The class P: polynomial time

* Theorems 1 and 2 illustrate an important distinction.

 On the one hand, we demonstrated at most a square or polynomial difference
between the time complexity of problems measured on deterministic single tape and
multi-tape Turing machines.

 On the other hand, we showed at most an exponential difference between the time
complexity of the problems on deterministic and non-deterministic Turing
machines.

» For our purpose, polynomial difference in running time are considered to be small,
whereas exponential differences are considered to be large.

 Polynomial time algorithms are fast enough for many Burposes, but exponential
time algorithms rare %/ are useful. (For n=1000, n® =1 billion (still manageable
number), 2" is much larger than the number of atoms in the universe.)

* All reasonable deterministic computational models are polynomially equivalent.
Any one of them can simulate another with only a polynomial increase in running
time.

« From here on we focus on aspects of time complexity theory that are unaffected by
polynomial difference in running time. We consider such differences to be
Insignificant and ignore them.

» The Question is whether a given problem is polynomial or non-polynomial.
« SO we came to an important definition in the complexity theory, P class.

The class P: definition

* Definition; P is the lass of languages that are decidable in polynomial time on a
deterministic single tape Turing machine. That is

P =[JTIME(n").

 The class P plays an important role in our theory and is important because

* P is invariant for all models of computation that are polynomially equivalent
to the deterministic single tape TM, and

* P roughly corresponds to the class of problems that are realistically solvable
on a computer.

« When we analyze an algorithm to show that it runs in polynomial time, we need to
do two things

« First, give a polynomial upper bound (usually in big-O notation) on the
number of stages that the algorithm uses when it runs on input of length n.

 Then, examine the individual stages in the description of the algorithm to be
sure that each can be implemented in polynomial time on a reasonable
deterministic model.

« When both tasks have been done, we can conclude that it runs in polynomial time
because we have demonstrated that it runs for a polynomial number of stages, each
of ?/vhlch_czlm be done in polynomial time, and the composition of polynomials is a
polynomial.

Examples of problems in P

* We had: the problem whether w is a member of the language A ={0*1* :k >0} isin P.
 Fortunately, there are many problems that are in P.
» The PATH problem is to determine whether a directed path exists from s to t.

PATH (G,s,t) ={<G,s,t >:G is a directed graph that has a directed path from s to t}.

Theorem: PATH < P.
* We use breadth first search and successively mark all nodes in G that are reachable from
s by directed paths of length 1, then 2, then 3, through m=|V]|.

M = “on <G,s,t>: where G is a directed graph with nodes s and t.
1. Place a mark on node s.
2. Repeat the following until no additional nodes get marked.
3.

Scan all the edges of G. If an edge l((a,b) is found going from marked node
a to an unmarked node b, mark b.

4. If tis marked, accept; otherwise reject.”

* Stages 1,4 are executed only once. Stage 3 runs at most m=|V| times because each time

except the last it marks an additional node in G. Hence, the total number of stages is
1+1+m, giving a polynomial in the size of G.

» Stages 1,4 easily implemented in polynomial time on an%/ reasonable deterministic
model. Stage 3 involves a scan of the input and a test whether certain nodes are marked,
which also is easily implemented in polynomial time.

* Hence, M is a polynomial time algorithm for PATH.

