Algebraic Algorithms

1. Fast matrix multiplication
2. Inverting matrices
3. Fast Fourier Transform

1. Matrix multiplication

Let A, B be $(n \times n)$ matrices. Then

$$
C=A \cdot B \quad \text { with } \quad c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k_{j}} .
$$

Conventional methods:
iteratively: Compute $c_{i j}$ according to the above formula.
Outcome: n multiplications, $n-1$ additions i.e. $2 n-1$ arithmetic operations for each pair i, j.
$\Rightarrow n^{2}(2 n-1)=O\left(n^{3}\right)$ operations.
recursive: (Divide and Conquer)
Split A, B into $4\left(\frac{n}{2} \times \frac{n}{2}\right)$ matrices. (W.I.o.g. let $n=2^{k}$).

$$
A \cdot B=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=C
$$

where:

$$
\begin{aligned}
& C_{11}=A_{11} B_{11}+A_{12} B_{21} \\
& C_{12}=A_{11} B_{12}+A_{12} B_{22} \\
& C_{21}=A_{21} B_{11}+A_{22} B_{21} \\
& C_{22}=A_{21} B_{12}+A_{22} B_{22} .
\end{aligned}
$$

Outcome:

$$
\begin{aligned}
T(n) & =8 \cdot T\left(\frac{n}{2}\right)+4\left(\frac{n}{2}\right)^{2} \\
& =O\left(n^{\log _{2} 8}\right)=O\left(n^{3}\right) .
\end{aligned}
$$

Strassen's algorithm

Idea: Use Divide and Conquer approach for computing $C_{i j}, i, j \in$ $\{1,2\}$, but with a smaller number ($m \leq 7$) of multiplications and more ($a \geq 4$) additions:

$$
T(n)=m \cdot T\left(\frac{n}{2}\right)+a\left(\frac{n}{2}\right)^{2}=O\left(n^{\log _{2} m}\right),
$$

Theorem 1 Two ($n \times n$) matrices can be multiplied by using 7 multiplications and 18 additions.

Corollary 1 The running time of the Strassen's algorithm is $O\left(n^{\log _{2} 7}\right) \approx O\left(n^{2.81}\right)$.

Remark 1 There exist better algorithms with running time $O\left(n^{2.38}\right)$. The lower bound is $\Omega\left(n^{2}\right)$, since n^{2} matrix elements need to be computed.

Proof of Theorem 1:

Let $n=2^{k}$. Denote:

$$
\begin{aligned}
& M_{1}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) \\
& M_{2}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
& M_{3}=\left(A_{11}-A_{21}\right)\left(B_{11}+B_{12}\right) \\
& M_{4}=\left(A_{11}+A_{12}\right) B_{22} \\
& M_{5}=A_{11}\left(B_{12}-B_{22}\right) \\
& M_{6}=A_{22}\left(B_{21}-B_{11}\right) \\
& M_{7}=\left(A_{21}+A_{22}\right) B_{11} .
\end{aligned}
$$

One has:

$$
\begin{aligned}
& C_{11}=M_{1}+M_{2}-M_{4}+M_{6} \\
& C_{12}=M_{4}+M_{5} \\
& C_{21}=M_{6}+M_{7} \\
& C_{22}=M_{2}-M_{3}+M_{5}-M_{7}
\end{aligned}
$$

If $2^{k-1}<n<2^{k}$ the we fill out the matrices A, B up to $\left(2^{k} \times 2^{k}\right)$ matrices. This increases the running time up to $d \cdot n^{\log _{2} 7}$ for a constant $d>0$.

Remark 2 The constant d is pretty large. As it follows from practice, the conventional method is better for $n<\approx 1000$.

Remark 3 The exact value of the minimum running time necessary to multiply two matrices in presently unknown.

2. Computing the matrix inverse

Let A be an $(n \times n)$ matrix. We compute the matrix A^{-1} such that $A \cdot A^{-1}=A^{-1} \cdot A=I_{n}$. If A^{-1} does exist, the matrix A is called nonsingular. In in this case A^{-1} is defined uniquely.

Denote by $M(n)$ the time for the matrix multiplication and by $I(n)$ the time for computing the inverse.

