
Algebraic Algorithms

1. Fast matrix multiplication

2. Inverting matrices

3. Fast Fourier Transform

1. Matrix multiplication

Let A,B be (n× n) matrices. Then

C = A ·B with cij =
n∑
k=1

aik · bkj.

Conventional methods:

iteratively: Compute cij according to the above formula.
Outcome: n multiplications, n−1 additions i.e. 2n−1 arithmetic
operations for each pair i, j.
⇒ n2(2n− 1) = O(n3) operations.

recursive: (Divide and Conquer)
Split A,B into 4

(
n
2 ×

n
2

)
matrices. (W.l.o.g. let n = 2k).

A ·B =

 A11 A12

A21 A22

 ·
 B11 B12

B21 B22

 =

 C11 C12

C21 C22

 = C

1



where:

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22.

Outcome:

T (n) = 8 · T
n

2

 + 4
n

2

2

= O
(
nlog2 8

)
= O(n3).

Strassen’s algorithm

Idea: Use Divide and Conquer approach for computing Cij, i, j ∈
{1, 2}, but with a smaller number (m ≤ 7) of multiplications and
more (a ≥ 4) additions:

T (n) = m · T
n

2

 + a
n

2

2 = O
(
nlog2m

)
,

Theorem 1 Two (n × n) matrices can be multiplied by using 7
multiplications and 18 additions.

Corollary 1 The running time of the Strassen’s algorithm is
O

(
nlog2 7

)
≈ O(n2.81).

Remark 1 There exist better algorithms with running time O(n2.38).
The lower bound is Ω(n2), since n2 matrix elements need to be com-
puted.
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Proof of Theorem 1:

Let n = 2k. Denote:

M1 = (A12 − A22)(B21 + B22)

M2 = (A11 + A22)(B11 + B22)

M3 = (A11 − A21)(B11 + B12)

M4 = (A11 + A12)B22

M5 = A11(B12 −B22)

M6 = A22(B21 −B11)

M7 = (A21 + A22)B11.

One has:

C11 = M1 + M2 −M4 + M6

C12 = M4 + M5

C21 = M6 + M7

C22 = M2 −M3 + M5 −M7.

If 2k−1 < n < 2k the we fill out the matrices A,B up to (2k × 2k)
matrices. This increases the running time up to d·nlog2 7 for a constant
d > 0. 2

Remark 2 The constant d is pretty large. As it follows from practice,
the conventional method is better for n <≈ 1000.

Remark 3 The exact value of the minimum running time necessary
to multiply two matrices in presently unknown.
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2. Computing the matrix inverse

Let A be an (n× n) matrix. We compute the matrix A−1 such that
A · A−1 = A−1 · A = In. If A−1 does exist, the matrix A is called
nonsingular. In in this case A−1 is defined uniquely.

Denote by M(n) the time for the matrix multiplication and by I(n)
the time for computing the inverse.

Theorem 2 If I(3n) = O(I(n)) then:

M(n) = O(I(n)).

Proof. Given matrices A,B construct the matrix

D =


In A 0
0 In B
0 0 In

 .

One has:

D−1 =


In −A AB
0 In −B
0 0 In

 .

Since D is computable in Θ(n2) time, I(n) = Ω(n2) and D−1 is
computable in time O(I(3n)) = O(I(n)) we have the Theorem. 2

Remark 4 Since I(n) = Θ
(
nc logd n

)
for some constants c > 0 and

d ≥ 0, one has I(3n) = O(I(n)).
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Theorem 3 If M(n) = O(M(n + k)) for 0 ≤ k ≤ n then:

I(n) = O(M(n)).

Proof. W.l.o.g. we assume n = 2p. Indeed, if 2p−1 < n < 2p then
for k = 2p − n:  A 0

0 Ik


−1

=

 A
−1 0
0 Ik

 .
Therefore, the running time increases in a constant factor only.

An (n× n) matrix A is called positive-definite if xTAx > 0 for any
n-dimensional vector x 6= 0.

First assume A is symmetric and positive-definite. Split A into 4
(n/2× n/2) matrices:

A =

 B CT

C D


and set

S = D − CB−1CT .

The matrices B and S are symmetric and positive definite, so they
are non-singular (Lemmas 28.9 – 28.11 in the book).
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Therefore, one has:

A−1 =

 B
−1 + B−1CTS−1CB−1 −B−1CTS−1

−S−1CB−1 S−1

 .

To compute A−1 in this approach one needs to compute the matrices
E = C ·B−1 and also the matrices

E · CT S−1 · E ET · (S−1E).

Hence:

I(n) ≤ 2I(n/2) + 4M(n/2) + O(n2)

= 2I(n/2) + O(M(n)) = O(M(n)).

