Approximation Algorithms for NP-Complete Problems

1. Performance ratios
2. Some polynomial approximation algorithms
a. Vertex-Cover
b. TSP
c. Scheduling
d. Set-Cover
e. Maximum Set-Cover
f. Independent-SET
g. 3-Coloring
h. Subset-Sum
3. Weighed Independent Set and Vertex Cover

1. Definitions

Definition 1 An approximation algorithm has approximation ratio $\rho(n)$, if for any input of size n one has:

$$
\max \left\{\frac{C}{C^{*}}, \frac{C^{*}}{C}\right\} \leq \rho(n)
$$

where C and C^{*} are the costs of the approximated and the optimal solution, respectively.

An algorithm with approximation ratio ρ is sometimes called ρ-approximation algorithm.

Usually there is a trade-off between the running time of an algorithm and its approximation quality.

Definition 2 An approximation scheme for an optimization problem is an approximation algorithm that takes as input an instance of the problem and a number $\epsilon(n)>0$ and returns a solution within the approximation rate $1+\epsilon$.

An approximation scheme is called fully polynomial-time approx. scheme if it is an approximation scheme and its running time is polynomial both in $1 / \epsilon$ and in size n of the input instance.

2a. The Vertex-Cover Problem
Instance: An undirected graph $G=(V, E)$.
Problem: Find a vertex cover of minimum size.

Algorithm 1 Approx-Vertex-Cover (G);
$C:=\emptyset$
$E^{\prime}:=E$
while $E^{\prime} \neq \emptyset$
do $C:=C \cup\{u, v\} \quad / *$ here $(u, v) \in E^{\prime *} /$ $E^{\prime}:=E^{\prime}-\left\{\right.$ edges of E^{\prime} incident to u or $\left.v\right\}$
return C

Figure 1: Approx-Vertex-Cover in action

Theorem 1 The Approx-Vertex-Cover is a polynomial-time 2-approximation algorithm.

Proof. The set of vertices C constructed by the algorithm is a vertex cover. Let C^{*} be a minimum vertex cover.

Let A be the set of edges that were picked by the algorithm. Then

$$
|C|=2 \cdot|A|
$$

Since the edges in A are independent,

$$
|A| \leq\left|C^{*}\right|
$$

Therefore:

$$
|C| \leq 2 \cdot\left|C^{*}\right|
$$

2b. The TSP Problem
Instance: A complete graph $G=(V, E)$ and a weight function $c: E \rightarrow \mathbf{R}^{\geq 0}$.
Problem: Find a Hamilton cycle in G of minimum weight.
For $A \subseteq E$ define

$$
c(A)=\sum_{(u, v) \in A} c(u, v) .
$$

We assume the weights satisfy the triangle inequality:

$$
c(u, v) \leq c(u, w)+c(w, v)
$$

for all $u, v, w \in V$.
Remark 1 The TSP problem is NP-complete even under this assumption.

Algorithm 2 Approx-TSP (G, c);

1. Choose a vertex $v \in V$.
2. Construct a minimum spanning tree T for G rooted in v (use, e.g., MST-Prim algorithm).
3. Construct the pre-order traversal W of T.
4. Construct a Hamilton cycle that visits the vertices in order W.

Figure 2: Approx-TSP in action

Theorem 2 The Approx-TSP is a polynomial-time 2-approx. algorithm for the TSP problem with the triangle inequality.

Proof. Let H^{*} be an optimal Hamilton cycle.
We construct a cycle H with $c(H) \leq 2 \cdot c\left(H^{*}\right)$.
Since T is a minimal spanning tree, one has:

$$
c(T) \leq c\left(H^{*}\right)
$$

We construct a list L of vertices taken in the same order as in the MST-PRIM algorithm and get a walk W around T.

Since W goes through every edge twice, we get:

$$
c(W)=2 \cdot c(T)
$$

which implies

$$
c(W) \leq 2 \cdot c\left(H^{*}\right)
$$

The walk W is, however, not Hamiltonian.
We go through the list L and delete from W the vertices which have already been visited.

This way we obtain a Hamilton cycle H. The triangle inequality provides

$$
c(H) \leq c(W)
$$

Therefore,

$$
c(H) \leq 2 \cdot c\left(H^{*}\right)
$$

The TSP problem for an arbitrary weight function c is intractable.
Theorem 3 Let $p \geq 1$. If $P \neq N P$, then there is no polynomial-time p-approximation algorithm for the TSP problem.

Proof. W.I.o.g. assume $p \in I N$.
Suppose that for some $p \geq 1$ there exists a polynomial p-approx. algorithm A.

We show how the algorithm A can be applied to solve the HC problem in polynomial time.

