NP-completeness

- 1. The complexity class P
 - a. Instance encodings
 - b. Formal languages
- 2. The complexity class NP
 - a. NP-completeness and reducibility
 - b. proofs of NP-completeness
- 3. Some NP-complete Problems
 - a. SAT
 - **b.** 3-SAT
 - c. CLIQUE
 - d. PARTITION
 - e. k-coloring
 - f. 3D-Matching

1a. The complexity class P

An abstract problem is a relation on the sets of problem instances and problem solutions.

Example 1 The SHORTEST PATH problem: Instance: A simple graph G and two vertices u, v. Output: A shortest path $u \rightsquigarrow v$ in G (it such exists).

 $\frac{\text{Decision problems:}}{\text{A solution is of the form "Y" or "N".}}$

Example 2 Instance: A simple graph G, two vertices u, v, and k > 0. Question: $\exists u \rightsquigarrow v$ in G of length $\leq k$?

Optimization problems: Some function should be minimized or maximized.

Any "discrete optimization problem" can be formulated as a decision problem.

Remark 1

Optimization problem is "easily solvable" \Rightarrow corresponding decision problem is also "easily solvable".

Optimization problem is "hardly solvable" \Rightarrow corresponding decision problem is also "hardly solvable".

An <u>encoding</u> is a mapping of the set of abstract object into the set of binary strings.

Any algorithm that "solves" an abstract decision problem works with an encoding of this problem. We call a problem with encoded instance concrete problem.

Definition 1 We say that an algorithm solves a problem in time O(T(n)) if for any instance encoding of length n the algorithm computes a solution in time O(T(n)).

Definition 2 A concrete problem with instance encoding of size n is solvable in polynomial time, if there exists an algorithm for solving the problem in time $O(n^k)$ for come constant k (independent on n).

Definition 3 The complexity class *P* consists of the concrete decision problems solvable in polynomial time.

Let f be a mapping $f : \{0, 1\}^* \mapsto \{0, 1\}^*$. f is said to be computable in polynomial time, if there exists an algorithm that for any $x \in \{0, 1\}^*$ constructs a sequence f(x) in polynomial time.

Let I be the set of all problem instances. We call two encodings e_1 and e_2 polynomially equivalent, if there exist computable in polynomial time functions f_{12} and f_{21} such that for any $i \in I$ one has: $f_{12}(e_1(i)) = e_2(i)$ and $f_{21}(e_2(i)) = e_1(i)$.

Lemma 1 Let Q be an abstract decision problem and e_1, e_2 be polynomially equivalent encodings of the set $I = \{i\}$. Then $Q(e_1(i)) \in P \iff Q(e_2(i)) \in P$.

1b. A formal language framework

Let $\Sigma = \{0, 1\}$. A language L is a subset of Σ^* . Any decision problem Q can be represented as the following language:

$$L = \{ x \in \Sigma^* \mid Q(x) = 1 \}.$$

Definition 4 An algorithm A <u>accepts</u> $x \in \Sigma^*$, if its output A(x) = 1. 1. The algorithm A <u>rejects</u> a string $x \in \Sigma^*$ if A(x) = 0.

The set $L = \{x \in \Sigma^* \mid A(x) = 1\}$ is the language accepted by algorithm A.

A language L is decided by an algorithm A if for any $x \in \Sigma^*$ either A accepts x or A rejects x.

Definition 5 A language L is accepted by algorithm A in in polynomial time, if any $x \in L$ with |x| = n is accepted by A in time $O(n^k)$.

The language L is decided in polynomial time by an algorithm A, if any $x \in \Sigma^*$ with |x| = n is decided by A in time $O(n^k)$.

Further definitions for the class P:

 $P = \{ L \subseteq \Sigma^* \mid \exists A \text{ which decides } L \text{ in polynomial time} \}.$

Theorem 1 (Theorem 34.2, p.977)

 $P = \{ L \subseteq \Sigma^* \mid L \text{ is accepted by a polyn.-time algorithm} \}.$

2a. The complexity class NP

Let x and y be binary strings.

Definition 6 A verification algorithm is an algorithm with two parameters. We say A verifies a string x if $\exists y$ such that A(x, y) = 1. An algorithm A verifies a language L if:

 $L = \{ x \in \Sigma^* \mid \exists y \in \Sigma^* \text{ with } A(x,y) = 1 \}.$

Definition 7 The complexity class NP is the set of all languages L for which there exists a polynomial-time verification algorithm A and a constant c such that:

$$L = \{ x \in \Sigma^* \mid \exists y \text{ with } |y| = O(|x|^c), \ A(x, y) = 1 \}.$$

Obviously, $P \subseteq NP$. The principal question is whether $P \neq NP$.

Definition 8 A language L_1 is called polynomial-time <u>reducible</u> to a language L_2 if there exists a polynomial-time computable function $f: \Sigma^* \mapsto \Sigma^*$ such that for all $x \in \Sigma^*$ one has:

 $x \in L_1 \qquad \Longleftrightarrow \qquad f(x) \in L_2.$

(denotation $L_1 \leq_P L_2$).

