Algebraic Algorithms

- 1. Fast matrix multiplication
- 2. Inverting matrices
- 3. Fast Fourier Transform

1. Matrix multiplication

Let A, B be $(n \times n)$ matrices. Then

$$C = A \cdot B$$
 with $c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{k_j}$.

Conventional methods:

iteratively: Compute c_{ij} according to the above formula. <u>Outcome</u>: n multiplications, n-1 additions i.e. 2n-1 arithmetic operations for each pair i, j. $\Rightarrow n^2(2n-1) = O(n^3)$ operations.

recursive: (Divide and Conquer) Split A, B into 4 $\left(\frac{n}{2} \times \frac{n}{2}\right)$ matrices. (W.I.o.g. let $n = 2^k$).

$$A \cdot B = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = C$$

where:

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}.$$

Outcome:

$$T(n) = 8 \cdot T\left(\frac{n}{2}\right) + 4\left(\frac{n}{2}\right)^2$$
$$= O\left(n^{\log_2 8}\right) = O(n^3).$$

Strassen's algorithm

Idea: Use Divide and Conquer approach for computing C_{ij} , $i, j \in \{1, 2\}$, but with a smaller number $(m \leq 7)$ of multiplications and more $(a \geq 4)$ additions:

$$T(n) = m \cdot T\left(\frac{n}{2}\right) + a\left(\frac{n}{2}\right)^2 = O\left(n^{\log_2 m}\right),$$

Theorem 1 Two $(n \times n)$ matrices can be multiplied by using 7 multiplications and 18 additions.

Corollary 1 The running time of the Strassen's algorithm is $O(n^{\log_2 7}) \approx O(n^{2.81}).$

Remark 1 There exist better algorithms with running time $O(n^{2.38})$. The lower bound is $\Omega(n^2)$, since n^2 matrix elements need to be computed. Proof of Theorem 1:

Let $n = 2^k$. Denote:

$$M_{1} = (A_{12} - A_{22})(B_{21} + B_{22})$$

$$M_{2} = (A_{11} + A_{22})(B_{11} + B_{22})$$

$$M_{3} = (A_{11} - A_{21})(B_{11} + B_{12})$$

$$M_{4} = (A_{11} + A_{12})B_{22}$$

$$M_{5} = A_{11}(B_{12} - B_{22})$$

$$M_{6} = A_{22}(B_{21} - B_{11})$$

$$M_{7} = (A_{21} + A_{22})B_{11}.$$

One has:

$$C_{11} = M_1 + M_2 - M_4 + M_6$$

$$C_{12} = M_4 + M_5$$

$$C_{21} = M_6 + M_7$$

$$C_{22} = M_2 - M_3 + M_5 - M_7.$$

If $2^{k-1} < n < 2^k$ the we fill out the matrices A, B up to $(2^k \times 2^k)$ matrices. This increases the running time up to $d \cdot n^{\log_2 7}$ for a constant d > 0.

Remark 2 The constant d is pretty large. As it follows from practice, the conventional method is better for $n \ll 1000$.

Remark 3 The exact value of the minimum running time necessary to multiply two matrices in presently unknown.

2. Computing the matrix inverse

Let A be an $(n \times n)$ matrix. We compute the matrix A^{-1} such that $A \cdot A^{-1} = A^{-1} \cdot A = I_n$. If A^{-1} does exist, the matrix A is called nonsingular. In in this case A^{-1} is defined uniquely.

Denote by M(n) the time for the matrix multiplication and by I(n) the time for computing the inverse.

Theorem 2 *If* I(3n) = O(I(n)) *then:*

$$M(n) = O(I(n)).$$

Proof. Given matrices A, B construct the matrix

$$D = \begin{pmatrix} I_n & A & 0 \\ 0 & I_n & B \\ 0 & 0 & I_n \end{pmatrix}.$$

One has:

$$D^{-1} = \begin{pmatrix} I_n & -A & AB \\ 0 & I_n & -B \\ 0 & 0 & I_n \end{pmatrix}.$$

Since D is computable in $\Theta(n^2)$ time, $I(n) = \Omega(n^2)$ and D^{-1} is computable in time O(I(3n)) = O(I(n)) we have the Theorem. \Box

Remark 4 Since $I(n) = \Theta(n^c \log^d n)$ for some constants c > 0 and $d \ge 0$, one has I(3n) = O(I(n)).

Theorem 3 If M(n) = O(M(n+k)) for $0 \le k \le n$ then: I(n) = O(M(n)).

Proof. W.I.o.g. we assume $n = 2^p$. Indeed, if $2^{p-1} < n < 2^p$ then for $k = 2^p - n$:

$$\begin{pmatrix} A & 0 \\ 0 & I_k \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & 0 \\ 0 & I_k \end{pmatrix}.$$

Therefore, the running time increases in a constant factor only.

