Checking Properties

Given M

Does
$$L(M)$$
 contain M ?
Is $L(M)$ non-empty?
Is $L(M)$ empty?
Is $L(M)$ infinite?
Is $L(M)$ finite?
Is $L(M)$ co-finite (i.e., is $\overline{L(M)}$ finite)?
Is $L(M) = \Sigma^*$?

Which of these properties can be decided?

Checking Properties

Given M

$$\begin{array}{c} \text{Does } L(M) \text{ contain } M? \\ \text{Is } L(M) \text{ non-empty?} \\ \text{Is } L(M) \text{ empty?} \\ \text{Is } L(M) \text{ infinite?} \\ \text{Is } L(M) \text{ finite?} \\ \text{Is } L(M) \text{ co-finite (i.e., is } \overline{L(M)} \text{ finite)?} \\ \text{Is } L(M) = \Sigma^*? \end{array} \right\} \text{ Undecidable}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Which of these properties can be decided? None!

Checking Properties

Given M

$$\begin{array}{c} \text{Does } L(M) \text{ contain } M? \\ \text{Is } L(M) \text{ non-empty?} \\ \text{Is } L(M) \text{ empty?} \\ \text{Is } L(M) \text{ infinite?} \\ \text{Is } L(M) \text{ finite?} \\ \text{Is } L(M) \text{ co-finite (i.e., is } \overline{L(M)} \text{ finite)?} \\ \text{Is } L(M) = \Sigma^*? \end{array} \right\}$$
 Undecidable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Which of these properties can be decided? None! By Rice's Theorem

Definition A *property of languages* is simply a set of languages.

Definition A property of languages is simply a set of languages. We say L satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A *property of languages* is simply a set of languages. We say *L* satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

Definition

For any property \mathbb{P} , define language $L_{\mathbb{P}}$ to consist of Turing Machines which accept a language in \mathbb{P} :

$$L_{\mathbb{P}} = \{M \mid L(M) \in \mathbb{P}\}$$

Definition

A *property of languages* is simply a set of languages. We say *L* satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

Definition

For any property \mathbb{P} , define language $L_{\mathbb{P}}$ to consist of Turing Machines which accept a language in \mathbb{P} :

$$L_{\mathbb{P}} = \{M \mid L(M) \in \mathbb{P}\}$$

Deciding $L_{\mathbb{P}}$: deciding if a language represented as a TM satisfies the property \mathbb{P} .

► Example: {*M* | *L*(*M*) is infinite}

Definition

A *property of languages* is simply a set of languages. We say *L* satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

Definition

For any property \mathbb{P} , define language $L_{\mathbb{P}}$ to consist of Turing Machines which accept a language in \mathbb{P} :

$$L_{\mathbb{P}} = \{M \mid L(M) \in \mathbb{P}\}$$

Deciding $L_{\mathbb{P}}$: deciding if a language represented as a TM satisfies the property \mathbb{P} .

• Example: $\{M \mid L(M) \text{ is infinite}\}; E_{TM} = \{M \mid L(M) = \emptyset\}$

Definition

A *property of languages* is simply a set of languages. We say *L* satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

Definition

For any property \mathbb{P} , define language $L_{\mathbb{P}}$ to consist of Turing Machines which accept a language in \mathbb{P} :

$$L_{\mathbb{P}} = \{M \mid L(M) \in \mathbb{P}\}$$

Deciding $L_{\mathbb{P}}$: deciding if a language represented as a TM satisfies the property \mathbb{P} .

- Example: $\{M \mid L(M) \text{ is infinite}\}; E_{TM} = \{M \mid L(M) = \emptyset\}$
- ▶ Non-example: {*M* | *M* has 15 states}

Definition

A *property of languages* is simply a set of languages. We say *L* satisfies the property \mathbb{P} if $L \in \mathbb{P}$.

Definition

For any property \mathbb{P} , define language $L_{\mathbb{P}}$ to consist of Turing Machines which accept a language in \mathbb{P} :

$$L_{\mathbb{P}} = \{M \mid L(M) \in \mathbb{P}\}$$

Deciding $L_{\mathbb{P}}$: deciding if a language represented as a TM satisfies the property \mathbb{P} .

- Example: $\{M \mid L(M) \text{ is infinite}\}; E_{TM} = \{M \mid L(M) = \emptyset\}$
- ► Non-example: {M | M has 15 states} ← This is a property of TMs, and not languages!

Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example

Some trivial properties:

- $\mathbb{P}_{ALL} = set of all languages$
- $\mathbb{P}_{R.E.}$ = set of all r.e. languages
- $\overline{\mathbb{P}}$ where \mathbb{P} is trivial

Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example

Some trivial properties:

- $\mathbb{P}_{ALL} = set of all languages$
- $\mathbb{P}_{R.E.}$ = set of all r.e. languages
- $\overline{\mathbb{P}}$ where \mathbb{P} is trivial
- ▶ P = {L | L is recognized by a TM with an even number of states}

Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example

Some trivial properties:

- $\mathbb{P}_{ALL} = set of all languages$
- $\mathbb{P}_{R.E.}$ = set of all r.e. languages
- $\overline{\mathbb{P}}$ where \mathbb{P} is trivial
- ▶ P = {L | L is recognized by a TM with an even number of states} = P_{R.E.}

Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example

Some trivial properties:

- $\mathbb{P}_{ALL} = set of all languages$
- $\mathbb{P}_{R.E.} = set of all r.e. languages$
- $\overline{\mathbb{P}}$ where \mathbb{P} is trivial
- ▶ P = {L | L is recognized by a TM with an even number of states} = P_{R.E.}

Observation. For any trivial property \mathbb{P} , $L_{\mathbb{P}}$ is decidable. (Why?)

Definition

A property is *trivial* if either it is not satisfied by any r.e. language, or if it is satisfied by all r.e. languages. Otherwise it is *non-trivial*.

Example

Some trivial properties:

- $\mathbb{P}_{ALL} = set of all languages$
- $\mathbb{P}_{R.E.}$ = set of all r.e. languages
- $\overline{\mathbb{P}}$ where \mathbb{P} is trivial
- ▶ P = {L | L is recognized by a TM with an even number of states} = P_{R.E.}

Observation. For any trivial property \mathbb{P} , $\mathcal{L}_{\mathbb{P}}$ is decidable. (Why?) Then $\mathcal{L}_{\mathbb{P}} = \Sigma^*$ or $\mathcal{L}_{\mathbb{P}} = \emptyset$.

Rice's Theorem

Proposition

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Rice's Theorem

Proposition

If $\mathbb P$ is a non-trivial property, then $L_{\mathbb P}$ is undecidable.

▶ Thus $\{M \mid L(M) \in \mathbb{P}\}$ is not decidable (unless \mathbb{P} is trivial)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

▶ Thus $\{M \mid L(M) \in \mathbb{P}\}$ is not decidable (unless \mathbb{P} is trivial)

We cannot algorithmically determine any interesting property of languages represented as Turing Machines!

Properties of TMs

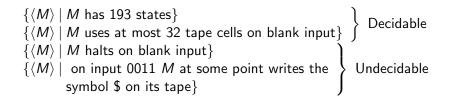
Note. Properties of TMs, as opposed to those of languages they accept, may or may not be decidable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Properties of TMs

Note. Properties of TMs, as opposed to those of languages they accept, may or may not be decidable.

Example



Rice's Theorem

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof.

Rice's Theorem

If $\mathbb P$ is a non-trivial property, then ${\it L}_{\mathbb P}$ is undecidable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proof.

• Suppose \mathbb{P} non-trivial and $\emptyset \notin \mathbb{P}$.

Rice's Theorem

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Proof.

- Suppose \mathbb{P} non-trivial and $\emptyset \notin \mathbb{P}$.
 - ▶ (If $\emptyset \in \mathbb{P}$, then in the following we will be showing $L_{\overline{\mathbb{P}}}$ is undecidable. Then $L_{\mathbb{P}} = \overline{L_{\overline{\mathbb{P}}}}$ is also undecidable.)

Rice's Theorem

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Proof.

- Suppose \mathbb{P} non-trivial and $\emptyset \notin \mathbb{P}$.
 - ▶ (If $\emptyset \in \mathbb{P}$, then in the following we will be showing $L_{\overline{\mathbb{P}}}$ is undecidable. Then $L_{\mathbb{P}} = \overline{L_{\overline{\mathbb{P}}}}$ is also undecidable.)

• Recall $L_{\mathbb{P}} = \{ \langle M \rangle \mid L(M) \text{ satisfies } \mathbb{P} \}$. We'll reduce A_{TM} to $L_{\mathbb{P}}$.

Rice's Theorem

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Proof.