We write $L_1 \equiv L_2$ if $L_1 \leq_P L_2$ and $L_2 \leq_P L_1$.

Lemma 2 Let $L_1, L_2 \subseteq \Sigma^*$ be languages and $L_1 \leq_P L_2$. $L_2 \in P$ implies $L_1 \in P$.

Definition 9 Let $L \subseteq \Sigma^*$ be a language.

- 1. L is called <u>NP-hard</u> if $L' \leq_P L$ for any language $L' \in NP$.
- 2. The language L is called L <u>NP-complete</u> if L is NP-hard and $L \in NP$ (denotation $L \in NPC$).

Theorem 2

- 1. If some NP-complete problem is solvable in polynomial time then P=NP.
- 2. If some problem of NP is not solvable in polynomial time then no other NP-complete problem is solvable in polynomial time.

Proof.

- 1. Let $L \in \mathsf{NPC}$ and $L \in \mathsf{P}$. $\Rightarrow L' \leq_P L$ for any problem $L' \in \mathsf{NP}$ (Definition 9). $\Rightarrow L' \in \mathsf{P}$ (Lemma 2).
- 2. Assume $\exists L \in \mathsf{NP}$ with $L \notin \mathsf{P}$. Let $L' \in \mathsf{NPC}$. $\Rightarrow L \leq_P L'$ (Definition 9). Now if $L' \in \mathsf{P}$ then $L \in \mathsf{P}$ (Lemma 2), a contradiction.

2b. Proofs of NP-completeness

Lemma 3 Let L be a language such that $L' \leq_P L$ for some $L' \in NPC$. Then L is NP-hard. If additionally, $L \in NP$, then $L \in NPC$.

Proof. $L' \in \mathsf{NPC} \Rightarrow L'' \leq_P L'$ for any $L'' \in \mathsf{NP}$. Furthermore, since $L' \leq_P L \Rightarrow L'' \leq_P L$ $\Rightarrow L$ is NP-hard. $\Rightarrow L \in \mathsf{NPC}$ if $L \in \mathsf{NP}$.

To prove NP-completeness:

- 1. Show: $L \in NP$.
- 2. Choose an appropriate language L' (problem) for which it is know that it is NP-complete.
- 3. Design an algorithm that computes a function f mapping every instance x of L' to an instance f(x) for L.
- 4. Prove that $x \in L' \Leftrightarrow f(x) \in L$ for any $x \in \{0, 1\}^*$.
- 5. Show that the function f is polynomial-time computable.

Theorem 3 (Cook).

One has:

SAT
$$\in$$
 NPC.

3. Some NP-complete problems

SATISFIABILITY (SAT):

Instance: Boolean formula F. Question: ls F satisfiable?

3-SAT:

Similar to SAT, but each clause in the formula has 3 literals.

CLIQUE:

Instance: Graph G and $k \in IN$. Question: Does G contain a k-clique?

HAM-CYCLE (HC):

Instance: Graph G = (V, E).

Question: Does G contain a simple cycle of length |V|?

VERTEX-COVER (VC):

Instance: Graph G and $k \in IN$.

Question: Is there a set $C \subset V$ of size k such that any edge of G is incident to some vertex of C?

Theorem 4 3-SAT \in NPC.

Proof. We show SAT $\leq_P 3$ -SAT.

Given a boolean formula f (instance for SAT), we construct an instance f' for 3-SAT.

Step 1. For any "internal subformula" we create a new variable y_i .

Example 3

$$f = ((x_1 \to x_2) \lor \neg ((\neg x_1 \leftrightarrow x_3) \lor x_4)) \land \neg x_2$$

$$f' = y_1 \land (y_1 \leftrightarrow (y_2 \land \neg x_2))$$

$$\land (y_2 \leftrightarrow (y_3 \lor y_4))$$

$$\land (y_3 \leftrightarrow (x_1 \rightarrow x_2))$$

$$\land (y_4 \leftrightarrow \neg y_5)$$

$$\land (y_5 \leftrightarrow (y_6 \lor x_4))$$

$$\land (y_6 \leftrightarrow (\neg x_1 \leftrightarrow x_3))$$

Step 2. Write every clause C_i in f' in CNF and obtain a formula f''.

y_1	y_2	x_2	$ (y_1 \leftrightarrow (y_2 \land \neg x_2)) $
1	1	1	0
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	1

$$C_i = (\neg y_1 \lor \neg y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor \neg x_2) \land (\neg y_1 \lor y_2 \lor x_2) \land (y_1 \lor \neg y_2 \lor x_2).$$

<u>Step 3.</u> Expand every clause C_i in f'' to make it depending on exactly 3 variables and obtain a formula f'''.

•
$$C_i = l_1 \lor l_2 \lor l_3 \Rightarrow C'_i := C_i \in f'''.$$

• $C_i = l_1 \lor l_2 \Rightarrow C'_i := (l_1 \lor l_2 \lor p) \land (l_1 \lor l_2 \lor \neg p).$
• $C_i = l \Rightarrow C'_i := (l \lor p \lor q) \land (l \lor \neg p \lor q) \land (l \lor p \lor \neg q) \land (l \lor \neg p \lor \neg q).$

The formula f is satisfiable $\iff f'''$ is satisfiable.