If A is not symmetric, consider the matrix ATA. For any non-singular
matrix A the matrix ATA is symmetric and positive-definite (see
Theorem 28.6 in the book).

Since ((ATA)−1AT )A = (ATA)−1 · (ATA) = In, one has:

A−1 = (ATA)−1 · AT .

To compute A−1 we first construct ATA and then compute (ATA)−1

by the above method.

Therefore, A−1 can be computed in time O(M(n)). 2

Remark 5 It follows from Theorem 3 that the system of linear equa-
tions Ax = b with a non-singular matrix A can be solved in time
O(M(n)): construct A−1 and then compute x = A−1b.
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3. Polynomials and FFT

Let A(x) =
n−1∑
j=0

ajx
j be a polynomial, where aj ∈ C (complex

numbers), j = 0, . . . , n− 1.

For B(x) =
n−1∑
j=0

bjx
j consider

C(x) = A(x) + B(x) =
n−1∑
j=0

cjx
j

D(x) = A(x) ·B(x) =
2n−2∑
j=0

djx
j

where cj = aj + bj and dj =
j∑

k=0
akbj−k, j = 0, . . . , 2n− 2.

The polynomial C(x) can be computed in time Θ(n). However, one

needs to perform
2n−2∑
j=0

j = O(n2) steps to compute D(x) according

to the above formula.

Point-value representation of A(x):

{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}, yk = A(xk)

(we assume that all xk are distinct).

Since

A(xk) = a0 + xk(a1 + xk(a2 + · · · + xk(an−2 + xkan−1)) · · ·),

the point-value representation can be computed in O(n2) time.
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Lemma 1 For any point set

{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)}

there exist only one polynomial A(x) of degree ≤ n such that yk =
A(xk) for k = 0, . . . , n.

Proof.
We show that the system of linear equations



1 x0 x20 · · · xn−10

1 x1 x21 · · · xn−11
... ... ... . . . ...
1 xn−1 x

2
n−1 · · · xn−1n−1





a0
a1
...

an−1


=



y0
y1
...

yn−1



has a unique solution (a0, a1, . . . , an).

The determinant of this system is the Vandermonde determinant
which equals

∏
j<k

(xk − xj) 6= 0 for distinct xk, xj. 2

The point-value representation allows to compute C(x) and D(x)
faster. Since C(x) = A(x) +B(x) and D(x) = A(x) ·B(x), for any
fixed x we can evaluate C(x) and D(x) in O(n) time.

However, to compute D(x) we need to know the values of A(x) and
B(x) in 2n points (not just in n points).

Idea: Use the point-value representation for computing D(x), if the
coefficients of A(x) and B(x) are given.
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Figure 1: A graphical outline of our approach

Let i =
√
−1. Then eiu = cos(u) + i sin(u).

We compute the polynomials A(x) and B(x) for (complex) numbers
ωk2n, where ω2n = e2πi/2n.

The numbers {ωk2n | k = 0, . . . , 2n− 1} satisfy the equality ω2n = 1
and form a multiplicative group:

ω2n
2n = ω0

2n = 1 ⇒ ωj2nω
k
2n = ω

(j+k) mod 2n
2n and ω−12n = ω2n−1

2n .

Figure 2: The numbers ωk
8 , k = 0, . . . , 7, on the complex plain.
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Lemma 2 For all m ≥ 0, k ≥ 0 and d > 0 one has:
ωdkdm = ωkm.

Proof. ωdkdm =
(
e2πi/dm

)dk
=

(
e2πi/m

)k
= ωkm. 2

In particular: ωn2n = ω2 = −1.

Lemma 3 It holds:

{ω2 | ω2n = 1} = {ω | ωn = 1}.

Proof. Since (ωk2n)2 = ωkn, Lemma 2 implies

(ωk+n2n )2 = ω2k+2n
2n = ω2k

2nω
2n
2n = ω2k

2n = (ωk2n)2. 2

Let A(x) = a0 + a1x + a2x
2 + · · · + an−1x

n−1 and

yk = A(ωkn) =
n−1∑
j=0

aj · ωkjn , k = 0, . . . , n− 1.

The vector ~y = (y0, y1, . . . , yn−1) is called Discrete Fourier Transform
(DFT) of vector ~a = (a0, a1, . . . , an−1).

We compute the vector ~y by using the Fast Fourier Transform (FFT).
For this denote

A0(x) = a0 + a2x + a4x
2 + · · · + an−2x

dn/2e−1

A1(x) = a1 + a3x + a5x
2 + · · · + an−1x

bn/2c−1.

Therefore:
A(x) = A0(x

2) + x · A1(x
2).