Theorem 2 If $I(3 n)=O(I(n))$ then:

$$
M(n)=O(I(n))
$$

Proof. Given matrices A, B construct the matrix

$$
D=\left(\begin{array}{ccc}
I_{n} & A & 0 \\
0 & I_{n} & B \\
0 & 0 & I_{n}
\end{array}\right)
$$

One has:

$$
D^{-1}=\left(\begin{array}{ccc}
I_{n} & -A & A B \\
0 & I_{n} & -B \\
0 & 0 & I_{n}
\end{array}\right)
$$

Since D is computable in $\Theta\left(n^{2}\right)$ time, $I(n)=\Omega\left(n^{2}\right)$ and D^{-1} is computable in time $O(I(3 n))=O(I(n))$ we have the Theorem.

Remark 4 Since $I(n)=\Theta\left(n^{c} \log ^{d} n\right)$ for some constants $c>0$ and $d \geq 0$, one has $I(3 n)=O(I(n))$.

Theorem 3 If $M(n)=O(M(n+k))$ for $0 \leq k \leq n$ then:

$$
I(n)=O(M(n))
$$

Proof. W.l.o.g. we assume $n=2^{p}$. Indeed, if $2^{p-1}<n<2^{p}$ then for $k=2^{p}-n$:

$$
\left(\begin{array}{cc}
A & 0 \\
0 & I_{k}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
A^{-1} & 0 \\
0 & I_{k}
\end{array}\right)
$$

Therefore, the running time increases in a constant factor only.

An $(n \times n)$ matrix A is called positive-definite if $x^{T} A x>0$ for any n-dimensional vector $x \neq 0$.

First assume A is symmetric and positive-definite. Split A into 4 $(n / 2 \times n / 2)$ matrices:

$$
A=\left(\begin{array}{cc}
B & C^{T} \\
C & D
\end{array}\right)
$$

and set

$$
S=D-C B^{-1} C^{T}
$$

The matrices B and S are symmetric and positive definite, so they are non-singular (Lemmas 28.9-28.11 in the book).

Therefore, one has:

$$
A^{-1}=\left(\begin{array}{cc}
B^{-1}+B^{-1} C^{T} S^{-1} C B^{-1} & -B^{-1} C^{T} S^{-1} \\
-S^{-1} C B^{-1} & S^{-1}
\end{array}\right)
$$

To compute A^{-1} in this approach one needs to compute the matrices $E=C \cdot B^{-1}$ and also the matrices

$$
E \cdot C^{T} \quad S^{-1} \cdot E \quad E^{T} \cdot\left(S^{-1} E\right)
$$

Hence:

$$
\begin{aligned}
I(n) & \leq 2 I(n / 2)+4 M(n / 2)+O\left(n^{2}\right) \\
& =2 I(n / 2)+O(M(n))=O(M(n))
\end{aligned}
$$

If A is not symmetric, consider the matrix $A^{T} A$. For any non-singular matrix A the matrix $A^{T} A$ is symmetric and positive-definite (see Theorem 28.6 in the book).

Since $\left(\left(A^{T} A\right)^{-1} A^{T}\right) A=\left(A^{T} A\right)^{-1} \cdot\left(A^{T} A\right)=I_{n}$, one has:

$$
A^{-1}=\left(A^{T} A\right)^{-1} \cdot A^{T}
$$

To compute A^{-1} we first construct $A^{T} A$ and then compute $\left(A^{T} A\right)^{-1}$ by the above method.

Therefore, A^{-1} can be computed in time $O(M(n))$.
Remark 5 It follows from Theorem 3 that the system of linear equations $A x=b$ with a non-singular matrix A can be solved in time $O(M(n))$: construct A^{-1} and then compute $x=A^{-1} b$.

3. Polynomials and FFT

Let $A(x)=\sum_{j=0}^{n-1} a_{j} x^{j}$ be a polynomial, where $a_{j} \in C$ (complex numbers), $j=0, \ldots, n-1$.
For $B(x)=\sum_{j=0}^{n-1} b_{j} x^{j}$ consider

$$
\begin{aligned}
& C(x)=A(x)+B(x)=\sum_{j=0}^{n-1} c_{j} x^{j} \\
& D(x)=A(x) \cdot B(x)=\sum_{j=0}^{2 n-2} d_{j} x^{j}
\end{aligned}
$$

where $c_{j}=a_{j}+b_{j}$ and $d_{j}=\sum_{k=0}^{j} a_{k} b_{j-k}, j=0, \ldots, 2 n-2$.
The polynomial $C(x)$ can be computed in time $\Theta(n)$. However, one needs to perform $\sum_{j=0}^{2 n-2} j=O\left(n^{2}\right)$ steps to compute $D(x)$ according to the above formula.

