The class PSPACE

PSPACE is the class of languages that are decidable in polynomial space on a DTM, i.e.

$$PSPACE = \bigcup_{k} SPACE(n^{k})$$
$$NPSPACE = \bigcup_{k} NSPACE(n^{k})$$

We define EXPTIME = $\bigcup_k \text{TIME}(2^{n^k})$

Lemma

 $SPACE(f(n)) \subseteq TIME(2^{\mathcal{O}(f(n))})$

The class PSPACE

PSPACE is the class of languages that are decidable in polynomial space on a DTM, i.e.

$$PSPACE = \bigcup_{k} SPACE(n^{k})$$
$$NPSPACE = \bigcup_{k} NSPACE(n^{k})$$

We define EXPTIME = $\bigcup_k \text{TIME}(2^{n^k})$

Lemma

 $SPACE(f(n)) \subseteq TIME(2^{\mathcal{O}(f(n))})$

What we know so far

 $P \subseteq NP \subseteq PSPACE = NPSPACE \subseteq EXPTIME$

Definition

If every $A \in PSPACE$ is polynomial time reducible to a language B, then B is *PSPACE-hard*.

Definition

A language *B* is *PSPACE-complete* if it satisfies two conditions:

- 1. $B \in PSPACE$
- 2. *B* is *PSPACE-hard*

Definition

A formula φ is a *fully quantified Boolean formula* if

 $\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n. \psi$

where ψ is a Boolean formula in CNF, x_1, \ldots, x_n are the Boolean variables in ψ , and $Q_i \in \{\forall, \exists\}, 1 \le i \le n. \varphi$ is said to be in *prenex normal form*.

Consider the problem

 $TQBF = \{\langle \varphi \rangle \mid \varphi \text{ is a true fully quantified Boolean formula} \}$

Theorem

TBQF is PSPACE-complete.

The following polynomial space algorithm decides TQBF:

- T = "On input $\langle \varphi \rangle$, in which φ is a fully quantified Boolean formula:
 - 1. If φ contains no quantifiers, then it is an extension with only constants. So, evaluate φ and *accept* if it is true; otherwise, *reject*
 - 2. If $\varphi = \exists x. \psi$, recursively call *T* on ψ , first with 0 substituted for *x* and then with 1 substituted for *x*. If either result is "accept", *accept*, otherwise *reject*
 - 3. If $\varphi = \forall x. \psi$, recursively call *T* on ψ , first with 0 substituted for *x* and then with 1 substituted for *x*. If both results are "accept", *accept*, otherwise *reject*"