W.l.o.g assume that n is a power of 2.
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Algorithm 1 FFT(~a);

1. m :=length(a) //m is a power of 2
2. if m = 1 then return a
3. ωm := e2πi/m

4. ω := 1
5. a0 := (a0, a2, . . . , am−2)
6. a1 := (a1, a3, . . . , am−1)
7. ~y 0 := FFT (~a 0)
8. ~y 1 := FFT (~a 1)
9. for k = 0 to m/2− 1 do
10. yk := y0k + ω · y1k
11. yk+m/2 := y0k − ω · y1k
12. ω := ω · ωm
13. return y

Line 2: basis of the recursion. y0 = a0ω
0
1 = a0.

Lines 7-8: by Lemma 3 we have

y0k = A0(ω
k
m/2) = A0(ω

2k
m )

y1k = A1(ω
k
m/2) = A1(ω

2k
m )

Line 10: for k = 0, . . . ,m/2− 1 it holds:

yk = y0k + ωkm · y1k
= A0(ω

2k
m ) + ωkm · A1(ω

2k
m )

= A(ωkm).
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Line 11: for k = 0, . . . ,m/2− 1 it holds

yk+m/2 = y0k − ωkm · y1k
= y0k + ωk+m/2m · y1k (ωm/2m = ωm2m = ω2 = −1)

= A0(ω
k
m/2) + ωk+m/2m · A1(ω

k
m/2)

= A0(ω
2k
m ) + ωk+m/2m · A1(ω

2k
m )

= A0(ω
2k+m
m ) + ωk+m/2m · A1(ω

2k+m
m )

= A(ωk+mm ).

For the running time of the FFT-algorithm one has:

T (m) = 2 · T (m/2) + Θ(m) = Θ(m log2m).

The last problem is to convert the point-value representation of a
polynomial into its coefficient representation. For this note that the
numbers ωkn, k = 0, . . . , n− 1 satisfy the following equation:



1 1 1 1 · · · 1
1 ωn ω2

n ω3
n · · · ωn−1n

1 ω2
n ω4

n ω6
n · · · ω2(n−1)

n

1 ω3
n ω6

n ω9
n · · · ω3(n−1)

n
... ... ... ... . . . ...
1 ωn−1n ω2(n−1)

n ω3(n−1)
n · · · ω(n−1)(n−1)

n





a0
a1
a2
a3
...

an−1



=



y0
y1
y2
y3
...

yn−1



= (y0, y1, y2, y3, . . . , yn−1)
T = ~y T .

In other words, ~y = Vn~a, so ~a = V −1n ~y.
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Hence, we need to compute the matrix V −1n .

Theorem 4 For V −1n = {vjk} one has: vjk = ω−kjn /n.

Proof. We show that the matrix W = {vjk} satisfies W · Vn = In.
For this we compute the entry (j, j′) of W · Vn:

[W · Vn]jj′ =
n−1∑
k=0

(ω−kjn /n)(ωkj
′

n )

=
n−1∑
k=0

ωk(j
′−j)

n /n.

For j = j′ we obviously have: [W · Vn]jj′ = 1.

For s = j′ − j 6= 0 we have:

n · [W · Vn]jj′ =
n−1∑
k=0

ωksn =
(ωsn)n − 1

ωsn − 1

=
(ωnn)s − 1

ωsn − 1

=
(1)s − 1

ωsn − 1
= 0

since −(n− 1) < s < n− 1 and s 6= 0 ⇒ ωsn 6= 1. 2

Therefore, for ~a = (a0, . . . , an−1) one has:

aj =
n−1∑
k=0

1

n
· yk

 · ω−kjn , j = 0, . . . , n− 1.

In order to compute ~a we use the DFT and the FFT-algorithm (with
(1/n) · ~y instead of ~a and ω−1n instead of ωn).

All this leads to the total running time O(n log n).
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Therefore, for the polynomial

A(x) =
m−1∑
j=0

aj · xj

we have the following formulas:

DFT: for k = 0, . . . ,m− 1

yk = A(ωkm)

=
m−1∑
j=0

aj · ωjkm

=
m−1∑
j=0

aj · e
2πi
m jk

=
m−1∑
j=0

aj ·
cos

2π

m
jk

 + i · sin
2π

m
jk




=
m−1∑
j=0

aj · cos
2π

m
jk

 + i ·
m−1∑
j=0

aj · sin
2π

m
jk



IDFT: for j = 0, . . . ,m− 1

aj =
1

m

m−1∑
k=0

yk · ω−jkm

=
1

m

m−1∑
k=0

yk · e−
2πi
m jk

=
1

m

m−1∑
k=0

yk ·
cos

−2π

m
jk

 + i · sin
−2π

m
jk




=
1

m

m−1∑
k=0

yk ·
cos

2π

m
jk

− i · sin
2π

m
jk




=
1

m

m−1∑
k=0

yk · cos
2π

m
jk

− i · 1

m

m−1∑
k=0

yk · sin
2π

m
jk
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