Let $G=(V, E)$ be an instance for the HC problem. Construct a complete graph $G^{\prime}=\left(V, E^{\prime}\right)$ with the following weight function:

$$
c(u, v)=\left\{\begin{array}{ll}
1, & \text { if }(u, v) \in E \\
p|V|+1, & \text { otherwise }
\end{array} .\right.
$$

G is Hamiltonian $\Rightarrow G^{\prime}$ contains a Ham. cycle of weight $|V|$. G is not Hamiltonian $\Rightarrow G^{\prime}$ has a Ham. cycle of weight

$$
\geq(p|V|+1)+(|V|-1)>p|V| .
$$

We apply A to the instance $\left(G^{\prime}, c\right)$. Then A constructs a cycle of length no more than p times longer than the optimal one. Hence: G is Hamiltonian $\Rightarrow A$ constructs a cycle in G of length $\leq p|V|$. G is not Hamiltonian $\Rightarrow A$ constructs a cycle in G^{\prime} of length $>p|V|$.

Comparing the length of the cycle in G^{\prime} with $p|V|$ we can recognize whether G is Hamiltonian or not in polynomial time, so $\mathrm{P}=\mathrm{NP}$.

2c. Scheduling

Let J_{1}, \ldots, J_{n} be tasks to be performed on m identical processors M_{1}, \ldots, M_{m}.
Assumptions:

- The task J_{j} has duration $p_{j}>0$ and must not be interrupted.
- Each processor M_{i} can execute only one task in a time.

The problem: construct a schedule

$$
\Sigma:\left\{J_{j}\right\}_{j=1}^{n} \mapsto\left\{M_{i}\right\}_{i=1}^{m}
$$

that provides a fastest completion of all tasks.
Theorem 4 (Graham '66). There exists an $(2-1 / m)$ approximation scheduling algorithm.

Proof:
Assume the tasks are listed in some order.
Heuristics G : as soon as some processor becomes free, assign to it the next task from the list.

Denote by s_{j} and e_{j} the start- and end-times of the tasks J_{j} in the heuristics G. Let J_{k} be the task completed last. Then no processor is free at time s_{k}. This implies $m \cdot s_{k}$ does not exceed the total duration of all other tasks, i.e.

$$
\begin{equation*}
m \cdot s_{k} \leq \sum_{j \neq k} p_{j} \tag{1}
\end{equation*}
$$

For the running time C_{n}^{*} of the optimal schedule one has:

$$
\begin{align*}
& C_{n}^{*} \geq \frac{1}{m} \cdot \sum_{j=1}^{n} p_{j} \tag{2}\\
& C_{n}^{*} \geq p_{k} \tag{3}
\end{align*}
$$

The inequality (2) follows from the fact that if there exists a schedule of time complexity $C<\frac{1}{m} \cdot \sum_{j=1}^{n} p_{j}$ then for the total duration P of all tasks one has $P=\sum_{j=1}^{n} p_{j} \leq m C<\sum_{j=1}^{n} p_{j}$, which is a contradiction.

The heuristics G provides:

$$
\begin{array}{rlrl}
C_{n}^{G}=e_{k} & =s_{k}+p_{k} & & \text { by (1) } \\
& \leq \frac{1}{m} \cdot \sum_{j \neq k} p_{j}+p_{k} & \tag{1}\\
& =\frac{1}{m} \cdot \sum_{j=1}^{n} p_{j}+\left(1-\frac{1}{m}\right) p_{k} & \\
& \leq C_{n}^{*}+\left(1-\frac{1}{m}\right) C_{n}^{*} & \text { by }(2) \&(3) \\
& =\left(2-\frac{1}{m}\right) C_{n}^{*} . &
\end{array}
$$

A better approximation can be obtained by following the LPT Rule (Longest Processing Time):
Sort the tasks w.r.t. p_{i} in non-increasing order and assign the next task from the sorted list to a processor that becomes free earliest.

Theorem 5 lt holds

$$
C_{n}^{L P T} \leq(3 / 2-1 /(2 m)) C_{n}^{*} .
$$

Proof:

Let J_{k} be the task completed last. Since time s_{k} all processors are busy, there is a set S of m tasks that are processed at that time. For any $J_{j} \in S$ one has $p_{j} \geq p_{k}$ (the LPT heuristics).
Now, if $p_{k}>(1 / 2) C_{n}^{*}$, then $\exists m+1$ tasks of length at least $(1 / 2) C_{n}^{*}$ each, which is a contradiction (no schedule just for these tasks cannot be completed in time C_{n}^{*}).

