REDUCTIONS VIA COMPUTATION HISTORIES

 An accepting computation history for a TM is a sequence of configurations

 C_1, C_2, \ldots, C_l

such that

- C_1 is the start configuration for input w
- C₁ is an accepting configuration, and
- each *C_i* follows legally from the preceding configuration.
- A rejecting computation history is defined similarly.
- Computation histories are finite sequences if *M* does not halt on *w*, there is no computation history.
- Deterministic v.s nondeterministic computation histories.

LINEAR BOUNDED AUTOMATON

- Suppose we cripple a TM so that the head never moves outside the boundaries of the input string.
- Such a TM is called a linear bounded automaton (LBA)
- Despite their memory limitation, LBAs are quite powerful.

Lemma

Let *M* be a LBA with *q* states, *g* symbols in the tape alphabet. There are exactly qng^n distinct configurations for a tape of length *n*.

PROOF.

- The machine can be in one of *q* states.
- The head can be on one of the *n* cells.
- At most *gⁿ* distinct strings can occur on the tape.

DECIDABILITY OF LBA PROBLEMS

Theorem 5.9

 $A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts string } w \} \text{ is decidable.}$

PROOF IDEA

- We simulate LBA *M* on *w* with a TM *L* (which is NOT an LBA!)
- If during simulation *M* accepts or rejects, we accept or reject accordingly.
- What happens if the LBA M loops?
 - Can we detect if it loops?
- *M* has a finite number of configurations.
 - If it repeats any configuration during simulation, it is in a loop.
 - If *M* is in a loop, we will know this after a finite number of steps.
 - So if the LBA *M* has not halted by then, it is looping.

DECIDABILITY OF LBA PROBLEMS

Theorem 5.9

 $A_{LBA} = \{ \langle M, w \rangle \mid M \text{ is an LBA that accepts string } w \} \text{ is decidable.}$

Proof

- The following TM decides A_{LBA}.
- L = "On input $\langle M, w \rangle$
 - Simulate *M* on for *qngⁿ* steps or until it halts.
 - If M has halted, accept if it has accepted, and reject if it has rejected. If it has NOT halted, reject."
- LBAs and TMs differ in one important way. A_{LBA} is decidable.

COMPUTATION OVER "COMPUTATION HISTORIES"

- Now for a really wild and crazy idea!
- Consider an accepting computation history of a TM M, C₁, C₂,..., C_l
- Note that each C_i is a string.
- Consider the string

- The set of all valid accepting histories is also a language!!
- This string has length *m* and an LBA *B* can check if this is a valid computation history for a TM *M* accepting *w*.
 - Check if $C_1 = q_0 w_1 w_2 \cdots w_n$
 - Check if $C_l = \cdots q_{accept} \cdots$
 - Check if each C_{i+1} follows from C_i legally.
- Note that B is not constructed for the purpose of running it on any input!
- If $L(B) \neq \Phi$ then *M* accepts *w*

DECIDABILITY OF LBA PROBLEMS

THEOREM 5.10

 $E_{LBA} = \{ \langle M \rangle \mid M \text{ is an LBA and } L(M) = \Phi \} \text{ is undecidable.}$

Proof.

- Suppose TM R decides E_{LBA} , we can construct a TM S which decides A_{TM}
- S = "On input $\langle M, w \rangle$, where *M* is a TM and *w* is a string
 - Oconstruct LBA B from M and w as described earlier.
 - **2** Run *R* on $\langle B \rangle$.
 - If R rejects, accept; if R accepts, reject."
- So if *R* says $L(B) = \Phi$, the *M* does NOT accept *w*.
- If *R* says $L(B) \neq \Phi$, the *M* accepts *w*.
- But, A_{TM} is undecidable contradiction.

Theorem

 $ALL_{\mathsf{CFG}} = \{ \langle G \rangle \mid G \text{ is a CFG and } \mathscr{L}(G) = \Sigma^* \}$ is undecidable.

Proof idea: reduction from A_{TM} to ALL_{CFG} via computation histories

Assuming that ALL_{CFG} is decidable we can devise the following decision procedure for A_{TM} :

- \triangleright For a TM *M* and input *w* construct CFG *G* that generates all strings iff *M* does not accept *w*.
- ▷ If *M* does accept *w* then *G* does *not* generate some particular string. This will correspond to the accepting computation history for *M* on *w*.

This theorem the main result necessary for showing that the equivalence problem for CFGs is undecidable.

Strategy

- ▷ An accepting computation history for *M* on *w* has the form $\#C_1\#C_2\#...\#C_k\#.$
- \triangleright Therefore, *G* generates all strings that
 - 1. do not start with C_1
 - 2. do not end with an accepting configuration
 - 3. for some i and C_i , do not properly yield C_{i+1} under the rules of M
- ▷ If *M* does not accept *w*, no accepting history exists, so *all* strings fail in one way or another.

Strategy

- ▷ An accepting computation history for *M* on *w* has the form $\#C_1\#C_2\#...\#C_k\#.$
- \triangleright Therefore, G generates all strings that
 - 1. do not start with C_1
 - 2. do not end with an accepting configuration
 - 3. for some *i* and C_i , do not properly yield C_{i+1} under the rules of M
- ▷ If *M* does not accept *w*, no accepting history exists, so *all* strings fail in one way or another.

Since CFG and PDA are equivalent, we may use a PDA equivalent to G to check the above conditions. It would operate on

$$#C_1 # C_2^R # C_3 # C_4^R # \dots # C_k #$$

to be able to check condition 3. (See textbook for construction.)

Proof

- \triangleright Suppose that *TM R* decides *ALL*_{CFG}. Construct *TM S* that decides *A*_{TM} as follows:
 - S ="On input $\langle M, w \rangle$ in which a M is a TM and w a string:
 - 1. Construct CFG G from M and w as described above.
 - 2. Run *R* on input $\langle G \rangle$
 - 3. If R rejects, accept; if R accepts, reject"
- ▷ If *R* accepts $\langle G \rangle$ then $\mathscr{L}(\langle G \rangle) = \Sigma^*$, thus *M* has no accepting computation on *w*, and *M* does not accept *w*. Consequently *S* rejects $\langle M, w \rangle$
- ▷ If *R* rejects $\langle G \rangle$ then $\mathscr{L}(\langle G \rangle) \neq \Sigma^*$. Since the only string that *G* cannot generate is an accepting computation history for *W* on *w*, it means that *M* accepts *w*. Consequently *S* accepts $\langle M, w \rangle$

This is a contradiction, so R cannot exist, therefore ALL_{CFG} is undecidable.

Theorem

 $EQ_{\mathsf{CFG}} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } \mathscr{L}(G) = \mathscr{L}(H) \} \text{ is undecidable}.$

Proof idea: reduction from ALL_{CFG} to EQ_{CFG}

A decider *M* for ALL_{CFG} can be built as follows: M = "On input $\langle G \rangle$ in which a *G* is a CFG:

- 1. Construct CFG H such that $\mathscr{L}(H) = \Sigma^*$
- 2. Run the decider EQ_{CFG} on $\langle G, H
 angle$
- 3. If it accepts, accept; if it rejects, reject."

Since this reduction leads to a contradiction, EQ_{CFG} is undecidable.