Point-value representation of $A(x)$:

$$
\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}, \quad y_{k}=A\left(x_{k}\right)
$$

(we assume that all x_{k} are distinct).
Since

$$
A\left(x_{k}\right)=a_{0}+x_{k}\left(a_{1}+x_{k}\left(a_{2}+\cdots+x_{k}\left(a_{n-2}+x_{k} a_{n-1}\right)\right) \cdots\right)
$$

the point-value representation can be computed in $O\left(n^{2}\right)$ time.

Lemma 1 For any point set

$$
\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{n-1}, y_{n-1}\right)\right\}
$$

there exist only one polynomial $A(x)$ of degree $\leq n$ such that $y_{k}=$ $A\left(x_{k}\right)$ for $k=0, \ldots, n$.

Proof.
We show that the system of linear equations

$$
\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n-1} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n-1} & x_{n-1}^{2} & \cdots & x_{n-1}^{n-1}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n-1}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n-1}
\end{array}\right)
$$

has a unique solution $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$.
The determinant of this system is the Vandermonde determinant which equals $\prod_{j<k}\left(x_{k}-x_{j}\right) \neq 0$ for distinct x_{k}, x_{j}.

The point-value representation allows to compute $C(x)$ and $D(x)$ faster. Since $C(x)=A(x)+B(x)$ and $D(x)=A(x) \cdot B(x)$, for any fixed x we can evaluate $C(x)$ and $D(x)$ in $O(n)$ time.

However, to compute $D(x)$ we need to know the values of $A(x)$ and $B(x)$ in $2 n$ points (not just in n points).

Idea: Use the point-value representation for computing $D(x)$, if the coefficients of $A(x)$ and $B(x)$ are given.

Figure 1: A graphical outline of our approach
Let $i=\sqrt{-1}$. Then $e^{i u}=\cos (u)+i \sin (u)$.
We compute the polynomials $A(x)$ and $B(x)$ for (complex) numbers $\omega_{2 n}^{k}$, where $\omega_{2 n}=e^{2 \pi i / 2 n}$.

The numbers $\left\{\omega_{2 n}^{k} \mid k=0, \ldots, 2 n-1\right\}$ satisfy the equality $\omega^{2 n}=1$ and form a multiplicative group:
$\omega_{2 n}^{2 n}=\omega_{2 n}^{0}=1 \Rightarrow \omega_{2 n}^{j} \omega_{2 n}^{k}=\omega_{2 n}^{(j+k) \bmod 2 n}$ and $\omega_{2 n}^{-1}=\omega_{2 n}^{2 n-1}$.

Figure 2: The numbers $\omega_{8}^{k}, k=0, \ldots, 7$, on the complex plain.

Lemma 2 For all $m \geq 0, k \geq 0$ and $d>0$ one has:
$\omega_{d m}^{d k}=\omega_{m}^{k}$.
Proof. $\omega_{d m}^{d k}=\left(e^{2 \pi i / d m}\right)^{d k}=\left(e^{2 \pi i / m}\right)^{k}=\omega_{m}^{k}$.
In particular: $\omega_{2 n}^{n}=\omega_{2}=-1$.
Lemma 3 lt holds:

$$
\left\{\omega^{2} \mid \omega^{2 n}=1\right\}=\left\{\omega \mid \omega^{n}=1\right\}
$$

Proof. Since $\left(\omega_{2 n}^{k}\right)^{2}=\omega_{n}^{k}$, Lemma 2 implies

$$
\left(\omega_{2 n}^{k+n}\right)^{2}=\omega_{2 n}^{2 k+2 n}=\omega_{2 n}^{2 k} \omega_{2 n}^{2 n}=\omega_{2 n}^{2 k}=\left(\omega_{2 n}^{k}\right)^{2}
$$

Let $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}$ and

$$
y_{k}=A\left(\omega_{n}^{k}\right)=\sum_{j=0}^{n-1} a_{j} \cdot \omega_{n}^{k j}, \quad k=0, \ldots, n-1
$$

The vector $\vec{y}=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ is called Discrete Fourier Transform (DFT) of vector $\vec{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$.

We compute the vector \vec{y} by using the Fast Fourier Transform (FFT). For this denote

$$
\begin{aligned}
& A_{0}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\cdots+a_{n-2} x^{\lceil n / 2\rceil-1} \\
& A_{1}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\cdots+a_{n-1} x^{\lfloor n / 2\rfloor-1}
\end{aligned}
$$

Therefore:

$$
A(x)=A_{0}\left(x^{2}\right)+x \cdot A_{1}\left(x^{2}\right)
$$

W.I.o.g assume that n is a power of 2 .

