t = 3 2 2 2 2 2 = 3754

It holds: G has vertex cover of size k ⇐⇒
∃S ′ ⊆ S with

∑
s∈S′

s = t. 2

14

3-Coloring:
Instance: A graph G = (V, E).
Question: Is G 3-colorable ?

Theorem 8 3-Coloring ∈ NPC.

Proof. Obviously, 3-Coloring ∈ NP.
We show: 3-SAT ≤P 3-Coloring.

Let f = C1 ∧C2 ∧ · · · ∧Cm (here f = f (x1, ..., xn)) be an instance
for 3-SAT. We construct for every clause Ci = l1 ∨ l2 ∨ l3 a graph
Gi = (Vi, Ei), 1 ≤ i ≤ m :

v
v

v

v

v
v

v

v
v v

Gi

�
�

�
�

��

Q
Q

Q
Q

QQ

�
�

�
�

��

Q
Q

Q
Q

QQ

l3

l2

l1 v1

v2

v3
v4

v5

v6

b

G

v v v v

v v

#
#

#
#

#
#

#
##

�
�
�
�
�
�
�

c
c

c
c

c
c

c
cc

A
A

A
A

A
A

A

. . .
x1 xnx1 xn

a b
�

�

@
@

Assume the vertices l1, l2, l3 are colored with color 0 or 1. Then v6

can be colored with color 1 or 2 ⇐⇒ ∃ li, 1 ≤ i ≤ 3 colored with 1.

We construct an instance G = (V, E) for 3-Coloring:

V = {a, b}
m⋃

i=1
Vi

E = {(a, b)} ∪ {(a, xi), (a, xi), (xi, xi) | 1 ≤ i ≤ n}
m⋃

i=1
Ei.

It holds: f is satisfiable ⇐⇒ G is 3-colorable. 2

15