An $(n \times n)$ matrix A is called <u>positive-definite</u> if $x^T A x > 0$ for any *n*-dimensional vector $x \neq 0$.

First assume A is symmetric and positive-definite. Split A into 4 $(n/2 \times n/2)$ matrices:

$$A = \begin{pmatrix} B & C^T \\ C & D \end{pmatrix}$$

and set

$$S = D - CB^{-1}C^T.$$

The matrices B and S are symmetric and positive definite, so they are non-singular (Lemmas 28.9 – 28.11 in the book).

Therefore, one has:

$$A^{-1} = \begin{pmatrix} B^{-1} + B^{-1}C^T S^{-1}CB^{-1} & -B^{-1}C^T S^{-1} \\ -S^{-1}CB^{-1} & S^{-1} \end{pmatrix}.$$

To compute A^{-1} in this approach one needs to compute the matrices $E = C \cdot B^{-1}$ and also the matrices

 $E \cdot C^T$ $S^{-1} \cdot E$ $E^T \cdot (S^{-1}E).$

Hence:

$$I(n) \leq 2I(n/2) + 4M(n/2) + O(n^2) = 2I(n/2) + O(M(n)) = O(M(n)).$$

If A is not symmetric, consider the matrix $A^T A$. For any non-singular matrix A the matrix $A^T A$ is symmetric and positive-definite (see Theorem 28.6 in the book).

Since
$$((A^T A)^{-1} A^T) A = (A^T A)^{-1} \cdot (A^T A) = I_n$$
, one has:
 $A^{-1} = (A^T A)^{-1} \cdot A^T$.

To compute A^{-1} we first construct $A^T A$ and then compute $(A^T A)^{-1}$ by the above method.

Therefore, A^{-1} can be computed in time O(M(n)).

Remark 5 It follows from Theorem 3 that the system of linear equations Ax = b with a non-singular matrix A can be solved in time O(M(n)): construct A^{-1} and then compute $x = A^{-1}b$.

3. Polynomials and FFT

Let $A(x) = \sum_{j=0}^{n-1} a_j x^j$ be a polynomial, where $a_j \in C$ (complex numbers), j = 0, ..., n-1.

For $B(x) = \sum_{j=0}^{n-1} b_j x^j$ consider

$$C(x) = A(x) + B(x) = \sum_{j=0}^{n-1} c_j x^j$$

$$D(x) = A(x) \cdot B(x) = \sum_{j=0}^{2n-2} d_j x^j$$

where $c_j = a_j + b_j$ and $d_j = \sum_{k=0}^{j} a_k b_{j-k}$, j = 0, ..., 2n - 2.

The polynomial C(x) can be computed in time $\Theta(n)$. However, one needs to perform $\sum_{j=0}^{2n-2} j = O(n^2)$ steps to compute D(x) according to the above formula.

Point-value representation of A(x):

 $\{(x_0,y_0),\ (x_1,y_1),\ldots,(x_{n-1},y_{n-1})\},\quad y_k=A(x_k)$ (we assume that all x_k are distinct).

Since

$$A(x_k) = a_0 + x_k(a_1 + x_k(a_2 + \dots + x_k(a_{n-2} + x_ka_{n-1})) \dots),$$

the point-value representation can be computed in $O(n^2)$ time.

Lemma 1 For any point set

$$\{(x_0, y_0), (x_1, y_1), \dots, (x_{n-1}, y_{n-1})\}$$

there exist only one polynomial A(x) of degree $\leq n$ such that $y_k = A(x_k)$ for k = 0, ..., n.

Proof. We show that the system of linear equations

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{pmatrix}$$

has a unique solution (a_0, a_1, \ldots, a_n) .

The determinant of this system is the Vandermonde determinant which equals $\prod_{j < k} (x_k - x_j) \neq 0$ for distinct x_k, x_j .

The point-value representation allows to compute C(x) and D(x) faster. Since C(x) = A(x) + B(x) and $D(x) = A(x) \cdot B(x)$, for any fixed x we can evaluate C(x) and D(x) in O(n) time.

However, to compute D(x) we need to know the values of A(x) and B(x) in 2n points (not just in n points).

Idea: Use the point-value representation for computing D(x), if the coefficients of A(x) and B(x) are given.

Figure 1: A graphical outline of our approach

Let
$$i = \sqrt{-1}$$
. Then $e^{iu} = \cos(u) + i\sin(u)$.

We compute the polynomials A(x) and B(x) for (complex) numbers ω_{2n}^k , where $\omega_{2n} = e^{2\pi i/2n}$.

