
The class PSPACE

PSPACE is the class of languages that are decidable in polynomial space on a
DTM, i.e.

PSPACE =
⋃
k

SPACE(nk)

NPSPACE =
⋃
k

NSPACE(nk)

We define EXPTIME =
⋃

k TIME(2nk
)

Lemma

SPACE(f (n))⊆ TIME(2O(f (n)))

What we know so far

P⊆ NP⊆ PSPACE = NPSPACE⊆ EXPTIME

12 / 22



The class PSPACE

PSPACE is the class of languages that are decidable in polynomial space on a
DTM, i.e.

PSPACE =
⋃
k

SPACE(nk)

NPSPACE =
⋃
k

NSPACE(nk)

We define EXPTIME =
⋃

k TIME(2nk
)

Lemma

SPACE(f (n))⊆ TIME(2O(f (n)))

What we know so far

P⊆ NP⊆ PSPACE = NPSPACE⊆ EXPTIME

12 / 22



PSPACE-Completeness

Definition
If every A ∈ PSPACE is polynomial time reducible to a language B, then B is
PSPACE-hard.

Definition
A language B is PSPACE-complete if it satisfies two conditions:

1. B ∈ PSPACE

2. B is PSPACE-hard

13 / 22



A PSPACE-complete language

Definition
A formula ϕ is a fully quantified Boolean formula if

ϕ= Q1x1Q2x2 . . .Qnxn. ψ

where ψ is a Boolean formula in CNF, x1, . . . , xn are the Boolean variables in ψ,
and Qi ∈ {∀,∃}, 1≤ i≤ n. ϕ is said to be in prenex normal form.

Consider the problem

TQBF = {〈ϕ〉 | ϕ is a true fully quantified Boolean formula}

Theorem
TBQF is PSPACE-complete.

14 / 22



TBQF ∈ PSPACE

The following polynomial space algorithm decides TQBF:

T =“On input 〈ϕ〉, in which ϕ is a fully quantified Boolean formula:

1. If ϕ contains no quantifiers, then it is an extension with only constants. So,
evaluate ϕ and accept if it is true; otherwise, reject

2. If ϕ= ∃x. ψ, recursively call T on ψ, first with 0 substituted for x and then
with 1 substituted for x. If either result is “accept”, accept, otherwise reject

3. If ϕ= ∀x. ψ, recursively call T on ψ, first with 0 substituted for x and then
with 1 substituted for x. If both results are “accept”, accept, otherwise reject”

15 / 22




