
Approximation Algorithms
for NP-Complete Problems

1. Performance ratios

2. Some polynomial approximation algorithms

a. Vertex-Cover

b. TSP

c. Scheduling

d. Set-Cover

e. Maximum Set-Cover

f. Independent-Set

g. 3-Coloring

h. Subset-Sum

3. Weighed Independent Set and Vertex Cover

1

1. Definitions

Definition 1 An approximation algorithm has approximation ratio
ρ(n), if for any input of size n one has:

max

C

C∗
,
C∗

C

 ≤ ρ(n),

where C and C∗ are the costs of the approximated and the optimal
solution, respectively.

An algorithm with approximation ratio ρ is sometimes called
ρ-approximation algorithm.

Usually there is a trade-off between the running time of an algorithm
and its approximation quality.

Definition 2 An approximation scheme for an optimization problem
is an approximation algorithm that takes as input an instance of the
problem and a number ε(n) > 0 and returns a solution within the
approximation rate 1 + ε.

An approximation scheme is called fully polynomial-time approx.
scheme if it is an approximation scheme and its running time is poly-
nomial both in 1/ε and in size n of the input instance.

2

2a. The Vertex-Cover Problem

Instance: An undirected graph G = (V,E).
Problem: Find a vertex cover of minimum size.

Algorithm 1 Approx-Vertex-Cover(G);

C := ∅
E ′ := E
while E ′ 6= ∅

do C := C ∪ {u, v} /* here (u, v) ∈ E ′ */
E ′ := E ′ − {edges of E ′ incident to u or v}

return C

Figure 1: Approx-Vertex-Cover in action

3

Theorem 1 The Approx-Vertex-Cover is a polynomial-time
2-approximation algorithm.

Proof. The set of vertices C constructed by the algorithm is a
vertex cover. Let C∗ be a minimum vertex cover.

Let A be the set of edges that were picked by the algorithm. Then

|C| = 2 · |A|.

Since the edges in A are independent,

|A| ≤ |C∗|.

Therefore:
|C| ≤ 2 · |C∗|.

4

2b. The TSP Problem

Instance: A complete graph G = (V,E) and a weight function
c : E → R≥0.
Problem: Find a Hamilton cycle in G of minimum weight.

For A ⊆ E define
c(A) =

∑
(u,v)∈A

c(u, v).

We assume the weights satisfy the triangle inequality:

c(u, v) ≤ c(u,w) + c(w, v)

for all u, v, w ∈ V .

Remark 1 The TSP problem is NP-complete even under this as-
sumption.

5

Algorithm 2 Approx-TSP(G, c);

1. Choose a vertex v ∈ V .
2. Construct a minimum spanning tree T for G rooted in v

(use, e.g., MST-Prim algorithm).
3. Construct the pre-order traversal W of T .
4. Construct a Hamilton cycle that visits the vertices in order W .

Figure 2: Approx-TSP in action

6

Theorem 2 The Approx-TSP is a polynomial-time 2-approx.
algorithm for the TSP problem with the triangle inequality.

Proof. Let H∗ be an optimal Hamilton cycle.
We construct a cycle H with c(H) ≤ 2 · c(H∗).

Since T is a minimal spanning tree, one has:

c(T) ≤ c(H∗).

We construct a list L of vertices taken in the same order as in the
MST-Prim algorithm and get a walk W around T .

Since W goes through every edge twice, we get:

c(W) = 2 · c(T),

which implies
c(W) ≤ 2 · c(H∗).

The walk W is, however, not Hamiltonian.

We go through the list L and delete from W the vertices which have
already been visited.

This way we obtain a Hamilton cycle H. The triangle inequality
provides

c(H) ≤ c(W).

Therefore,
c(H) ≤ 2 · c(H∗).

7

The TSP problem for an arbitrary weight function c is intractable.

Theorem 3 Let p ≥ 1. If P6=NP, then there is no polynomial-time
p-approximation algorithm for the TSP problem.

