
Checking Properties

Given M

Does L(M) contain M?
Is L(M) non-empty?
Is L(M) empty?

 Undecidable

Is L(M) infinite?
Is L(M) finite?

Is L(M) co-finite (i.e., is L(M) finite)?
Is L(M) = Σ∗?

 Undecidable

Which of these properties can be decided?

None! By Rice’s
Theorem
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Properties

Definition
A property of languages is simply a set of languages.

We say L
satisfies the property P if L ∈ P.

Definition
For any property P, define language LP to consist of Turing
Machines which accept a language in P:

LP = {M | L(M) ∈ P}

Deciding LP: deciding if a language represented as a TM satisfies
the property P.

I Example: {M | L(M) is infinite}; Etm = {M | L(M) = ∅}
I Non-example: {M |M has 15 states} ←− This is a property

of TMs, and not languages!
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Trivial Properties

Definition
A property is trivial if either it is not satisfied by any r.e. language,
or if it is satisfied by all r.e. languages.

Otherwise it is non-trivial.

Example

Some trivial properties:

I Pall = set of all languages

I Pr.e. = set of all r.e. languages

I P where P is trivial

I P = {L | L is recognized by a TM with an even number of
states} = Pr.e.

Observation. For any trivial property P, LP is decidable. (Why?)
Then LP = Σ∗ or LP = ∅.
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Rice’s Theorem

Proposition

If P is a non-trivial property, then LP is undecidable.

I Thus {M | L(M) ∈ P} is not decidable (unless P is trivial)

We cannot algorithmically determine any interesting property of
languages represented as Turing Machines!
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Properties of TMs

Note. Properties of TMs, as opposed to those of languages they
accept, may or may not be decidable.

Example

{〈M〉 |M has 193 states}
{〈M〉 |M uses at most 32 tape cells on blank input}

}
Decidable

{〈M〉 |M halts on blank input}
{〈M〉 | on input 0011 M at some point writes the

symbol $ on its tape}

 Undecidable
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Proof of Rice’s Theorem

Rice’s Theorem
If P is a non-trivial property, then LP is undecidable.

Proof.

I Suppose P non-trivial and ∅ 6∈ P.
I (If ∅ ∈ P, then in the following we will be showing LP is

undecidable. Then LP = LP is also undecidable.)

I Recall LP = {〈M〉 | L(M) satisfies P}. We’ll reduce Atm to LP.

I Then, since Atm is undecidable, LP is also undecidable. ··→
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Proof of Rice’s Theorem

Proof (contd).

Since P is non-trivial, at least one r.e. language satisfies P.

i.e.,
L(M0) ∈ P for some TM M0.
Will show a reduction f that maps an instance 〈M,w〉 for Atm, to
N such that
I If M accepts w then N accepts the same language as M0.

I Then L(N) = L(M0) ∈ P
I If M does not accept w then N accepts ∅.

I Then L(N) = ∅ 6∈ P
Thus, 〈M,w〉 ∈ Atm iff N ∈ LP. ··→
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Proof of Rice’s Theorem

Proof (contd).

The reduction f maps 〈M,w〉 to N, where N is a TM that
behaves as follows:

On input x
Ignore the input and run M on w
If M does not accept (or doesn’t halt)

then do not accept x (or do not halt)

If M does accept w
then run M0 on x and accept x iff M0 does.

Notice that indeed if M accepts w then L(N) = L(M0). Otherwise
L(N) = ∅. �



Rice’s Theorem
Recap

Every non-trivial property of r.e. languages is undecidable

I Rice’s theorem says nothing about properties of Turing
machines

I Rice’s theorem says nothing about whether a property of
languages is recurisvely enumerable or not.
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