Hence, $p_{k} \leq(1 / 2) C_{n}^{*}$. One has

$$
\begin{aligned}
C_{n}^{\mathrm{LPT}} & =s_{k}+p_{k} \\
& \leq \frac{1}{m} \cdot \sum_{j \neq k} p_{j}+p_{k} \\
& =\frac{1}{m} \cdot \sum_{j=1}^{n} p_{j}+\left(1-\frac{1}{m}\right) p_{k} \\
& \leq C_{n}^{*}+\left(1-\frac{1}{m}\right)(1 / 2) C_{n}^{*} \\
& \leq\left(\frac{3}{2}-\frac{1}{2 m}\right) C_{n}^{*} .
\end{aligned}
$$

A deeper analysis leads to even better bound for the LPT heuristics.
Theorem 6 It holds:

$$
C_{n}^{L P T} \leq(4 / 3-1 /(3 m)) C_{n}^{*}
$$

Proof:

Let J_{k} be the task completed last in the LPT schedule S_{n}.
Assume $p_{k} \leq C_{n}^{*} / 3$. Then, similarly to the proof of the last theorem,

$$
\begin{aligned}
C_{n}^{\mathrm{LPT}} & \leq(1 / m) \sum_{j=1}^{n} p_{j}+(1-1 / m) p_{k} \\
& \leq C_{n}^{*}+(1-1 / m) C_{n}^{*} / 3 \\
& =(4 / 3-1 /(3 m)) C_{n}^{*}
\end{aligned}
$$

Assume $p_{k}>C_{n}^{*} / 3$. Construct the reduced schedule S_{k} for the tasks J_{1}, \ldots, J_{k} by dropping the tasks J_{k+1}, \ldots, J_{n} from S_{n}. Then $C_{k}^{\mathrm{LPT}}=C_{n}^{\mathrm{LPT}}$ (definition of J_{k}).

Each processor got at most 2 tasks to perform in the optimal schedule C_{k}^{*} for J_{1}, \ldots, J_{k} (if some got 3 , say p_{i}, p_{j}, p_{l}, then $p_{i}+p_{j}+p_{l} \geq$ $\left.3 p_{k}>C_{n}^{*} \geq C_{k}^{*}\right)$.

Therefore $k \leq 2 m$. In this case the schedule S_{k} for J_{1}, \ldots, J_{k} provided by the LPT heuristics is optimal. But then S_{n} is optimal for J_{1}, \ldots, J_{n} because

$$
C_{n}^{*} \geq C_{k}^{*}=C_{k}^{\mathrm{LPT}}=C_{n}^{\mathrm{LPT}} \geq C_{n}^{*} .
$$

2d. The Set-Cover Problem

Instance: A finite set X and a collection of its subsets \mathcal{F} such that $\cup S=X$.
$S \in \mathcal{F}$
Problem: Find a minimum set $C \subseteq \mathcal{F}$ that covers X.

Figure 3: An instance of the SET-COVER problem

Remark 2 The Set-Cover problem is NPC (Reduction from VC problem. Both problems can be formulated as vertex-covering problems in bipartite graphs. The bipartition sets for Set-Cover graph are formed by the sets X and \mathcal{F}. The bipartition sets for VC graph for $G=(V, E)$ are formed by the sets V and $E)$.

Algorithm 3 Greedy-Set- $\operatorname{Cover}(X, \mathcal{F})$;

$$
\begin{aligned}
& U:=X \\
& C:=\emptyset
\end{aligned}
$$

while $U \neq \emptyset$
do Choose $S \in \mathcal{F}$ with $|S \cap U| \rightarrow \max$

$$
U:=U-S
$$

$$
C:=C \cup\{S\}
$$

return C

Since the while -loop is executed at most min $\{|X|,|\mathcal{F}|\}$ times and each its iteration requires $O(|X| \cdot|\mathcal{F}|)$ computations, the running time of Greedy-Set-Cover is $O(|X| \cdot|\mathcal{F}| \cdot \min \{|X|,|\mathcal{F}|\})$.

Theorem 7 The Greedy-Set-Cover is a polynomial time $\rho(n)$ approximation algorithm, where $\rho(n)=H(\max \{|S| \mid S \in \mathcal{F}\})$ and $H(d)=\sum_{i=1}^{d}(1 / i)$.

Proof. Let C be the set cover constructed by the Greedy-SetCover algorithm and let C^{*} be a minimum cover.

Let S_{i} be the set chosen at the i-th execution of the while -loop. Furthermore, let $x \in X$ be covered for the first time by S_{i}. We set the weight c_{x} of x as follows:

$$
c_{x}=\frac{1}{\left|S_{i}-\left(S_{1} \cup \cdots \cup S_{i-1}\right)\right|} .
$$

One has:

$$
\begin{equation*}
|C|=\sum_{x \in X} c_{x} \leq \sum_{S \in C^{*}} \sum_{x \in S} c_{x} . \tag{4}
\end{equation*}
$$

We will show later that for any $S \in \mathcal{F}$

$$
\begin{equation*}
\sum_{x \in S} c_{x} \leq H(|S|) . \tag{5}
\end{equation*}
$$

From (4) and (5) one gets:

$$
|C| \leq \sum_{S \in C^{*}} H(|S|) \leq\left|C^{*}\right| \cdot H(\max \{|S| \mid S \in \mathcal{F}\}),
$$

which completes the proof of the theorem.
To show (5) we define for a fixed $S \in \mathcal{F}$ and $i \leq|C|$

$$
u_{i}=\left|S-\left(S_{1} \cup \cdots \cup S_{i}\right)\right|,
$$

that is, \# of elements of S which are not covered by S_{1}, \ldots, S_{i}.