Proof. W.l.o.g. assume p ∈ IN .
Suppose that for some p ≥ 1 there exists a polynomial p-approx.
algorithm A.

We show how the algorithm A can be applied to solve the HC prob-
lem in polynomial time.

Let G = (V,E) be an instance for the HC problem. Construct a
complete graph G′ = (V,E ′) with the following weight function:

c(u, v) =

1, if (u, v) ∈ E
p|V | + 1, otherwise

.

G is Hamiltonian ⇒ G′ contains a Ham. cycle of weight |V |.
G is not Hamiltonian ⇒ G′ has a Ham. cycle of weight

≥ (p|V | + 1) + (|V | − 1) > p|V |.

We apply A to the instance (G′, c). Then A constructs a cycle of
length no more than p times longer than the optimal one. Hence:
G is Hamiltonian ⇒ A constructs a cycle in G of length ≤ p|V |.
G is not Hamiltonian⇒ A constructs a cycle in G′ of length > p|V |.

Comparing the length of the cycle in G′ with p|V | we can recognize
whether G is Hamiltonian or not in polynomial time, so P=NP. 2

8

2c. Scheduling

Let J1, . . . , Jn be tasks to be performed on m identical processors
M1, . . . ,Mm.

Assumptions:

- The task Jj has duration pj > 0 and must not be interrupted.

- Each processor Mi can execute only one task in a time.

The problem: construct a schedule

Σ : {Jj}nj=1 7→ {Mi}mi=1

that provides a fastest completion of all tasks.

Theorem 4 (Graham ’66). There exists an (2−1/m) approximation
scheduling algorithm.

Proof:
Assume the tasks are listed in some order.

Heuristics G: as soon as some processor becomes free, assign to
it the next task from the list.

9

Denote by sj and ej the start- and end-times of the tasks Jj in the
heuristics G. Let Jk be the task completed last. Then no processor is
free at time sk. This implies m ·sk does not exceed the total duration
of all other tasks, i.e.

m · sk ≤
∑
j 6=k

pj. (1)

For the running time C∗n of the optimal schedule one has:

C∗n ≥
1

m
·

n∑
j=1

pj. (2)

C∗n ≥ pk (3)

The inequality (2) follows from the fact that if there exists a schedule
of time complexity C < 1

m ·
∑n
j=1 pj then for the total duration P

of all tasks one has P = ∑n
j=1 pj ≤ mC < ∑n

j=1 pj, which is a
contradiction.

The heuristics G provides:

CG
n = ek = sk + pk

≤ 1

m
· ∑
j 6=k

pj + pk by (1)

=
1

m
·

n∑
j=1

pj +
1− 1

m

 pk
≤ C∗n +

1− 1

m

C∗n by (2) & (3)

=
2− 1

m

C∗n. 2

10

A better approximation can be obtained by following the LPT Rule
(Longest Processing Time):
Sort the tasks w.r.t. pi in non-increasing order and assign the next
task from the sorted list to a processor that becomes free earliest.

Theorem 5 It holds

CLPT
n ≤ (3/2− 1/(2m))C∗n.

Proof:
Let Jk be the task completed last. Since time sk all processors are
busy, there is a set S of m tasks that are processed at that time. For
any Jj ∈ S one has pj ≥ pk (the LPT heuristics).

Now, if pk > (1/2)C∗n, then ∃ m+1 tasks of length at least (1/2)C∗n
each, which is a contradiction (no schedule just for these tasks cannot
be completed in time C∗n).

Hence, pk ≤ (1/2)C∗n. One has

CLPT
n = sk + pk

≤ 1

m
· ∑
j 6=k

pj + pk by (1)

=
1

m
·

n∑
j=1

pj +
1− 1

m

 pk
≤ C∗n +

1− 1

m

 (1/2)C∗n

≤
3

2
− 1

2m

C∗n. 2

11

A deeper analysis leads to even better bound for the LPT heuristics.