The numbers $\{\omega_{2n}^k \mid k = 0, \dots, 2n-1\}$ satisfy the equality $\omega^{2n} = 1$ and form a multiplicative group:

$$\omega_{2n}^{2n} = \omega_{2n}^0 = 1 \Rightarrow \omega_{2n}^j \omega_{2n}^k = \omega_{2n}^{(j+k) \mod 2n} \text{ and } \omega_{2n}^{-1} = \omega_{2n}^{2n-1}.$$

Figure 2: The numbers ω_8^k , $k = 0, \ldots, 7$, on the complex plain.

Lemma 2 For all $m \ge 0$, $k \ge 0$ and d > 0 one has: $\omega_{dm}^{dk} = \omega_m^k$.

Proof. $\omega_{dm}^{dk} = (e^{2\pi i/dm})^{dk} = (e^{2\pi i/m})^k = \omega_m^k$. In particular: $\omega_{2n}^n = \omega_2 = -1$.

Lemma 3 It holds:

$$\{\omega^2 \mid \omega^{2n} = 1\} = \{\omega \mid \omega^n = 1\}.$$

Proof. Since $(\omega_{2n}^k)^2 = \omega_n^k$, Lemma 2 implies $(\omega_{2n}^{k+n})^2 = \omega_{2n}^{2k+2n} = \omega_{2n}^{2k} \omega_{2n}^{2n} = \omega_{2n}^{2k} = (\omega_{2n}^k)^2$. \Box

Let
$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$
 and
 $y_k = A(\omega_n^k) = \sum_{j=0}^{n-1} a_j \cdot \omega_n^{kj}, \qquad k = 0, \dots, n-1.$

The vector $\vec{y} = (y_0, y_1, \dots, y_{n-1})$ is called <u>Discrete Fourier Transform</u> (DFT) of vector $\vec{a} = (a_0, a_1, \dots, a_{n-1})$.

We compute the vector \vec{y} by using the Fast Fourier Transform (FFT). For this denote

$$A_0(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{n-2} x^{\lceil n/2 \rceil - 1}$$

$$A_1(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{n-1} x^{\lfloor n/2 \rfloor - 1}$$

Therefore:

$$A(x) = A_0(x^2) + x \cdot A_1(x^2).$$

W.I.o.g assume that n is a power of 2.

<u>Algorithm 1</u> $FFT(\vec{a})$;

1.
$$m := \text{length}(a)$$
 //m is a power of 2
2. if $m = 1$ then return a
3. $\omega_m := e^{2\pi i/m}$
4. $\omega := 1$
5. $a^0 := (a_0, a_2, \dots, a_{m-2})$
6. $a^1 := (a_1, a_3, \dots, a_{m-1})$
7. $\vec{y}^0 := FFT(\vec{a}^0)$
8. $\vec{y}^1 := FFT(\vec{a}^1)$
9. for $k = 0$ to $m/2 - 1$ do
10. $y_k := y_k^0 + \omega \cdot y_k^1$
11. $y_{k+m/2} := y_k^0 - \omega \cdot y_k^1$
12. $\omega := \omega \cdot \omega_m$
13. return y

Line 2: basis of the recursion. $y_0 = a_0 \omega_1^0 = a_0$.

Lines 7-8: by Lemma 3 we have

$$y_k^0 = A_0(\omega_{m/2}^k) = A_0(\omega_m^{2k})$$

$$y_k^1 = A_1(\omega_{m/2}^k) = A_1(\omega_m^{2k})$$

Line 10: for $k = 0, \ldots, m/2 - 1$ it holds:

$$y_k = y_k^0 + \omega_m^k \cdot y_k^1$$

= $A_0(\omega_m^{2k}) + \omega_m^k \cdot A_1(\omega_m^{2k})$
= $A(\omega_m^k).$

Line 11: for $k = 0, \ldots, m/2 - 1$ it holds

$$y_{k+m/2} = y_k^0 - \omega_m^k \cdot y_k^1$$

= $y_k^0 + \omega_m^{k+m/2} \cdot y_k^1$ ($\omega_m^{m/2} = \omega_{2m}^m = \omega_2 = -1$)
= $A_0(\omega_{m/2}^k) + \omega_m^{k+m/2} \cdot A_1(\omega_{m/2}^k)$
= $A_0(\omega_m^{2k}) + \omega_m^{k+m/2} \cdot A_1(\omega_m^{2k})$
= $A_0(\omega_m^{2k+m}) + \omega_m^{k+m/2} \cdot A_1(\omega_m^{2k+m})$
= $A(\omega_m^{k+m})$.