Let $u_{0}=|S|$ and k be the minimum index such that $u_{k}=0$. Then $u_{i-1} \geq u_{i}$ and $u_{i-1}-u_{i}$ elements of S are covered for the first time by S_{i} for $i=1, \ldots, k$.

One has:

$$
\sum_{x \in S} c_{x}=\sum_{i=1}^{k}\left(u_{i-1}-u_{i}\right) \cdot \frac{1}{\left|S_{i}-\left(S_{1} \cup \cdots \cup S_{i-1}\right)\right|}
$$

Since for any $S \in \mathcal{F} \backslash\left\{S_{1}, \ldots, S_{i-1}\right\}$

$$
\left|S_{i}-\left(S_{1} \cup \cdots \cup S_{i-1}\right)\right| \geq\left|S-\left(S_{1} \cup \cdots \cup S_{i-1}\right)\right|=u_{i-1}
$$

due to the greedy choice of S_{i}, we get:

$$
\sum_{x \in S} c_{x} \leq \sum_{i=1}^{k}\left(u_{i-1}-u_{i}\right) \cdot \frac{1}{u_{i-1}}
$$

Since for any integers a, b with $a<b$ it holds:

$$
H(b)-H(a)=\sum_{i=a+1}^{b}(1 / i) \geq(b-a) \cdot(1 / b)
$$

we get a telescopic sum:

$$
\begin{aligned}
\sum_{x \in S} c_{x} & \leq \sum_{i=1}^{k}\left(H\left(u_{i-1}\right)-H\left(u_{i}\right)\right) \\
& =H\left(u_{0}\right)-H\left(u_{k}\right)=H\left(u_{0}\right)-H(0) \\
& =H\left(u_{0}\right)=H(|S|)
\end{aligned}
$$

which completes the proof of (5).

Corollary 1 Since $H(d) \leq \ln d+1$, the Greedy-SET-Cover algorithm has the approximation rate $(\ln |X|+1)$.

2e. The Maximum Set-Cover-Problem

Instance: A finite set X, a weight function $w: X \mapsto \mathbf{R}$, a collection \mathcal{F} of subsets of X and $k \in \mathbb{N}$.
Problem: Find a collection $C \subseteq \mathcal{F}$ of subsets with $|C|=k$ such that $\sum_{x \in C} w(x)$ is maximum.

Algorithm 4 Maximum- $\operatorname{Cover}(X, \mathcal{F}, w)$;
$U:=X$
$C:=\emptyset$
for $i:=1$ to k do
Choose $S \in F$ with $w(S \cap U) \rightarrow \max$
$U:=U-S$
$C:=C \cup S$
return C

Theorem 8 The Maximum-Cover is a polynomial time $(1-1 / e)^{-1}$-approximation algorithm $\left((1-1 / e)^{-1} \approx 1.58\right)$.

Proof.
Let C be the set constructed by the algorithm and let C^{*} be the optimal solution. Furthermore, let S_{i} be the set chosen at step i of the algorithm.

The greedy choice of S_{l} implies:

$$
\begin{equation*}
w\left(\bigcup_{i=1}^{l} S_{i}\right)-w\left(\bigcup_{i=1}^{l-1} S_{i}\right) \geq \frac{w\left(C^{*}\right)-w\left(\bigcup_{i=1}^{l-1} S_{i}\right)}{k}, \quad l=1, \ldots, k \tag{6}
\end{equation*}
$$

Indeed, for any subset $A \subseteq X$, there exists a set $S \in C^{*}$ with

$$
w(S-A) \geq w\left(C^{*}-A\right) / k
$$

(if for any $S \in C^{*}$ the inverse inequality is satisfied, then $\sum_{S \in C^{*}} w(S-A)<k \cdot w\left(C^{*}-A\right) / k=w\left(C^{*}-A\right)$, which is a contradiction since not the whole part of $w\left(C^{*}\right)$ outside of A is covered).