Theorem 6 It holds:

CLPT
n ≤ (4/3− 1/(3m))C∗n.

Proof:
Let Jk be the task completed last in the LPT schedule Sn.

Assume pk ≤ C∗n/3. Then, similarly to the proof of the last theorem,

CLPT
n ≤ (1/m)

n∑
j=1

pj + (1− 1/m)pk

≤ C∗n + (1− 1/m)C∗n/3

= (4/3− 1/(3m))C∗n.

Assume pk > C∗n/3. Construct the reduced schedule Sk for the
tasks J1, . . . , Jk by dropping the tasks Jk+1, . . . , Jn from Sn. Then

CLPT
k = CLPT

n (definition of Jk).

Each processor got at most 2 tasks to perform in the optimal schedule
C∗k for J1, . . . , Jk (if some got 3, say pi, pj, pl, then pi + pj + pl ≥
3pk > C∗n ≥ C∗k).

Therefore k ≤ 2m. In this case the schedule Sk for J1, . . . , Jk
provided by the LPT heuristics is optimal. But then Sn is optimal for
J1, . . . , Jn because

C∗n ≥ C∗k = CLPT
k = CLPT

n ≥ C∗n. 2

12

2d. The Set-Cover Problem

Instance: A finite set X and a collection of its subsets F such that⋃
S∈F

S = X .

Problem: Find a minimum set C ⊆ F that covers X .

Figure 3: An instance of the Set-Cover problem

Remark 2 The Set-Cover problem is NPC
(Reduction from VC problem. Both problems can be formulated as
vertex-covering problems in bipartite graphs. The bipartition sets for
Set-Cover graph are formed by the sets X and F . The bipartition
sets for VC graph for G = (V,E) are formed by the sets V and E).

13

Algorithm 3 Greedy-Set-Cover(X,F);

U := X
C := ∅
while U 6= ∅

do Choose S ∈ F with |S ∩ U | → max
U := U − S
C := C ∪ {S}

return C

Since the while -loop is executed at most min{|X|, |F|} times and
each its iteration requiresO(|X|·|F|) computations, the running time
of Greedy-Set-Cover is O(|X| · |F| ·min{|X|, |F|}).

14

Theorem 7 The Greedy-Set-Cover is a polynomial time ρ(n)-
approximation algorithm, where ρ(n) = H(max{|S| | S ∈ F}) and

H(d) =
d∑
i=1

(1/i).

Proof. Let C be the set cover constructed by the Greedy-Set-
Cover algorithm and let C∗ be a minimum cover.

Let Si be the set chosen at the i-th execution of the while -loop.
Furthermore, let x ∈ X be covered for the first time by Si. We set
the weight cx of x as follows:

cx =
1

|Si − (S1 ∪ · · · ∪ Si−1)|
.

One has:
|C| = ∑

x∈X
cx ≤

∑
S∈C∗

∑
x∈S

cx. (4)

We will show later that for any S ∈ F
∑
x∈S

cx ≤ H(|S|). (5)

From (4) and (5) one gets:

|C| ≤ ∑
S∈C∗

H(|S|) ≤ |C∗| ·H(max{|S| | S ∈ F}),

which completes the proof of the theorem.

To show (5) we define for a fixed S ∈ F and i ≤ |C|

ui = |S − (S1 ∪ · · · ∪ Si)|,

that is, # of elements of S which are not covered by S1, . . . , Si.

15

Let u0 = |S| and k be the minimum index such that uk = 0. Then
ui−1 ≥ ui and ui−1− ui elements of S are covered for the first time
by Si for i = 1, . . . , k.

One has:

∑
x∈S

cx =
k∑
i=1

(ui−1 − ui) ·
1

|Si − (S1 ∪ · · · ∪ Si−1)|
.

