
REDUCTIONS VIA COMPUTATION HISTORIES

An accepting computation history for a TM is a sequence of
configurations

C1,C2, . . . ,Cl

such that
C1 is the start configuration for input w
Cl is an accepting configuration, and
each Ci follows legally from the preceding configuration.

A rejecting computation history is defined similarly.
Computation histories are finite sequences – if M does not halt on w ,
there is no computation history.
Deterministic v.s nondeterministic computation histories.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 15 / 20

LINEAR BOUNDED AUTOMATON

Suppose we cripple a TM so that the head never moves outside the
boundaries of the input string.
Such a TM is called a linear bounded automaton (LBA)
Despite their memory limitation, LBAs are quite powerful.

LEMMA

Let M be a LBA with q states, g symbols in the tape alphabet. There are
exactly qngn distinct configurations for a tape of length n.

PROOF.
The machine can be in one of q states.
The head can be on one of the n cells.
At most gn distinct strings can occur on the tape.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 16 / 20

DECIDABILITY OF LBA PROBLEMS

THEOREM 5.9
ALBA = {〈M,w〉 | M is an LBA that accepts string w} is decidable.

PROOF IDEA

We simulate LBA M on w with a TM L (which is NOT an LBA!)
If during simulation M accepts or rejects, we accept or reject accordingly.
What happens if the LBA M loops?

Can we detect if it loops?

M has a finite number of configurations.
If it repeats any configuration during simulation, it is in a loop.
If M is in a loop, we will know this after a finite number of steps.
So if the LBA M has not halted by then, it is looping.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 17 / 20

DECIDABILITY OF LBA PROBLEMS

THEOREM 5.9
ALBA = {〈M,w〉 | M is an LBA that accepts string w} is decidable.

PROOF

The following TM decides ALBA.
L = “On input 〈M,w〉

1 Simulate M on for qngn steps or until it halts.
2 If M has halted, accept if it has accepted, and reject if it has rejected. If it

has NOT halted, reject.”

LBAs and TMs differ in one important way. ALBA is decidable.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 18 / 20

COMPUTATION OVER “COMPUTATION HISTORIES”

Now for a really wild and crazy idea!
Consider an accepting computation history of a TM M, C1,C2, . . . ,Cl

Note that each Ci is a string.
Consider the string

︸ ︷︷ ︸
C1

︸ ︷︷ ︸
C2

︸ ︷︷ ︸
C3

· · ·# ︸ ︷︷ ︸
Cl

#

The set of all valid accepting histories is also a language!!
This string has length m and an LBA B can check if this is a valid
computation history for a TM M accepting w .

Check if C1 = q0w1w2 · · ·wn

Check if Cl = · · · qaccept · · ·
Check if each Ci+1 follows from Ci legally.

Note that B is not constructed for the purpose of running it on any input!
If L(B) 6= Φ then M accepts w

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 19 / 20

DECIDABILITY OF LBA PROBLEMS

THEOREM 5.10
ELBA = {〈M〉 | M is an LBA and L(M) = Φ} is undecidable.

PROOF.
Suppose TM R decides ELBA, we can construct a TM S which decides
ATM

S = “On input 〈M,w〉, where M is a TM and w is a string
1 Construct LBA B from M and w as described earlier.
2 Run R on 〈B〉.
3 If R rejects, accept; if R accepts, reject.”

So if R says L(B) = Φ, the M does NOT accept w .
If R says L(B) 6= Φ, the M accepts w .
But, ATM is undecidable – contradiction.

(LECTURE 16) SLIDES FOR 15-453 SPRING 2011 20 / 20

Another example reduction

Theorem

ALLCFG = {〈G〉 | G is a CFG and L (G) = Σ∗} is undecidable.

Proof idea: reduction from ATM to ALLCFG via computation histories
Assuming that ALLCFG is decidable we can devise the following decision
procedure for ATM:

B For a TM M and input w construct CFG G that generates all strings iff M
does not accept w.

B If M does accept w then G does not generate some particular string. This
will correspond to the accepting computation history for M on w.

This theorem the main result necessary for showing that the equivalence problem
for CFGs is undecidable.

6 / 10

Strategy

B An accepting computation history for M on w has the form
#C1#C2# . . .#Ck#.

B Therefore, G generates all strings that

1. do not start with C1
2. do not end with an accepting configuration
3. for some i and Ci, do not properly yield Ci+1 under the rules of M

B If M does not accept w, no accepting history exists, so all strings fail in one
way or another.

Since CFG and PDA are equivalent, we may use a PDA equivalent to G to check
the above conditions. It would operate on

#C1#CR
2 #C3#CR

4 # . . .#Ck#

to be able to check condition 3. (See textbook for construction.)

7 / 10

Strategy

B An accepting computation history for M on w has the form
#C1#C2# . . .#Ck#.

B Therefore, G generates all strings that

1. do not start with C1
2. do not end with an accepting configuration
3. for some i and Ci, do not properly yield Ci+1 under the rules of M

B If M does not accept w, no accepting history exists, so all strings fail in one
way or another.

Since CFG and PDA are equivalent, we may use a PDA equivalent to G to check
the above conditions. It would operate on

#C1#CR
2 #C3#CR

4 # . . .#Ck#

to be able to check condition 3. (See textbook for construction.)

7 / 10

Proof

B Suppose that TM R decides ALLCFG. Construct TM S that decides ATM as
follows:
S =“On input 〈M,w〉 in which a M is a TM and w a string:

1. Construct CFG G from M and w as described above.
2. Run R on input 〈G〉
3. If R rejects, accept; if R accepts, reject”

B If R accepts 〈G〉 then L (〈G〉) = Σ∗, thus M has no accepting computation
on w, and M does not accept w. Consequently S rejects 〈M,w〉

B If R rejects 〈G〉 then L (〈G〉) 6= Σ∗. Since the only string that G cannot
generate is an accepting computation history for W on w, it means that M
accepts w. Consequently S accepts 〈M,w〉

This is a contradiction, so R cannot exist, therefore ALLCFG is undecidable.

8 / 10

Testing equivalence of CFGs is undecidable

Theorem

EQCFG = {〈G,H〉 | G and H are CFGs and L (G) = L (H)} is undecidable.

Proof idea: reduction from ALLCFG to EQCFG

A decider M for ALLCFG can be built as follows:
M =“On input 〈G〉 in which a G is a CFG:

1. Construct CFG H such that L (H) = Σ∗

2. Run the decider EQCFG on 〈G,H〉
3. If it accepts, accept; if it rejects, reject.”

Since this reduction leads to a contradiction, EQCFG is undecidable.

9 / 10

	lect14c
	19-history