For the running time of the FFT-algorithm one has:

$$T(m) = 2 \cdot T(m/2) + \Theta(m) = \Theta(m \log_2 m).$$

The last problem is to convert the point-value representation of a polynomial into its coefficient representation. For this note that the numbers ω_n^k , $k = 0, \ldots, n-1$ satisfy the following equation:

$$\begin{pmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_n & \omega_n^2 & \omega_n^3 & \cdots & \omega_n^{n-1} \\ 1 & \omega_n^2 & \omega_n^4 & \omega_n^6 & \cdots & \omega_n^{2(n-1)} \\ 1 & \omega_n^3 & \omega_n^6 & \omega_n^9 & \cdots & \omega_n^{3(n-1)} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_n^{n-1} & \omega_n^{2(n-1)} & \omega_n^{3(n-1)} & \cdots & \omega_n^{(n-1)(n-1)} \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ \vdots \\ a_{n-1} \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_{n-1} \end{pmatrix}$$
$$= (y_0, y_1, y_2, y_3, \dots, y_{n-1})^T = \vec{y}^T.$$
other words $\vec{y} = V \vec{a}$ so $\vec{a} = V^{-1} \vec{y}$

In other words, $\vec{y} = V_n \vec{a}$, so $\vec{a} = V_n^{-1} \vec{y}$.

Hence, we need to compute the matrix V_n^{-1} .

Theorem 4 For $V_n^{-1} = \{v_{jk}\}$ one has: $v_{jk} = \omega_n^{-kj}/n$.

Proof. We show that the matrix $W = \{v_{jk}\}$ satisfies $W \cdot V_n = I_n$. For this we compute the entry (j, j') of $W \cdot V_n$:

$$[W \cdot V_n]_{jj'} = \sum_{k=0}^{n-1} (\omega_n^{-kj}/n) (\omega_n^{kj'})$$
$$= \sum_{k=0}^{n-1} \omega_n^{k(j'-j)}/n.$$

For j = j' we obviously have: $[W \cdot V_n]_{jj'} = 1$. For $s = j' - j \neq 0$ we have:

$$n \cdot [W \cdot V_n]_{jj'} = \sum_{k=0}^{n-1} \omega_n^{ks} = \frac{(\omega_n^s)^n - 1}{\omega_n^s - 1}$$
$$= \frac{(\omega_n^n)^s - 1}{\omega_n^s - 1}$$
$$= \frac{(1)^s - 1}{\omega_n^s - 1} = 0$$

since -(n-1) < s < n-1 and $s \neq 0 \Rightarrow \omega_n^s \neq 1$.

Therefore, for $\vec{a} = (a_0, \ldots, a_{n-1})$ one has:

$$a_j = \sum_{k=0}^{n-1} \left(\frac{1}{n} \cdot y_k \right) \cdot \omega_n^{-kj}, \qquad j = 0, \dots, n-1.$$

In order to compute \vec{a} we use the DFT and the FFT-algorithm (with $(1/n) \cdot \vec{y}$ instead of \vec{a} and ω_n^{-1} instead of ω_n).

All this leads to the total running time $O(n \log n)$.

Therefore, for the polynomial

$$A(x) = \sum_{j=0}^{m-1} a_j \cdot x^j$$

we have the following formulas:

DFT: for
$$k = 0, ..., m - 1$$

$$y_k = A(\omega_m^k)$$

$$= \sum_{j=0}^{m-1} a_j \cdot \omega_m^{jk}$$

$$= \sum_{j=0}^{m-1} a_j \cdot e^{\frac{2\pi i}{m}jk}$$

$$= \sum_{j=0}^{m-1} a_j \cdot \left(\cos\left(\frac{2\pi}{m}jk\right) + i \cdot \sin\left(\frac{2\pi}{m}jk\right)\right)$$

$$= \sum_{j=0}^{m-1} a_j \cdot \cos\left(\frac{2\pi}{m}jk\right) + i \cdot \sum_{j=0}^{m-1} a_j \cdot \sin\left(\frac{2\pi}{m}jk\right)$$

IDFT: for $j = 0, \ldots, m - 1$

$$a_{j} = \frac{1}{m} \sum_{k=0}^{m-1} y_{k} \cdot \omega_{m}^{-jk}$$

$$= \frac{1}{m} \sum_{k=0}^{m-1} y_{k} \cdot e^{-\frac{2\pi i}{m}jk}$$

$$= \frac{1}{m} \sum_{k=0}^{m-1} y_{k} \cdot \left(\cos\left(-\frac{2\pi}{m}jk\right) + i \cdot \sin\left(-\frac{2\pi}{m}jk\right)\right)$$

$$= \frac{1}{m} \sum_{k=0}^{m-1} y_{k} \cdot \left(\cos\left(\frac{2\pi}{m}jk\right) - i \cdot \sin\left(\frac{2\pi}{m}jk\right)\right)$$

$$= \frac{1}{m} \sum_{k=0}^{m-1} y_{k} \cdot \cos\left(\frac{2\pi}{m}jk\right) - i \cdot \frac{1}{m} \sum_{k=0}^{m-1} y_{k} \cdot \sin\left(\frac{2\pi}{m}jk\right)$$