Since for any S ∈ F \ {S1, . . . , Si−1}

|Si − (S1 ∪ · · · ∪ Si−1)| ≥ |S − (S1 ∪ · · · ∪ Si−1)| = ui−1

due to the greedy choice of Si, we get:

∑
x∈S

cx ≤
k∑
i=1

(ui−1 − ui) ·
1

ui−1

Since for any integers a, b with a < b it holds:

H(b)−H(a) =
b∑

i=a+1
(1/i) ≥ (b− a) · (1/b),

we get a telescopic sum:

∑
x∈S

cx ≤
k∑
i=1

(H(ui−1)−H(ui))

= H(u0)−H(uk) = H(u0)−H(0)

= H(u0) = H(|S|).

which completes the proof of (5). 2

Corollary 1 Since H(d) ≤ ln d + 1, the Greedy-Set-Cover
algorithm has the approximation rate (ln |X| + 1).

16

2e. The Maximum Set-Cover-Problem

Instance: A finite set X , a weight function w : X 7→ R, a collec-
tion F of subsets of X and k ∈ IN .
Problem: Find a collection C ⊆ F of subsets with |C| = k such
that

∑
x∈C

w(x) is maximum.

Algorithm 4 Maximum-Cover(X,F , w);

U := X
C := ∅
for i := 1 to k do

Choose S ∈ F with w(S ∩ U)→ max
U := U − S
C := C ∪ S

return C

Theorem 8 The Maximum-Cover is a polynomial time
(1− 1/e)−1-approximation algorithm ((1− 1/e)−1 ≈ 1.58).

Proof.
Let C be the set constructed by the algorithm and let C∗ be the
optimal solution. Furthermore, let Si be the set chosen at step i of
the algorithm.

17

The greedy choice of Sl implies:

w(
l⋃
i=1
Si)− w(

l−1⋃
i=1
Si) ≥

w(C∗)− w(
l−1⋃
i=1
Si)

k
, l = 1, . . . , k. (6)

Indeed, for any subset A ⊆ X , there exists a set S ∈ C∗ with

w(S − A) ≥ w(C∗ − A)/k

(if for any S ∈ C∗ the inverse inequality is satisfied, then∑
S∈C∗w(S−A) < k ·w(C∗−A)/k = w(C∗−A), which is a contra-

diction since not the whole part of w(C∗) outside of A is covered).

Note that w(C∗ − A) ≥ w(C∗)− w(A) and apply this observation
for A =

⋃l−1
i=1Si. By the greedy choice of Sl one has w(Sl−

⋃l−1
i=1Si) ≥

w(S − ⋃l−1
i=1Si) for any S ⊆ X . So,

w(
l⋃
i=1
Si)− w(

l−1⋃
i=1
Si) = w(Sl −

l−1⋃
i=1
Si)

≥ w(S −
l−1⋃
i=1
Si)

≥ w(C∗ −
l−1⋃
i=1
Si)/k

≥
w(C∗)− w(

l−1⋃
i=1
Si)

k
.

We show by induction on l:

w(
l⋃
i=1
Si) ≥

(
1− (1− 1/k)l

)
· w(C∗).

It is true for l = 1, since w(S1) ≥ w(C∗)/k follows from (6).

18

For l ≥ 1 one has:

w(
l+1⋃
i=1
Si) = w(

l⋃
i=1
Si) + w(

l+1⋃
i=1
Si)− w(

l⋃
i=1
Si)

≥ w(
l⋃
i=1
Si) +

w(C∗)− w(
l⋃
i=1
Si)

k

= (1− 1/k) · w(
l⋃
i=1
Si) + w(C∗)/k

≥
1− 1

k

1−

1− 1

k

l
 · w(C∗) +

w(C∗)

k

=
(
1− (1− 1/k)l+1

)
· w(C∗),

so the induction goes through. For l = k we get:

w(C) ≥
(
1− (1− 1/k)k

)
· w(C∗) > (1− 1/e) · w(C∗).