Note that $w\left(C^{*}-A\right) \geq w\left(C^{*}\right)-w(A)$ and apply this observation for $A=\cup_{i=1}^{l-1} S_{i}$. By the greedy choice of S_{l} one has $w\left(S_{l}-\cup_{i=1}^{l-1} S_{i}\right) \geq$ $w\left(S-\cup_{i=1}^{l-1} S_{i}\right)$ for any $S \subseteq X$. So,

$$
\begin{aligned}
w\left(\bigcup_{i=1}^{l} S_{i}\right)-w\left(\bigcup_{i=1}^{l-1} S_{i}\right) & =w\left(S_{l}-\bigcup_{i=1}^{l-1} S_{i}\right) \\
& \geq w\left(S-\bigcup_{i=1}^{l-1} S_{i}\right) \\
& \geq w\left(C^{*}-\bigcup_{i=1}^{l-1} S_{i}\right) / k \\
& \geq \frac{w\left(C^{*}\right)-w\left(\bigcup_{i=1}^{l-1} S_{i}\right)}{k} .
\end{aligned}
$$

We show by induction on l :

$$
w\left(\bigcup_{i=1}^{l} S_{i}\right) \geq\left(1-(1-1 / k)^{l}\right) \cdot w\left(C^{*}\right)
$$

It is true for $l=1$, since $w\left(S_{1}\right) \geq w\left(C^{*}\right) / k$ follows from (6).

For $l \geq 1$ one has:

$$
\begin{aligned}
w\left(\bigcup_{i=1}^{l+1} S_{i}\right) & =w\left(\bigcup_{i=1}^{l} S_{i}\right)+w\left(\bigcup_{i=1}^{l+1} S_{i}\right)-w\left(\bigcup_{i=1}^{l} S_{i}\right) \\
& \geq w\left(\bigcup_{i=1}^{l} S_{i}\right)+\frac{w\left(C^{*}\right)-w\left(\bigcup_{i=1}^{l} S_{i}\right)}{k} \\
& =(1-1 / k) \cdot w\left(\bigcup_{i=1}^{l} S_{i}\right)+w\left(C^{*}\right) / k \\
& \geq\left(1-\frac{1}{k}\right)\left(1-\left(1-\frac{1}{k}\right)^{l}\right) \cdot w\left(C^{*}\right)+\frac{w\left(C^{*}\right)}{k} \\
& =\left(1-(1-1 / k)^{l+1}\right) \cdot w\left(C^{*}\right)
\end{aligned}
$$

so the induction goes through. For $l=k$ we get:

$$
w(C) \geq\left(1-(1-1 / k)^{k}\right) \cdot w\left(C^{*}\right)>(1-1 / e) \cdot w\left(C^{*}\right)
$$

The last inequality follows from

$$
\begin{aligned}
(1-1 / k)^{k} & =(1+(1 /(-k)))^{-(-k)} \\
& =(1+1 / n)^{-n} \quad(\text { for } n=-k) \\
& =\left((1+1 / n)^{n}\right)^{-1} \\
& \leq e^{-1}=1 / e
\end{aligned}
$$

Remark 3 Sometimes it is difficult to choose the set S according to the algorithm. However, if one one would be able to make a choice for S which differs from the optimum in a factor $\beta(\beta<1)$ then the same algorithm provides the approx. ratio $\left(1-1 / e^{\beta}\right)^{-1}$.

2f. The Independent-Set Problem

Instance: An undirected graph $G=(V, E)$.
Problem: Find a maximum independent set.
For $v \in V$ and $n=|V|$ define $\delta=\frac{1}{n} \sum_{v \in V} \operatorname{deg}(v)$ and

$$
N(v)=\{u \in V \mid \operatorname{dist}(u, v)=1\} .
$$

Algorithm 5 Independent-Set (G);
$S:=\emptyset$
while $V(G) \neq \emptyset$ do
Find $v \in V$ with $\operatorname{deg}(v)=\min _{u \in V} \operatorname{deg}(u)$
$S:=S \cup\{v\}$
$G:=G-(v \cup N(v))$
return S
Theorem 9 The Independent-Set algorithm computes an independent set S of size $q \geq n /(\delta+1)$.

Proof. Let v_{i} be the vertex chosen at step i and let $d_{i}=\operatorname{deg}\left(v_{i}\right)$. One has: $\sum_{i=1}^{q}\left(d_{i}+1\right)=n$. Since at step i we delete $d_{i}+1$ vertices of degree at least d_{i} each, for the sum of degrees S_{i} of the deleted vertices one has $S_{i} \geq d_{i}\left(d_{i}+1\right)$. Therefore,

$$
\delta n=\sum_{v \in V} \operatorname{deg}(v) \geq \sum_{i=1}^{q} S_{i} \geq \sum_{i=1}^{q} d_{i}\left(d_{i}+1\right) .
$$

This implies

$$
\begin{aligned}
& \delta n+n \geq \sum_{i=1}^{q}\left(d_{i}\left(d_{i}+1\right)+\left(d_{i}+1\right)\right)=\sum_{i=1}^{q}\left(d_{i}+1\right)^{2} \geq n^{2} / q \\
\Rightarrow & \frac{n}{\delta+1} \leq q=|S| \leq\left|S^{*}\right| \leq n \text { and }\left|S^{*}\right| /|S| \leq \delta+1 .
\end{aligned}
$$

2g. 3-Coloring

Theorem 10 Let G be a graph with $\chi(G) \leq 3$. There exists a polynomial algorithm that colors G with $O(\sqrt{n})$ colors.

