Reducing Problems

We have seen that polynomial time reduction between problems is a very useful concept for studying relative complexity of problems. It allowed us to distinguish a class of problems, **NP**, which includes many important problems and is viewed as the class of hard problems

We are going to do the same for space complexity classes: **NL** and **PSPACE**

There is a problem:

Polynomial time reduction is too powerful

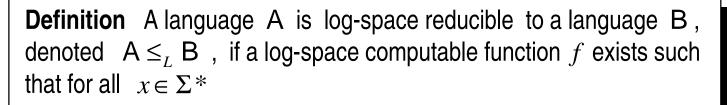
Log-Space Reduction

A transducer is a 3-tape Turing Machine such that

- the first tape is an input tape, it is never overwritten
- the second tape is a working tape
- the third tape is an output tape, no instruction of the transition function uses the content of this tape

The space complexity of such a machine is the number of cells on the working tape visited during a computation

A function $f: \Sigma^* \to \Sigma^*$ is said to be log-space computable if there is a transducer computing f in $O(\log n)$



$$x \in \mathsf{A} \Leftrightarrow f(x) \in \mathsf{B}$$

Note that a function computable in log-space is computable in polynomial time, so

$$\mathsf{A} \leq_L \mathsf{B} \Longrightarrow \mathsf{A} \leq \mathsf{B}$$

Completeness

Definition

A language L is said to be NL-complete if L \in NL and, for any A \in NL,

$$\mathsf{A} \leq_L \mathsf{L}$$

DefinitionA language L is said to be P-complete if $L \in P$ and, for any
 $A \in P$, $A \in P$, $A \leq_L L$