
4

The class NP
• For some interesting and useful problems, polynomial time algorithms that solve them
aren’t known to exist.

• Why have we been unsuccessful in finding polynomial time algorithms for these problems?
We don’t know the answer to this important question.

• Perhaps these problems have, as yet undiscovered, polynomial time algorithms that rest on
unknown principles.

• Or possibly some of these problems simply cannot be solved in polynomial time. They may
be intrinsically difficult.

• One remarkable discovery concerning this question shows that the complexities of many
problems are linked. The discovery of a polynomial time algorithm for one such problem can
be used to solve an entire class of problems.

• A Hamiltonian path in a directed graph G is a directed path that goes through each node
exactly once. Consider the problem of testing whether a directed graph contains a
Hamiltonian path connecting two specified nodes.

• We can easily obtain an exponential
time algorithm for the HAMPATH
problem by brute-force approach which
checks all possible permutations of nodes
(n!).

• We need only add a check to verify that
the potential path is Hamiltonian.

• No one knows whether HAMPATH is
solvable in polynomial time.

HAMPATH={<G,s,t>: G is a directed graph

with a Hamiltonian path from s to t}.

5

The class NP: definition
• Define the non-deterministic time complexity class

• Def: NP is the class of languages that are decidable in polynomial time on a non-
deterministic Turing machine. That is

• The class NP is insensitive to the choice of reasonable non-deterministic
computation model because all such models are polynomially equivalent.

.)(
k

knNTIMENP 

}.m))((:{))((machineTuringinisticDeterNontimentOanbydecidedlanguageaisLLntNTIME 

Theorem: .NPHAMPATH 
•The following is a non-deterministic Turing Machine (NTM) that decides the HAMPATH
problem in non-deterministic polynomial time (we defined the time of a non-deterministic
machine to be the time used by the longest computation branch).

N = “on <G,s,t>: where G is a directed graph with nodes s and t.

1. Write a list of m numbers where m is the number of nodes in G. Each
number in the list is non-deterministically selected to be between 1 and m.

2. Check for repetitions in the list. If any are found, reject.

3. Check whether If either fail, reject.

4. For each i between 1 and m-1, check whether is an edge of G. If any are
not, reject. Otherwise, accept.”

,,...,, 21 mppp

.1 mptandps 

),(1ii pp

• Clearly, this algorithms runs in non-deterministic polynomial time since all stages run in
polynomial time.

6

Polynomial Time Verifiers
• The HAMPATH problem does have a feature called polynomial verifiability that is
important for understanding its complexity.

• Even though we don’t know of a fast (i,.e., polynomial time) way to determine whether a
graph contains a Hamiltonian path, if such a path were discovered somehow (perhaps using
the exponential time algorithm), we could easily convince someone else of its existence,
simply by presenting it.

• In other words, verifying the existence of a Hamiltonian path may be much easier than
determining its existence.

• We can give an equivalent definition of the NP class using the notion verifier.

• A verifier for a language A is an algorithm V, where
A={w: V accepts <w,c> for some string c}.

• A verifier uses additional information, represented by the symbol c in definition.
This information is called a certificate, or proof, of membership in A.

• Example: <G,s,t> belongs to HAMPATH if for some path p, V accepts <<G,s,t>,p> (that
is, V says “yes, p is a Hamiltonian path from s to t of G). For the HAMPATH problem, a
certificate for a string simply is the Hamiltonian path p from s to t.

• A polynomial time verifier is a verifier that runs in polynomial time in the length of w.

• A language A is polynomially verifiable if it has a polynomial time verifier.

• Def: NP is the class of languages that have polynomial time verifiers.

•The verifier can check in polynomial time that the input is in the language
when it is given the certificate.

HAMPATHtsG  ,,

7

CLIQUE is in NP
• A clique in an undirected graph G is a subgraph, wherein every two nodes are connected
by an edge. A k-clique is a clique that contains k nodes.

• The clique problem is to determine whether a graph contains a clique of a specific size.

CLIQUE={<G,k>: G is an

undirected graph with a k-clique}.

A graph with 4-clique.Theorem: .NPCLIQUE

• Proof: The following is a verifier V for CLIQUE.

V = “on input <<G,k>,c>:

1. Test whether c is a set of k nodes in G.

2. Test whether G contains all edges connecting nodes in c.

3. If both pass, accept; otherwise, reject.”

• Alternative proof: If you prefer to think of NP in terms of non-deterministic polynomial
Turing machine …

N = “on <G,k>: where G is an undirected graph, k is an integer.

1. Non-deterministically select a subset c of k nodes in G.

2. Test whether G contains all edges connecting nodes in c.

3. If yes, accept; otherwise, reject.”

8

SUBSET-SUM is in NP
• We have a collection of numbers, and a target number t. We want
to determine whether the collection contains a subcollection that adds up to t.

Theorem: .NPSUMSUBSET 

• Proof: The following is a verifier V for SUBSET-SUM.

V = “on input <<S,t>,c>:

1. Test whether c is a collection of numbers that sum to t.

2. Test whether S contains all the numbers in c.

3. If both pass, accept; otherwise, reject.”

• Alternative proof: If you prefer to think of NP in terms of non-deterministic polynomial
Turing machine …

N = “on <S,t>:

1. Non-deterministically select a subset c of the numbers in S.

2. Test whether c is a collection of numbers that sum to t.

3. If yes, accept; otherwise, reject.”

,,...,, 21 kxxx

}.},,...,,{},...,,{

},...,,{:,{

2121

21

tyhavewexxxyyysomefor

andxxxStSSUMSUBSET

ikl

k






• For example <{4,11,16,21,27},25> is in SUBSET-SUM since 4+21=25.

• Note that are multisets (we allow repetitions).},...,,{},...,,{ 2121 lk yyyandxxx

9

The P versus NP question
P = the class of languages that are decidable by polynomial time deterministic TMs.

NP = the class of languages that are decidable by polynomial time non-deterministic TMs.

OR EQUIVALENTLY

P = the class of languages where membership can be decided quickly (in pol. time).

NP = the class of languages where membership can be verified quickly (in pol. time).

.)2()(
k

n

k

k k

TIMEEXPTIMENPnNTIME 

•We presented examples of languages, such as
HAMPATH and CLIQUE, that are members of NP but
that are not known to be in P.

• No polynomial time algorithms are known for those
problems.

• We are unable to prove the existence of a single
language in NP that is not in P.

• The question of whether P = NP is one of the greatest
unsolved problems in theoretical computer science.

• Most researchers believe that the two classes are not
equal because people have invested enormous effort to
find polynomial time algorithms for certain problems in
NP, without success.

• The best method known for solving problems in NP
deterministically uses exponential time. In other words,
one can show that

P

NP

P=NP

One of these two possibilities is correct.