- Suppose \mathbb{P} non-trivial and $\emptyset \notin \mathbb{P}$.
 - ▶ (If $\emptyset \in \mathbb{P}$, then in the following we will be showing $L_{\overline{\mathbb{P}}}$ is undecidable. Then $L_{\mathbb{P}} = \overline{L_{\overline{\mathbb{P}}}}$ is also undecidable.)
- Recall $L_{\mathbb{P}} = \{ \langle M \rangle \mid L(M) \text{ satisfies } \mathbb{P} \}$. We'll reduce A_{TM} to $L_{\mathbb{P}}$.

• Then, since A_{TM} is undecidable, $L_{\mathbb{P}}$ is also undecidable.

Rice's Theorem

If \mathbb{P} is a non-trivial property, then $L_{\mathbb{P}}$ is undecidable.

Proof.

- Suppose \mathbb{P} non-trivial and $\emptyset \notin \mathbb{P}$.
 - ▶ (If $\emptyset \in \mathbb{P}$, then in the following we will be showing $L_{\overline{\mathbb{P}}}$ is undecidable. Then $L_{\mathbb{P}} = \overline{L_{\overline{\mathbb{P}}}}$ is also undecidable.)
- ▶ Recall $L_{\mathbb{P}} = \{ \langle M \rangle \mid L(M) \text{ satisfies } \mathbb{P} \}$. We'll reduce A_{TM} to $L_{\mathbb{P}}$.
- ▶ Then, since A_{TM} is undecidable, $L_{\mathbb{P}}$ is also undecidable. ...→

Proof (contd).

Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P} .

Proof (contd).

Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P} . i.e., $L(M_0) \in \mathbb{P}$ for some TM M_0 .

Proof (contd).

Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P} . i.e., $L(M_0) \in \mathbb{P}$ for some TM M_0 .

Will show a reduction f that maps an instance $\langle M,w\rangle$ for $A_{\rm TM},$ to N such that

• If M accepts w then N accepts the same language as M_0 .

- Then $L(N) = L(M_0) \in \mathbb{P}$
- If *M* does not accept *w* then *N* accepts \emptyset .
 - Then $L(N) = \emptyset \notin \mathbb{P}$

Proof (contd).

Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P} . i.e., $L(M_0) \in \mathbb{P}$ for some TM M_0 .

Will show a reduction f that maps an instance $\langle M,w\rangle$ for $A_{\rm TM},$ to N such that

• If M accepts w then N accepts the same language as M_0 .

- Then $L(N) = L(M_0) \in \mathbb{P}$
- If *M* does not accept *w* then *N* accepts \emptyset .
 - Then $L(N) = \emptyset \notin \mathbb{P}$

Thus, $\langle M, w \rangle \in A_{\text{TM}}$ iff $N \in L_{\mathbb{P}}$.

Proof (contd).

Since \mathbb{P} is non-trivial, at least one r.e. language satisfies \mathbb{P} . i.e., $L(M_0) \in \mathbb{P}$ for some TM M_0 .

Will show a reduction f that maps an instance $\langle M, w \rangle$ for $A_{\rm TM}$, to N such that

• If M accepts w then N accepts the same language as M_0 .

 $\cdots \rightarrow$

- Then $L(N) = L(M_0) \in \mathbb{P}$
- If *M* does not accept *w* then *N* accepts \emptyset .
 - Then $L(N) = \emptyset \notin \mathbb{P}$

Thus, $\langle M, w \rangle \in A_{\text{TM}}$ iff $N \in L_{\mathbb{P}}$.

Proof (contd).

The reduction f maps $\langle M, w \rangle$ to N, where N is a TM that behaves as follows:

On input x
 Ignore the input and run M on w
 If M does not accept (or doesn't halt)
 then do not accept x (or do not halt)
 If M does accept w
 then run M₀ on x and accept x iff M₀ does.

Notice that indeed if *M* accepts *w* then $L(N) = L(M_0)$. Otherwise $L(N) = \emptyset$.

Rice's Theorem Recap

Every non-trivial property of r.e. languages is undecidable

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Rice's Theorem

Every non-trivial property of r.e. languages is undecidable

 Rice's theorem says nothing about properties of Turing machines

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Rice's Theorem

Every non-trivial property of r.e. languages is undecidable

- Rice's theorem says nothing about properties of Turing machines
- Rice's theorem says nothing about whether a property of languages is recurisvely enumerable or not.