The formula f''' is constructible in polynomial time.

Therefore, $3\text{-}SAT \in NP$.

 \square

CLIQUE: **Instance:** A graph G and $k \in IN$. **Question:** Does G contain a clique of size k?

Theorem 5 CLIQUE \in NPC.

Proof. Obviously, $CLIQUE \in NP$.

We show: 3-SAT \leq_P CLIQUE. Let $f = C_1 \wedge C_2 \wedge \cdots \wedge C_k$ be an instance for 3-SAT with $C_i = l_1^i \vee l_2^i \vee l_3^i$.

Construct a graph G = (V, E) with $V = \{v_1^i, v_2^i, v_3^i \mid i = 1, ..., k\}$ and $(v_r^i, v_s^j) \in E$ iff $i \neq j$ and $l_r^i \neq \neg l_s^j$.

Example:

 $f = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3).$

The formula f is satisfiable $\iff G$ contains a clique with k vertices. The graph G is constructible in polynomial time. VERTEX COVER (VC): Instance: A graph G = (V, E) and $k \in IN$. Question: Is there a subset $C \subset V$ with |C| = k s.t. each edge of G is incident to some vertex of C?

Theorem 6 $VC \in NPC$.

Proof. Obviously, $VC \in NP$. We show: $CLIQUE \leq_P VC$.

For a graph G = (V, E) we define its complement $\overline{G} = (V, \overline{E})$.

Then G has a clique of size k iff \overline{G} has a VC of size |V| - k.

Indeed:

If G has a k-clique $V' \subset V$ then $V \setminus V'$ is a VC.

On the other hand, if \overline{G} has a VC V' of size |V'| = |V| - k, then $\forall u, v \in V$ if $(u, v) \in \overline{E}$ then $u \in V'$ or $v \in V'$. The contraposition of this implication is: $\forall u, v \in V$ if $u \notin V'$ and $v \notin V'$ then $(u, v) \in E$. In other words, $V \setminus V'$ is a clique. PARTITION: **Instance:** A set $S = \{s\}$ of integers and $t \in IN$. **Question:** Is there a subset $S' \subseteq S$ with $\sum_{s \in S'} s = t$?

Theorem 7 PARTITION \in NPC.

Proof. Obviously, PARTITION \in NP. We show: VC \leq_P PARTITION.

Let G = (V, E) be an instance for VC with

$$V = \{v_0, ..., v_{n-1}\} \text{ and } E = \{e_0, ..., e_{m-1}\}.$$

We represent G by its $n \times m$ incidence matrix $B = \{b_{ij}\}$, where

$$b_{ij} = \left\{ egin{array}{ccc} 1, & {
m if} \; e_i \; {
m is} \; {
m incident} \; {
m to} \; v_j \ 0, \; {
m otherwise} \end{array}
ight.$$

$B e_4 e_3 e_2 e_1 e_0$

$v_0 \ v_1 \ v_2$	$\begin{bmatrix} 0\\1\\1 \end{bmatrix}$	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	$\begin{array}{c} 1\\ 0\\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 1\\ 0\\ 0 \end{array}$	
v_3	0	0	1	0	0	
v_4	0	1	0	1	1	

Example 4

For i = 0, ..., n - 1 and j = 0, ..., m - 1 put: $x_i = 4^m + \sum_{j=0}^{m-1} b_{ij} 4^j, \qquad y_j = 4^j, \qquad t = k \cdot 4^m + \sum_{j=0}^{m-1} 2 \cdot 4^j$

and extend the matrix B:

It holds: G has vertex cover of size $k \iff \exists S' \subseteq S$ with $\sum_{s \in S'} s = t$.

3-COLORING: Instance: A graph G = (V, E). Question: ls *G* 3-colorable ?

Theorem 8 3-COLORING \in NPC.

Proof. Obviously, 3-COLORING \in NP. We show: 3-SAT \leq_P 3-COLORING.

Let $f = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ (here $f = f(x_1, ..., x_n)$) be an instance for 3-SAT. We construct for every clause $C_i = l_1 \vee l_2 \vee l_3$ a graph $G_i = (V_i, E_i), 1 \le i \le m$:

Assume the vertices l_1, l_2, l_3 are colored with color 0 or 1. Then v_6 can be colored with color 1 or 2 $\iff \exists l_i, 1 \le i \le 3$ colored with 1. We construct an instance G = (V, E) for 3-COLORING:

$$V = \{a, b\} \bigcup_{i=1}^{m} V_i$$

$$E = \{(a, b)\} \cup \{(a, x_i), (a, \overline{x}_i), (x_i, \overline{x}_i) \mid 1 \le i \le n\} \bigcup_{i=1}^{m} E_i.$$

It holds: f is satisfiable $\iff G$ is 3-colorable.