Definition

A function $f : \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine *M* that on every input *w* halts with f(w) on the tape.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

A function $f : \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine *M* that on every input *w* halts with f(w) on the tape.

Definition

A mapping/many-one reduction from A to B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

 $w \in A$ if and only if $f(w) \in B$

Definition

A function $f : \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine *M* that on every input *w* halts with f(w) on the tape.

Definition

A mapping/many-one reduction from A to B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

 $w \in A$ if and only if $f(w) \in B$

In this case, we say A is mapping/many-one reducible to B, and we denote it by $A \leq_m B$.

Definition

A function $f : \Sigma^* \to \Sigma^*$ is computable if there is some Turing Machine *M* that on every input *w* halts with f(w) on the tape.

Definition

A reduction (a.k.a. mapping reduction/many-one reduction) from a language A to a language B is a computable function $f: \Sigma^* \to \Sigma^*$ such that

 $w \in A$ if and only if $f(w) \in B$

In this case, we say A is reducible to B, and we denote it by $A \leq_m B$.

Reductions and Recursive Enumerability

Proposition

```
If A \leq_m B and B is r.e., then A is r.e.
```

Proof.

Let f be a reduction from A to B and let M_B be a Turing Machine recognizing B. Then the Turing machine recognizing A is

```
On input w

Compute f(w)

Run M_B on f(w)

Accept if M_B accepts, and reject if M_B rejects \Box
```

Corollary If $A \leq_m B$ and A is not r.e., then B is not r.e.

Reductions and Decidability

Proposition

If $A \leq_m B$ and B is decidable, then A is decidable.

Proof.

Let f be a reduction from A to B and let M_B be a Turing Machine *deciding* B. Then a Turing machine that decides A is

```
On input w

Compute f(w)

Run M_B on f(w)

Accept if M_B accepts, and reject if M_B rejects \Box
```

Corollary

If $A \leq_m B$ and A is undecidable, then B is undecidable.

The Halting Problem

Proposition

The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. Will give reduction f to show $A_{\text{TM}} \leq_m \text{HALT} \implies \text{HALT}$ undecidable. Let $f(\langle M, w \rangle) = \langle N, w \rangle$ where N is a TM that behaves as follows: On input xRun M on xIf M accepts then halt and accept If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w.

The Halting Problem

Proposition

The language $HALT = \{ \langle M, w \rangle \mid M \text{ halts on input } w \}$ is undecidable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. Will give reduction f to show $A_{\text{TM}} \leq_m \text{HALT} \implies \text{HALT}$ undecidable. Let $f(\langle M, w \rangle) = \langle N, w \rangle$ where N is a TM that behaves as follows: On input xRun M on xIf M accepts then halt and accept If M rejects then go into an infinite loop N halts on input w if and only if M accepts w. i.e., $\langle M, w \rangle \in A_{\text{TM}}$ iff $f(\langle M, w \rangle) \in \text{HALT}$

Proposition

The language $E_{\text{\tiny TM}} = \{M \mid L(M) = \emptyset\}$ is not decidable.

Note: in fact, E_{TM} is not recognizable.

Proposition

The language $E_{\text{TM}} = \{M \mid L(M) = \emptyset\}$ is not decidable. Note: in fact, E_{TM} is not recognizable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable.

Proposition

The language $E_{\text{\tiny TM}} = \{M \mid L(M) = \emptyset\}$ is not decidable.

Note: in fact, E_{TM} is not recognizable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. For the sake of contradiction, suppose there is a decider *B* for E_{TM} .

Proposition

The language $E_{\text{\tiny TM}} = \{M \mid L(M) = \emptyset\}$ is not decidable.

Note: in fact, E_{TM} is not recognizable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. For the sake of contradiction, suppose there is a decider *B* for E_{TM} . Then we first transform $\langle M, w \rangle$ to $\langle M_1 \rangle$ which is the following:

```
On input x

If x \neq w, reject

else run M on w, and accept if M accepts w

and accept if P rejects (M) and rejects if P accepts (M)
```

, and accept if B rejects $\langle M_1 \rangle$, and rejects if B accepts $\langle M_1 \rangle$.

Proposition

The language $E_{\text{\tiny TM}} = \{M \mid L(M) = \emptyset\}$ is not decidable.

Note: in fact, E_{TM} is not recognizable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. For the sake of contradiction, suppose there is a decider *B* for E_{TM} . Then we first transform $\langle M, w \rangle$ to $\langle M_1 \rangle$ which is the following:

```
On input x
If x \neq w, reject
else run M on w, and accept if M accepts w
```

, and accept if *B* rejects $\langle M_1 \rangle$, and rejects if *B* accepts $\langle M_1 \rangle$. Then we show that (1) if $\langle M, w \rangle \in A_{\text{TM}}$, then accept, and (2) $\langle M, w \rangle \in A_{\text{TM}}$, then reject. (how?)