$\underline{\text { Algorithm } 1} \mathrm{FFT}(\vec{a})$;

1. $m:=$ length $(a) \quad / / m$ is a power of 2
2. if $m=1$ then return a
3. $\omega_{m}:=e^{2 \pi i / m}$
4. $\omega:=1$
5. $a^{0}:=\left(a_{0}, a_{2}, \ldots, a_{m-2}\right)$
6. $a^{1}:=\left(a_{1}, a_{3}, \ldots, a_{m-1}\right)$
7. $\vec{y}^{0}:=F F T\left(\vec{a}^{0}\right)$
8. $\vec{y}^{1}:=F F T\left(\vec{a}^{1}\right)$
9. for $k=0$ to $m / 2-1$ do
10. $y_{k}:=y_{k}^{0}+\omega \cdot y_{k}^{1}$
11. $y_{k+m / 2}:=y_{k}^{0}-\omega \cdot y_{k}^{1}$
12. $\omega:=\omega \cdot \omega_{m}$
13. return y

Line 2: basis of the recursion. $y_{0}=a_{0} \omega_{1}^{0}=a_{0}$.
Lines 7-8: by Lemma 3 we have

$$
\begin{aligned}
& y_{k}^{0}=A_{0}\left(\omega_{m / 2}^{k}\right)=A_{0}\left(\omega_{m}^{2 k}\right) \\
& y_{k}^{1}=A_{1}\left(\omega_{m / 2}^{k}\right)=A_{1}\left(\omega_{m}^{2 k}\right)
\end{aligned}
$$

Line 10: for $k=0, \ldots, m / 2-1$ it holds:

$$
\begin{aligned}
y_{k} & =y_{k}^{0}+\omega_{m}^{k} \cdot y_{k}^{1} \\
& =A_{0}\left(\omega_{m}^{2 k}\right)+\omega_{m}^{k} \cdot A_{1}\left(\omega_{m}^{2 k}\right) \\
& =A\left(\omega_{m}^{k}\right)
\end{aligned}
$$

Line 11: for $k=0, \ldots, m / 2-1$ it holds

$$
\begin{aligned}
y_{k+m / 2} & =y_{k}^{0}-\omega_{m}^{k} \cdot y_{k}^{1} \\
& =y_{k}^{0}+\omega_{m}^{k+m / 2} \cdot y_{k}^{1} \quad\left(\omega_{m}^{m / 2}=\omega_{2 m}^{m}=\omega_{2}=-1\right) \\
& =A_{0}\left(\omega_{m / 2}^{k}\right)+\omega_{m}^{k+m / 2} \cdot A_{1}\left(\omega_{m / 2}^{k}\right) \\
& =A_{0}\left(\omega_{m}^{2 k}\right)+\omega_{m}^{k+m / 2} \cdot A_{1}\left(\omega_{m}^{2 k}\right) \\
& =A_{0}\left(\omega_{m}^{2 k+m}\right)+\omega_{m}^{k+m / 2} \cdot A_{1}\left(\omega_{m}^{2 k+m}\right) \\
& =A\left(\omega_{m}^{k+m}\right) .
\end{aligned}
$$

For the running time of the FFT-algorithm one has:

$$
T(m)=2 \cdot T(m / 2)+\Theta(m)=\Theta\left(m \log _{2} m\right)
$$

The last problem is to convert the point-value representation of a polynomial into its coefficient representation. For this note that the numbers $\omega_{n}^{k}, k=0, \ldots, n-1$ satisfy the following equation:

$$
\begin{gathered}
\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & \omega_{n} & \omega_{n}^{2} & \omega_{n}^{3} & \cdots & \omega_{n}^{n-1} \\
1 & \omega_{n}^{2} & \omega_{n}^{4} & \omega_{n}^{6} & \cdots & \omega_{n}^{2(n-1)} \\
1 & \omega_{n}^{3} & \omega_{n}^{6} & \omega_{n}^{9} & \cdots & \omega_{n}^{3(n-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega_{n}^{n-1} & \omega_{n}^{2(n-1)} & \omega_{n}^{3(n-1)} & \cdots & \omega_{n}^{(n-1)(n-1)}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{n-1}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{n-1}
\end{array}\right) \\
=\left(y_{0}, y_{1}, y_{2}, y_{3}, \ldots, y_{n-1}\right)^{T}=\vec{y}^{T} .
\end{gathered}
$$

In other words, $\vec{y}=V_{n} \vec{a}$, so $\vec{a}=V_{n}^{-1} \vec{y}$.