Proof: We will use the following observations

- If $\chi(G)=2$ (i.e. G ist bipartite), then G can be colored in 2 colors in polynomial time.
- If G is a graph with max. vertex degree Δ, then G can be colored in $\Delta+1$ colors in polynomial time (by a greedy method).
W.I.o.g. we assume $\chi(G)=3$ and $\Delta(G) \geq \sqrt{n}$.

For $v \in V(G)$ denote $N(v)=\left\{u \in V \mid \operatorname{dist}_{G}(u, v)=1\right\}$.
$\chi(G)=3 \Rightarrow$ the subgraph induced by $G[N(v)]$ is bipartite $\forall v \in V$ and 2-colorable in polynomial time.
\Rightarrow the subgraph induced by $G[v \cup N(v)]$ is 3-colorable in polynomial time.

Algorithm 6 3-Coloring;
while $\Delta(G) \geq \sqrt{n}$ do
Find $v \in V(G)$ with $\operatorname{deg}(v) \geq \sqrt{n}$
Color $G[v \cup N(v)]$ with 3 colors (by using a new set of 3 colors for every v)
Set $G:=G-(v \cup N(v))$
Color G with $\Delta(G)+1$ (new) colors.
Obviously, the running time is polynomial in n and the number of used colors is $\leq 3 \frac{n}{\sqrt{n}}+\sqrt{n}+1=O(\sqrt{n})$.

2h. The Subset-Sum Problem

Decision problem:

Instance: A set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ of integers and $t \in I N$.
Question: Is there a subset $I \subseteq\{1, \ldots, n\}$ with $\sum_{i \in I} x_{i}=t$?
Optimization problem:
Instance: A set $S=\left\{x_{1}, \ldots, x_{n}\right\}$ of integers and $t \in \mathbb{N}$.
Problem: Find a subset $I \subseteq\{1, \ldots, n\}$ with $\sum_{i \in I} x_{i} \leq t$ and $\sum_{i \in I} x_{i}$ maximum.
For $A \subseteq S$ and $s \in I N$ define

$$
A+s=\{a+s \mid a \in A\} .
$$

Let P_{i} be the set of all partial sums of $\left\{x_{1}, \ldots, x_{i}\right\}$. One has

$$
P_{i}=P_{i-1} \cup\left(P_{i-1}+x_{i}\right) .
$$

Algorithm 7 Exact-Subset-Sum (S, t);
$n:=|S|$
$L_{0}:=\langle 0\rangle$
for $i=1$ to n do

$$
\begin{aligned}
& L_{i}:=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right) \\
& L_{i}:=L_{i}-\left\{x \in L_{i} \mid x>t\right\}
\end{aligned}
$$

return the maximal element of L_{n}
It can be shown by induction on i that L_{i} is the sorted set

$$
L_{i}=\left\{x \in P_{i} \mid x \leq t\right\} .
$$

Polynomial Approximation Scheme

Let $L=\left\langle y_{1}, \ldots, y_{m}\right\rangle$ be a sorted list and $0<\delta<1$. We construct a list $L^{\prime}=\left\langle z_{1}, \ldots, z_{k}\right\rangle \subseteq L$ such that:

$$
\forall y \in L \quad \exists z \in L^{\prime} \quad \text { with } \frac{y-z}{z} \leq \delta \quad(\text { i.e. } y /(1+\delta) \leq z \leq y)
$$

and $\left|L^{\prime}\right|$ is minimum (for the given δ).
The element $z \in L^{\prime}$ will represent $y \in L$ with accuracy δ.
For example, if

$$
L=\langle 10,11,12,15,20,21,22,23,24,29\rangle
$$

then trimming of it with $\delta=0.1$ results in

$$
L^{\prime}=\langle 10,12,15,20,23,29\rangle
$$

with 11 represented by $10,21 \& 22$ by 20 , and 24 by 23 .