The last inequality follows from

(1− 1/k)k = (1 + (1/(−k)))−(−k)

= (1 + 1/n)−n (for n = −k)

= ((1 + 1/n)n)−1

≤ e−1 = 1/e.

Remark 3 Sometimes it is difficult to choose the set S according to
the algorithm. However, if one one would be able to make a choice
for S which differs from the optimum in a factor β (β < 1) then the
same algorithm provides the approx. ratio (1− 1/eβ)−1.

19

2f. The Independent-Set Problem

Instance: An undirected graph G = (V,E).
Problem: Find a maximum independent set.

For v ∈ V and n = |V | define δ = 1
n

∑
v∈V

deg(v) and

N(v) = {u ∈ V | dist(u, v) = 1}.

Algorithm 5 Independent-Set(G);
S := ∅
while V (G) 6= ∅ do

Find v ∈ V with deg(v) = minu∈V deg(u)
S := S ∪ {v}
G := G− (v ∪N(v))

return S

Theorem 9 The Independent-Set algorithm computes an in-
dependent set S of size q ≥ n/(δ + 1).

Proof. Let vi be the vertex chosen at step i and let di = deg(vi).
One has:

∑q
i=1(di + 1) = n. Since at step i we delete di + 1 vertices

of degree at least di each, for the sum of degrees Si of the deleted
vertices one has Si ≥ di(di + 1). Therefore,

δn =
∑
v∈V

deg(v) ≥
q∑
i=1
Si ≥

q∑
i=1
di(di + 1).

This implies

δn + n ≥
q∑
i=1

(di(di + 1) + (di + 1)) =
q∑
i=1

(di + 1)2 ≥ n2/q

⇒ n
δ+1 ≤ q = |S| ≤ |S∗| ≤ n and |S∗|/|S| ≤ δ + 1. 2

20

2g. 3-Coloring

Theorem 10 Let G be a graph with χ(G) ≤ 3. There exists a
polynomial algorithm that colors G with O(

√
n) colors.

Proof: We will use the following observations

- If χ(G) = 2 (i.e. G ist bipartite), then G can be colored in 2
colors in polynomial time.

- If G is a graph with max. vertex degree ∆, then G can be colored
in ∆ + 1 colors in polynomial time (by a greedy method).

W.l.o.g. we assume χ(G) = 3 and ∆(G) ≥
√
n.

For v ∈ V (G) denote N(v) = {u ∈ V | distG(u, v) = 1}.
χ(G) = 3 ⇒ the subgraph induced by G[N(v)] is bipartite ∀v ∈ V
and 2-colorable in polynomial time.
⇒ the subgraph induced by G[v∪N(v)] is 3-colorable in polynomial
time.

Algorithm 6 3-Coloring;
while ∆(G) ≥

√
n do

Find v ∈ V (G) with deg(v) ≥
√
n

Color G[v ∪N(v)] with 3 colors (by using a new set of
3 colors for every v)

Set G := G− (v ∪N(v))
Color G with ∆(G) + 1 (new) colors.

Obviously, the running time is polynomial in n and the number of
used colors is ≤ 3 n√

n +
√
n + 1 = O(

√
n). 2

21

2h. The Subset-Sum Problem

Decision problem:
Instance: A set S = {x1, . . . , xn} of integers and t ∈ IN .
Question: Is there a subset I ⊆ {1, . . . , n} with

∑
i∈I
xi = t ?

Optimization problem:
Instance: A set S = {x1, . . . , xn} of integers and t ∈ IN .
Problem: Find a subset I ⊆ {1, . . . , n} with

∑
i∈I
xi ≤ t and∑

i∈I
xi maximum.

For A ⊆ S and s ∈ IN define

A + s = {a + s | a ∈ A}.

Let Pi be the set of all partial sums of {x1, . . . , xi}. One has

Pi = Pi−1 ∪ (Pi−1 + xi).