Proposition

The language $E_{\text{\tiny TM}} = \{M \mid L(M) = \emptyset\}$ is not decidable.

Note: in fact, E_{TM} is not recognizable.

Proof.

Recall $A_{\text{TM}} = \{ \langle M, w \rangle \mid w \in L(M) \}$ is undecidable. For the sake of contradiction, suppose there is a decider *B* for E_{TM} . Then we first transform $\langle M, w \rangle$ to $\langle M_1 \rangle$ which is the following:

```
On input x
If x \neq w, reject
else run M on w, and accept if M accepts w
```

, and accept if *B* rejects $\langle M_1 \rangle$, and rejects if *B* accepts $\langle M_1 \rangle$. Then we show that (1) if $\langle M, w \rangle \in A_{\rm TM}$, then accept, and (2) $\langle M, w \rangle \in A_{\rm TM}$, then reject. (how?) This implies $A_{\rm TM}$ is decidable, which is a contradiction.

Proposition

The language $REGULAR = \{M \mid L(M) \text{ is regular}\}\$ is undecidable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

Proof.

We give a reduction f from A_{TM} to REGULAR.

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept xelse run M on w and accept x only if M does

If $w \in L(M)$ then L(N) =

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does

If $w \in L(M)$ then $L(N) = \Sigma^*$.

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does

```
If w \in L(M) then L(N) = \Sigma^*. If w \notin L(M) then L(N) =
```

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input xIf x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does

If $w \in L(M)$ then $L(N) = \Sigma^*$. If $w \notin L(M)$ then $L(N) = \{0^n 1^n \mid n \ge 0\}.$

Proposition

```
The language REGULAR = \{M \mid L(M) \text{ is regular}\}\ is undecidable.
```

Proof.

We give a reduction f from A_{TM} to REGULAR. Let $f(\langle M, w \rangle) = N$, where N is a TM that works as follows:

On input x If x is of the form $0^n 1^n$ then accept x else run M on w and accept x only if M does

If $w \in L(M)$ then $L(N) = \Sigma^*$. If $w \notin L(M)$ then $L(N) = \{0^n 1^n \mid n \ge 0\}$. Thus, $\langle N \rangle \in \mathsf{REGULAR}$ if and only if $\langle M, w \rangle \in A_{\mathrm{TM}}$

Checking Equality

Proposition $EQ_{\text{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$ is not r.e.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Checking Equality

Proposition

 $EQ_{\scriptscriptstyle \mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$ is not r.e.

Proof.

We will give a reduction f from $E_{\rm TM}$ (assume that we know $E_{\rm TM}$ is R.E.) to EQ_{\rm TM}.

Proposition

 $EQ_{\scriptscriptstyle \mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$ is not r.e.

Proof.

We will give a reduction f from $E_{\rm TM}$ (assume that we know $E_{\rm TM}$ is R.E.) to EQ_{TM}. Let M_1 be the Turing machine that on any input, halts and rejects

Proposition

 $EQ_{\scriptscriptstyle \mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$ is not r.e.

Proof.

We will give a reduction f from E_{TM} (assume that we know E_{TM} is R.E.) to EQ_{TM}. Let M_1 be the Turing machine that on any input, halts and rejects i.e., $L(M_1) = \emptyset$. Take $f(M) = \langle M, M_1 \rangle$.

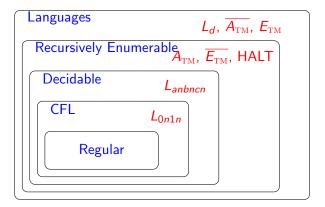
Proposition

 $EQ_{\scriptscriptstyle \mathrm{TM}} = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$ is not r.e.

Proof.

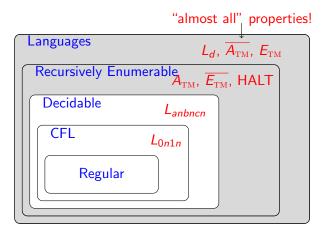
We will give a reduction f from E_{TM} (assume that we know E_{TM} is R.E.) to EQ_{TM}. Let M_1 be the Turing machine that on any input, halts and rejects i.e., $L(M_1) = \emptyset$. Take $f(M) = \langle M, M_1 \rangle$. Observe $M \in E_{\text{TM}}$ iff $L(M) = \emptyset$ iff $L(M) = L(M_1)$ iff $\langle M, M_1 \rangle \in \text{EQ}_{\text{TM}}$.

Big Picture ... again



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Big Picture ... again



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○