Algorithm $8 \operatorname{Trim}(L, \delta)$;
$m:=|L|$
$L^{\prime}:=\left\langle y_{1}\right\rangle$
last $:=y_{1}$
for $i=2$ to m do

$$
\begin{aligned}
& \text { if } y_{i} /(1+\delta)>\text { last then } \\
& \quad \text { APPEND }\left(L^{\prime}, y_{i}\right) \\
& \text { last }:=y_{i} \\
& \text { return } L^{\prime}
\end{aligned}
$$

Algorithm 9 Approx-Subset-Sum (S, t, ϵ);
$n:=|S|$
$L_{0}:=\langle 0\rangle$
for $i=1$ to n do

$$
\begin{aligned}
& L_{i}:=\operatorname{Merge-Lists}\left(L_{i-1}, L_{i-1}+x_{i}\right) \\
& L_{i}:=\operatorname{Trim}\left(L_{i}, \epsilon / 2 n\right) \\
& L_{i}:=L_{i}-\left\{x \in L_{i} \mid x>t\right\}
\end{aligned}
$$

return The maximal element of L_{n}
Theorem 11 Approx-Subset-Sum is a fully polynomial time approximation scheme for the SUBSET-Sum problem.

Proof.

The output of the algorithm is the value z^{*} which is a sum of elements in the subset S. We show that $y^{*} / z^{*} \leq 1+\epsilon$, where y^{*} is the optimal solution.

By induction on i :
$\forall y \in P_{i}$ with $y \leq t \quad \exists z \in L_{i}$ with $\quad y /(1+\epsilon / 2 n)^{i} \leq z \leq y$. Let $y^{*} \in P_{n}$ be the optimal solution. Then $\exists z \in L_{n}$ with

$$
y^{*} /(1+\epsilon / 2 n)^{n} \leq z \leq y^{*} .
$$

The output of the algorithm is the largest z.
Since the function $(1+\epsilon / 2 n)^{n}$ is monotonically increasing on n, $(1+\epsilon / 2 n)^{n} \leq e^{\epsilon / 2} \leq 1+\epsilon / 2+(\epsilon / 2)^{2} \leq 1+\epsilon \quad \Rightarrow \quad y^{*} \leq z(1+\epsilon)$.

Finally, we show that Approx-Subset-Sum terminates in a polynomial time. For this we get a bound for L_{i}.

After iteration of the for-loop, for any two consecutive elements $z_{i+1}, z_{i} \in L_{i}$ one has:

$$
\frac{z_{i+1}}{z_{i}} \geq 1+\epsilon / 2 n
$$

If $L=\left\langle 0, z_{1}, \ldots, z_{k}\right\rangle$ with $0<z_{1}<z_{2}<\cdots<z_{k} \leq t$, then

$$
t \geq \frac{z_{k}}{z_{1}}=\frac{z_{k}}{z_{k-1}} \cdot \frac{z_{k-1}}{z_{k-2}} \cdots \frac{z_{2}}{z_{1}} \geq(1+\epsilon / 2 n)^{k-1}
$$

since $z_{1} \geq 1$. This implies $k-1 \leq \log _{(1+\epsilon / 2 n)} t$.
Taking into account $\frac{x}{1+x} \leq \ln (1+x)$ for $x>-1$, we get

$$
\begin{aligned}
\left|L_{i}\right| & =k+1 \\
& \leq \log _{(1+\epsilon / 2 n)} t+2 \\
& =\frac{\ln t}{\ln (1+\epsilon / 2 n)}+2 \\
& \leq \frac{2 n(1+\epsilon / 2 n) \ln t}{\epsilon}+2 \\
& \leq \frac{4 n \ln t}{\epsilon}+2
\end{aligned}
$$

This bound is polynomial in terms of n and $1 / \epsilon$.

3. Weighted Independent Set and Vertex Cover

Let $G=(V, E)$ be an undirected graph with vertex weights w_{j}, $j=1, \ldots,|V|=n$. Consider the following IP for the weighed VC problem:

Minimize $z=\sum_{j=1}^{n} w_{j} x_{j}$
subject to $\quad x_{i}+x_{j} \geq 1$ for every edge $(i, j) \in E$ $x_{j} \in\{0,1\} \quad$ for every vertex $j \in V$

We relax the restriction $x_{j} \in\{0,1\}$ to $0 \leq x_{j} \leq 1$ and get an LP approximation. The LP provides a lower bound for the IP. That is, if C^{*} is an optimal VC and $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ and Z^{*} is a solution to the LP, then

$$
z^{*} \leq w\left(C^{*}\right)
$$

Since the complement of VC is an IS, for its optimal solution S^{*} we get

$$
w\left(S^{*}\right)=\sum_{i=1}^{n} w_{i}-w\left(C^{*}\right) \leq \sum_{i=1}^{n} w_{i}-z^{*} .
$$

We partition V in 4 subsets:

$$
\begin{aligned}
P & =\left\{j \in V \mid x_{j}^{*}=1\right\} \\
Q^{\prime} & =\left\{j \in V \mid 1 / 2 \leq x_{j}^{*}<1\right\} \\
Q^{\prime \prime} & =\left\{j \in V \mid 0<x_{j}^{*}<1 / 2\right\} \\
R & =\left\{j \in V \mid x_{j}^{*}=0\right\}
\end{aligned}
$$

For a set $A \subseteq V_{G}$ denote $w(A)=\sum_{v \in A} w(v)$.
Theorem 12 There exist a polynomial approximation algorithm for the weighted VC with approximation rate 2.

