
Mapping Reductions

Definition
A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition
A mapping/many-one reduction from A to B is a computable
function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is mapping/many-one reducible to B, and
we denote it by A ≤m B.



Mapping Reductions

Definition
A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition
A mapping/many-one reduction from A to B is a computable
function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is mapping/many-one reducible to B, and
we denote it by A ≤m B.



Mapping Reductions

Definition
A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition
A mapping/many-one reduction from A to B is a computable
function f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is mapping/many-one reducible to B, and
we denote it by A ≤m B.



Mapping Reductions

Definition
A function f : Σ∗ → Σ∗ is computable if there is some Turing
Machine M that on every input w halts with f (w) on the tape.

Definition
A reduction (a.k.a. mapping reduction/many-one reduction) from
a language A to a language B is a computable function
f : Σ∗ → Σ∗ such that

w ∈ A if and only if f (w) ∈ B

In this case, we say A is reducible to B, and we denote it by
A ≤m B.



Reductions and Recursive Enumerability

Proposition

If A ≤m B and B is r.e., then A is r.e.

Proof.
Let f be a reduction from A to B and let MB be a Turing Machine
recognizing B. Then the Turing machine recognizing A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB accepts, and reject if MB rejects �

Corollary

If A ≤m B and A is not r.e., then B is not r.e.



Reductions and Decidability

Proposition

If A ≤m B and B is decidable, then A is decidable.

Proof.
Let f be a reduction from A to B and let MB be a Turing Machine
deciding B. Then a Turing machine that decides A is

On input w
Compute f (w)
Run MB on f (w)
Accept if MB accepts, and reject if MB rejects �

Corollary

If A ≤m B and A is undecidable, then B is undecidable.



The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. Will give
reduction f to show Atm ≤m HALT =⇒ HALT undecidable.
Let f (〈M,w〉) = 〈N,w〉 where N is a TM that behaves as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w .

i.e., 〈M,w〉 ∈ Atm

iff f (〈M,w〉) ∈ HALT �



The Halting Problem

Proposition

The language HALT = {〈M,w〉 |M halts on input w} is
undecidable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. Will give
reduction f to show Atm ≤m HALT =⇒ HALT undecidable.
Let f (〈M,w〉) = 〈N,w〉 where N is a TM that behaves as follows:

On input x
Run M on x
If M accepts then halt and accept

If M rejects then go into an infinite loop

N halts on input w if and only if M accepts w . i.e., 〈M,w〉 ∈ Atm

iff f (〈M,w〉) ∈ HALT �



Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �



Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable.

For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �



Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm.

Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �



Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.

Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �



Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?)

This implies Atm is decidable,
which is a contradiction. �



Emptiness of Turing Machines

Proposition

The language Etm = {M | L(M) = ∅} is not decidable.

Note: in fact, Etm is not recognizable.

Proof.
Recall Atm = {〈M,w〉 | w ∈ L(M)} is undecidable. For the sake of
contradiction, suppose there is a decider B for Etm. Then we first
transform 〈M,w〉 to 〈M1〉 which is the following:

On input x
If x 6= w, reject

else run M on w , and accept if M accepts w

, and accept if B rejects 〈M1〉, and rejects if B accepts 〈M1〉.
Then we show that (1) if 〈M,w〉 ∈ Atm, then accept, and (2)
〈M,w〉 ∈ Atm, then reject. (how?) This implies Atm is decidable,
which is a contradiction. �



Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �



Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR.

Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �



Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �



Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) =

Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �



Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗.

If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �



Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) =

{0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �



Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}.

Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �



Checking Regularity

Proposition

The language REGULAR = {M | L(M) is regular} is undecidable.

Proof.
We give a reduction f from Atm to REGULAR. Let
f (〈M,w〉) = N, where N is a TM that works as follows:

On input x
If x is of the form 0n1n then accept x
else run M on w and accept x only if M does

If w ∈ L(M) then L(N) = Σ∗. If w 6∈ L(M) then
L(N) = {0n1n | n ≥ 0}. Thus, 〈N〉 ∈ REGULAR if and only if
〈M,w〉 ∈ Atm �



Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �



Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm.

Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �



Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects

i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �



Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.

Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �



Checking Equality

Proposition

EQtm = {〈M1,M2〉 | L(M1) = L(M2)} is not r.e.

Proof.
We will give a reduction f from Etm (assume that we know Etm is
R.E.) to EQtm. Let M1 be the Turing machine that on any input,
halts and rejects i.e., L(M1) = ∅. Take f (M) = 〈M,M1〉.
Observe M ∈ Etm iff L(M) = ∅ iff L(M) = L(M1) iff
〈M,M1〉 ∈ EQtm. �



Big Picture . . . again

Regular

CFL L0n1n

Decidable Lanbncn

Recursively Enumerable

Languages
Ld , Atm, Etm

“almost all” properties!

Atm, Etm, HALT



Big Picture . . . again

Regular

CFL L0n1n

Decidable Lanbncn

Recursively Enumerable

Languages
Ld , Atm, Etm

“almost all” properties!

Atm, Etm, HALT


	High-Level Descriptions of Computation
	Deciding vs. Recognizing
	An Undecidable but Recognizable Language
	Complementation

	Undecidability
	Recap
	Diagonalization
	The Universal Language

	Reductions
	Informal Overview
	Definition and Properties

	Reductions
	Definitions and Observations
	Examples

	Rice's Theorem
	Properties
	Main Theorem