Algorithm 7 Exact-Subset-Sum(S, t);
n := |S|
L0 := 〈0〉
for i = 1 to n do
Li := Merge-Lists(Li−1, Li−1 + xi)
Li := Li − {x ∈ Li | x > t}

return the maximal element of Ln

It can be shown by induction on i that Li is the sorted set

Li = {x ∈ Pi | x ≤ t}.

22

Polynomial Approximation Scheme

Let L = 〈y1, . . . , ym〉 be a sorted list and 0 < δ < 1. We construct
a list L′ = 〈z1, . . . , zk〉 ⊆ L such that:

∀y ∈ L ∃z ∈ L′ with
y − z
z
≤ δ (i.e. y/(1 + δ) ≤ z ≤ y),

and |L′| is minimum (for the given δ).

The element z ∈ L′ will represent y ∈ L with accuracy δ.

For example, if

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉

then trimming of it with δ = 0.1 results in

L′ = 〈10, 12, 15, 20, 23, 29〉

with 11 represented by 10, 21 & 22 by 20, and 24 by 23.

Algorithm 8 Trim(L, δ);
m := |L|
L′ := 〈y1〉
last := y1

for i = 2 to m do
if yi/(1 + δ) > last then
Append(L′, yi)
last := yi

return L′

23

Algorithm 9 Approx-Subset-Sum(S, t, ε);
n := |S|
L0 := 〈0〉
for i = 1 to n do
Li := Merge-Lists(Li−1, Li−1 + xi)
Li := Trim(Li, ε/2n)
Li := Li − {x ∈ Li | x > t}

return The maximal element of Ln

Theorem 11 Approx-Subset-Sum is a fully polynomial time
approximation scheme for the Subset-Sum problem.

Proof.
The output of the algorithm is the value z∗ which is a sum of elements
in the subset S. We show that y∗/z∗ ≤ 1+ε, where y∗ is the optimal
solution.

By induction on i:

∀y ∈ Pi with y ≤ t ∃z ∈ Li with y/(1 + ε/2n)i ≤ z ≤ y.

Let y∗ ∈ Pn be the optimal solution. Then ∃z ∈ Ln with

y∗/(1 + ε/2n)n ≤ z ≤ y∗.

The output of the algorithm is the largest z.
Since the function (1 + ε/2n)n is monotonically increasing on n,

(1+ε/2n)n ≤ eε/2 ≤ 1+ε/2+(ε/2)2 ≤ 1+ε ⇒ y∗ ≤ z(1+ε).

24

Finally, we show that Approx-Subset-Sum terminates in a poly-
nomial time. For this we get a bound for Li.

After iteration of the for-loop, for any two consecutive elements
zi+1, zi ∈ Li one has:

zi+1

zi
≥ 1 + ε/2n.

If L = 〈0, z1, . . . , zk〉 with 0 < z1 < z2 < · · · < zk ≤ t, then

t ≥ zk
z1

=
zk
zk−1

· zk−1

zk−2
· · · z2

z1
≥ (1 + ε/2n)k−1

since z1 ≥ 1. This implies k − 1 ≤ log(1+ε/2n) t.

Taking into account x
1+x ≤ ln(1 + x) for x > −1, we get

|Li| = k + 1

≤ log(1+ε/2n) t + 2

=
ln t

ln(1 + ε/2n)
+ 2

≤ 2n(1 + ε/2n) ln t

ε
+ 2

≤ 4n ln t

ε
+ 2.

This bound is polynomial in terms of n and 1/ε. 2

25

3. Weighted Independent Set and Vertex Cover

Let G = (V,E) be an undirected graph with vertex weights wj,
j = 1, . . . , |V | = n. Consider the following IP for the weighed VC
problem:

Minimize z =
n∑
j=1

wjxj

subject to xi + xj ≥ 1 for every edge (i, j) ∈ E
xj ∈ {0, 1} for every vertex j ∈ V

We relax the restriction xj ∈ {0, 1} to 0 ≤ xj ≤ 1 and get an LP
approximation. The LP provides a lower bound for the IP. That is, if
C∗ is an optimal VC and x∗ = (x∗1, . . . , x

∗
n) and Z∗ is a solution to

the LP, then
z∗ ≤ w(C∗).