Proof.
We solve the LP and let $C=P \cup Q^{\prime}$. One has

$$
\begin{array}{rlrl}
w\left(C^{*}\right) & \geq z^{*} & =\sum_{j=1}^{n} w_{j} x_{j} \\
& =\sum_{j \in P \cup Q^{\prime} \cup Q^{\prime \prime}} w_{j} x_{j} \geq \sum_{j \in P \cup Q^{\prime}} w_{j} x_{j} \\
& =\sum_{x_{j} \geq 1 / 2} w_{j} x_{j} & \geq \frac{1}{2} \sum_{x_{j} \geq 1 / 2} w_{j} \\
& =\frac{1}{2} w(C) .
\end{array}
$$

Corollary 2 For the minimum weight vertex cover C^{*} one has

$$
w\left(C^{*}\right) \geq w(P)+w\left(Q^{\prime}\right) / 2
$$

Corollary 3 For the maximum weight indep. set S^{*} one has

$$
w\left(S^{*}\right) \leq w(R)+w\left(Q^{\prime}\right) / 2+w\left(Q^{\prime \prime}\right)
$$

Indeed,

$$
\begin{aligned}
w\left(S^{*}\right) & =w(G)-w\left(C^{*}\right) \leq w(G)-\sum_{j \in P \cup Q^{\prime} \cup Q^{\prime \prime}} w_{j} x_{j} \\
& =w(R)+\sum_{j \in Q^{\prime}} w_{j}\left(1-x_{j}\right)+\sum_{j \in Q^{\prime \prime}} w_{j}\left(1-x_{j}\right) \\
& \leq w(R)+\frac{1}{2} w\left(Q^{\prime}\right)+w\left(Q^{\prime \prime}\right) .
\end{aligned}
$$

Theorem 13 Assume $\chi=\chi(G) \geq 2$ and the optimal coloring for G is known. Then there exist polynomial approxim. algorithms for IS (resp. VC) with approxim. rate $\chi / 2$ (resp. $2-2 / \chi$).

Proof. First, we solve the LP to find the sets $P, Q^{\prime}, Q^{\prime \prime}$, and R. Let F_{i} be the set of vertices with color $i, i=1, \ldots, \chi$. Each F_{i} is an independent set. Denote $S=F_{j} \cap Q^{\prime}$ with $\left|F_{j}\right|=\max _{i}\left|F_{i} \cap Q^{\prime}\right|$. Then $w(S) \geq w\left(Q^{\prime}\right) / \chi$. Note that $R \cup Q^{\prime \prime}$ is an IS and there are no edges between R and Q^{\prime} (so as between R and S), consider LP restrictions to check this. Hence, $R \cup Q^{\prime \prime} \cup S$ is an IS and

$$
\begin{aligned}
w\left(R \cup Q^{\prime \prime} \cup S\right) & \geq w(R)+w\left(Q^{\prime \prime}\right)+\frac{1}{\chi} w\left(Q^{\prime}\right) \\
& \geq \frac{2}{\chi}\left(w(R)+w\left(Q^{\prime \prime}\right)+\frac{1}{2} w\left(Q^{\prime}\right)\right) \\
& \geq \frac{2}{\chi} w\left(S^{*}\right) \quad \text { (by Coro. (3)). }
\end{aligned}
$$

Furthermore, $C=V \backslash\left(R \cup Q^{\prime \prime} \cup S\right)$ is a vertex cover and

$$
\begin{aligned}
w(C) & =w(G)-w\left(R \cup Q^{\prime \prime} \cup S\right) \\
& =w(P)+\left(w\left(Q^{\prime}\right)-w(S)\right) \\
& \leq w(P)+\frac{\chi-1}{\chi} w\left(Q^{\prime}\right) \\
& \leq \frac{2(\chi-1)}{\chi}\left(w(P)+\frac{1}{2} w\left(Q^{\prime}\right)\right) \\
& \leq\left(2-\frac{2}{\chi}\right) w\left(C^{*}\right) \quad \text { (by Coro. (2)). }
\end{aligned}
$$

If G is a connected graph of max-degree $\Delta>3$ and $G \neq K_{\Delta+1}$, then $\chi(G) \leq \Delta$ (Brooks Theorem). Therefore,

Corollary 4 There exist polynomial approx. algorithms for IS (resp. VC) with approx. rate $\Delta / 2($ resp. $2-2 / \Delta)$.

Since $\chi(G)=4$ for any planar graph, we get
Corollary 5 For planar graphs there exist polynomial approx. algorithms for IS (resp. VC) with approx. rate 2 (resp. 3/2).