Hence, we need to compute the matrix V_{n}^{-1}.
Theorem 4 For $V_{n}^{-1}=\left\{v_{j k}\right\}$ one has: $v_{j k}=\omega_{n}^{-k j} / n$.
Proof. We show that the matrix $W=\left\{v_{j k}\right\}$ satisfies $W \cdot V_{n}=I_{n}$. For this we compute the entry $\left(j, j^{\prime}\right)$ of $W \cdot V_{n}$:

$$
\begin{aligned}
{\left[W \cdot V_{n}\right]_{j j^{\prime}} } & =\sum_{k=0}^{n-1}\left(\omega_{n}^{-k j} / n\right)\left(\omega_{n}^{k j^{\prime}}\right) \\
& =\sum_{k=0}^{n-1} \omega_{n}^{k\left(j^{\prime}-j\right)} / n
\end{aligned}
$$

For $j=j^{\prime}$ we obviously have: $\left[W \cdot V_{n}\right]_{j j^{\prime}}=1$.
For $s=j^{\prime}-j \neq 0$ we have:

$$
\begin{aligned}
n \cdot\left[W \cdot V_{n}\right]_{j j^{\prime}}=\sum_{k=0}^{n-1} \omega_{n}^{k s} & =\frac{\left(\omega_{n}^{s}\right)^{n}-1}{\omega_{n}^{s}-1} \\
& =\frac{\left(\omega_{n}^{n}\right)^{s}-1}{\omega_{n}^{s}-1} \\
& =\frac{(1)^{s}-1}{\omega_{n}^{s}-1}=0
\end{aligned}
$$

since $-(n-1)<s<n-1$ and $s \neq 0 \Rightarrow \omega_{n}^{s} \neq 1$.
Therefore, for $\vec{a}=\left(a_{0}, \ldots, a_{n-1}\right)$ one has:

$$
a_{j}=\sum_{k=0}^{n-1}\left(\frac{1}{n} \cdot y_{k}\right) \cdot \omega_{n}^{-k j}, \quad j=0, \ldots, n-1
$$

In order to compute \vec{a} we use the DFT and the FFT-algorithm (with $(1 / n) \cdot \vec{y}$ instead of \vec{a} and ω_{n}^{-1} instead of $\left.\omega_{n}\right)$.

All this leads to the total running time $O(n \log n)$.

Therefore, for the polynomial

$$
A(x)=\sum_{j=0}^{m-1} a_{j} \cdot x^{j}
$$

we have the following formulas:
DFT: for $k=0, \ldots, m-1$

$$
\begin{aligned}
y_{k} & =A\left(\omega_{m}^{k}\right) \\
& =\sum_{j=0}^{m-1} a_{j} \cdot \omega_{m}^{j k} \\
& =\sum_{j=0}^{m-1} a_{j} \cdot e^{\frac{2 \pi i}{m} j k} \\
& =\sum_{j=0}^{m-1} a_{j} \cdot\left(\cos \left(\frac{2 \pi}{m} j k\right)+i \cdot \sin \left(\frac{2 \pi}{m} j k\right)\right) \\
& =\sum_{j=0}^{m-1} a_{j} \cdot \cos \left(\frac{2 \pi}{m} j k\right)+i \cdot \sum_{j=0}^{m-1} a_{j} \cdot \sin \left(\frac{2 \pi}{m} j k\right)
\end{aligned}
$$

IDFT: for $j=0, \ldots, m-1$

$$
\begin{aligned}
a_{j} & =\frac{1}{m} \sum_{k=0}^{m-1} y_{k} \cdot \omega_{m}^{-j k} \\
& =\frac{1}{m} \sum_{k=0}^{m-1} y_{k} \cdot e^{-\frac{2 \pi i}{m} j k} \\
& =\frac{1}{m} \sum_{k=0}^{m-1} y_{k} \cdot\left(\cos \left(-\frac{2 \pi}{m} j k\right)+i \cdot \sin \left(-\frac{2 \pi}{m} j k\right)\right) \\
& =\frac{1}{m} \sum_{k=0}^{m-1} y_{k} \cdot\left(\cos \left(\frac{2 \pi}{m} j k\right)-i \cdot \sin \left(\frac{2 \pi}{m} j k\right)\right) \\
& =\frac{1}{m} \sum_{k=0}^{m-1} y_{k} \cdot \cos \left(\frac{2 \pi}{m} j k\right)-i \cdot \frac{1}{m} \sum_{k=0}^{m-1} y_{k} \cdot \sin \left(\frac{2 \pi}{m} j k\right)
\end{aligned}
$$

