
REDUCTIONS VIA COMPUTATION HISTORIES

An accepting computation history for a TM is a sequence of
configurations

C1,C2, . . . ,Cl

such that
C1 is the start configuration for input w
Cl is an accepting configuration, and
each Ci follows legally from the preceding configuration.

A rejecting computation history is defined similarly.
Computation histories are finite sequences – if M does not halt on w ,
there is no computation history.
Deterministic v.s nondeterministic computation histories.
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LINEAR BOUNDED AUTOMATON

Suppose we cripple a TM so that the head never moves outside the
boundaries of the input string.
Such a TM is called a linear bounded automaton (LBA)
Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with q states, g symbols in the tape alphabet. There are
exactly qngn distinct configurations for a tape of length n.

PROOF.
The machine can be in one of q states.
The head can be on one of the n cells.
At most gn distinct strings can occur on the tape.
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DECIDABILITY OF LBA PROBLEMS

THEOREM 5.9
ALBA = {〈M,w〉 | M is an LBA that accepts string w} is decidable.

PROOF IDEA

We simulate LBA M on w with a TM L (which is NOT an LBA!)
If during simulation M accepts or rejects, we accept or reject accordingly.
What happens if the LBA M loops?

Can we detect if it loops?

M has a finite number of configurations.
If it repeats any configuration during simulation, it is in a loop.
If M is in a loop, we will know this after a finite number of steps.
So if the LBA M has not halted by then, it is looping.
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DECIDABILITY OF LBA PROBLEMS

THEOREM 5.9
ALBA = {〈M,w〉 | M is an LBA that accepts string w} is decidable.

PROOF

The following TM decides ALBA.
L = “On input 〈M,w〉

1 Simulate M on for qngn steps or until it halts.
2 If M has halted, accept if it has accepted, and reject if it has rejected. If it

has NOT halted, reject.”

LBAs and TMs differ in one important way. ALBA is decidable.
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COMPUTATION OVER “COMPUTATION HISTORIES”

Now for a really wild and crazy idea!
Consider an accepting computation history of a TM M, C1,C2, . . . ,Cl

Note that each Ci is a string.
Consider the string

# ︸ ︷︷ ︸
C1

# ︸ ︷︷ ︸
C2

# ︸ ︷︷ ︸
C3

# · · ·# ︸ ︷︷ ︸
Cl

#

The set of all valid accepting histories is also a language!!
This string has length m and an LBA B can check if this is a valid
computation history for a TM M accepting w .

Check if C1 = q0w1w2 · · ·wn

Check if Cl = · · · qaccept · · ·
Check if each Ci+1 follows from Ci legally.

Note that B is not constructed for the purpose of running it on any input!
If L(B) 6= Φ then M accepts w
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DECIDABILITY OF LBA PROBLEMS

THEOREM 5.10
ELBA = {〈M〉 | M is an LBA and L(M) = Φ} is undecidable.

PROOF.
Suppose TM R decides ELBA, we can construct a TM S which decides
ATM

S = “On input 〈M,w〉, where M is a TM and w is a string
1 Construct LBA B from M and w as described earlier.
2 Run R on 〈B〉.
3 If R rejects, accept; if R accepts, reject.”

So if R says L(B) = Φ, the M does NOT accept w .
If R says L(B) 6= Φ, the M accepts w .
But, ATM is undecidable – contradiction.
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Another example reduction

Theorem

ALLCFG = {〈G〉 | G is a CFG and L (G) = Σ∗} is undecidable.

Proof idea: reduction from ATM to ALLCFG via computation histories
Assuming that ALLCFG is decidable we can devise the following decision
procedure for ATM:

B For a TM M and input w construct CFG G that generates all strings iff M
does not accept w.

B If M does accept w then G does not generate some particular string. This
will correspond to the accepting computation history for M on w.

This theorem the main result necessary for showing that the equivalence problem
for CFGs is undecidable.
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Strategy

B An accepting computation history for M on w has the form
#C1#C2# . . .#Ck#.

B Therefore, G generates all strings that

1. do not start with C1
2. do not end with an accepting configuration
3. for some i and Ci, do not properly yield Ci+1 under the rules of M

B If M does not accept w, no accepting history exists, so all strings fail in one
way or another.

Since CFG and PDA are equivalent, we may use a PDA equivalent to G to check
the above conditions. It would operate on

#C1#CR
2 #C3#CR

4 # . . .#Ck#

to be able to check condition 3. (See textbook for construction.)

7 / 10



Strategy

B An accepting computation history for M on w has the form
#C1#C2# . . .#Ck#.

B Therefore, G generates all strings that

1. do not start with C1
2. do not end with an accepting configuration
3. for some i and Ci, do not properly yield Ci+1 under the rules of M

B If M does not accept w, no accepting history exists, so all strings fail in one
way or another.

Since CFG and PDA are equivalent, we may use a PDA equivalent to G to check
the above conditions. It would operate on

#C1#CR
2 #C3#CR

4 # . . .#Ck#

to be able to check condition 3. (See textbook for construction.)

7 / 10



Proof

B Suppose that TM R decides ALLCFG. Construct TM S that decides ATM as
follows:
S =“On input 〈M,w〉 in which a M is a TM and w a string:

1. Construct CFG G from M and w as described above.
2. Run R on input 〈G〉
3. If R rejects, accept; if R accepts, reject”

B If R accepts 〈G〉 then L (〈G〉) = Σ∗, thus M has no accepting computation
on w, and M does not accept w. Consequently S rejects 〈M,w〉

B If R rejects 〈G〉 then L (〈G〉) 6= Σ∗. Since the only string that G cannot
generate is an accepting computation history for W on w, it means that M
accepts w. Consequently S accepts 〈M,w〉

This is a contradiction, so R cannot exist, therefore ALLCFG is undecidable.
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Testing equivalence of CFGs is undecidable

Theorem

EQCFG = {〈G,H〉 | G and H are CFGs and L (G) = L (H)} is undecidable.

Proof idea: reduction from ALLCFG to EQCFG

A decider M for ALLCFG can be built as follows:
M =“On input 〈G〉 in which a G is a CFG:

1. Construct CFG H such that L (H) = Σ∗

2. Run the decider EQCFG on 〈G,H〉
3. If it accepts, accept; if it rejects, reject.”

Since this reduction leads to a contradiction, EQCFG is undecidable.
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