Since the complement of VC is an IS, for its optimal solution S∗ we
get

w(S∗) =
n∑
i=1
wi − w(C∗) ≤

n∑
i=1
wi − z∗.

We partition V in 4 subsets:

P = {j ∈ V | x∗j = 1}
Q′ = {j ∈ V | 1/2 ≤ x∗j < 1}
Q′′ = {j ∈ V | 0 < x∗j < 1/2}
R = {j ∈ V | x∗j = 0}

26

For a set A ⊆ VG denote w(A) =
∑
v∈Aw(v).

Theorem 12 There exist a polynomial approximation algorithm for
the weighted VC with approximation rate 2.

Proof.
We solve the LP and let C = P ∪Q′. One has

w(C∗) ≥ z∗ =
n∑
j=1
wjxj

=
∑

j∈P∪Q′∪Q′′
wjxj ≥

∑
j∈P∪Q′

wjxj

=
∑

xj≥1/2
wjxj ≥ 1

2

∑
xj≥1/2

wj

= 1
2w(C).

Corollary 2 For the minimum weight vertex cover C∗ one has

w(C∗) ≥ w(P) + w(Q′)/2.

Corollary 3 For the maximum weight indep. set S∗ one has

w(S∗) ≤ w(R) + w(Q′)/2 + w(Q′′).

Indeed,

w(S∗) = w(G)− w(C∗) ≤ w(G)− ∑
j∈P∪Q′∪Q′′

wjxj

= w(R) +
∑
j∈Q′

wj(1− xj) +
∑

j∈Q′′
wj(1− xj)

≤ w(R) + 1
2w(Q′) + w(Q′′).

27

Theorem 13 Assume χ = χ(G) ≥ 2 and the optimal coloring for
G is known. Then there exist polynomial approxim. algorithms for
IS (resp. VC) with approxim. rate χ/2 (resp. 2− 2/χ).

Proof. First, we solve the LP to find the sets P , Q′, Q′′, and R.
Let Fi be the set of vertices with color i, i = 1, . . . , χ. Each Fi is an
independent set. Denote S = Fj ∩ Q′ with |Fj| = maxi |Fi ∩ Q′|.
Then w(S) ≥ w(Q′)/χ. Note that R ∪ Q′′ is an IS and there are
no edges between R and Q′ (so as between R and S), consider LP
restrictions to check this. Hence, R ∪Q′′ ∪ S is an IS and

w(R ∪Q′′ ∪ S) ≥ w(R) + w(Q′′) +
1

χ
w(Q′)

≥ 2

χ

w(R) + w(Q′′) +
1

2
w(Q′)

≥ 2

χ
w(S∗) (by Coro. (3)).

Furthermore, C = V \ (R ∪Q′′ ∪ S) is a vertex cover and

w(C) = w(G)− w(R ∪Q′′ ∪ S)

= w(P) + (w(Q′)− w(S))

≤ w(P) +
χ− 1

χ
w(Q′)

≤ 2(χ− 1)

χ

w(P) +
1

2
w(Q′)

≤
2− 2

χ

w(C∗) (by Coro. (2)).

28

If G is a connected graph of max-degree ∆ > 3 and G 6= K∆+1,
then χ(G) ≤ ∆ (Brooks Theorem). Therefore,

Corollary 4 There exist polynomial approx. algorithms for IS (resp.
VC) with approx. rate ∆/2 (resp. 2− 2/∆).

Since χ(G) = 4 for any planar graph, we get

Corollary 5 For planar graphs there exist polynomial approx. algo-
rithms for IS (resp. VC) with approx. rate 2 (resp. 3/2).

29

