Reducibility

* Now we examine several additional unsolvable problems.

» In doing so we introduce the primary method for proving that problems are
computationally unsolvable.

o It is called reducibility.

« A reduction is a way of converting one problem into another problem in such a
way that a solution to the second problem can be used to solve the first problem.

« When A is reducible to B, solving A cannot be harder that solving B because a
solution to B gives a solution to A.

* In terms of computability theory, if A is reducible to B and B is decidable then A
also is decidable.

 Equivalently, if A is undecidable and reducible to B, B is undecidable.
* This is the key to proving that various problems are undecidable.

 Our method for proving that a problem is undecidable will be: show that some
other problem already known to be undecidable reduces to it.

» We will consider the following problems (~ as membership in languages):

HALT,,, ={<M,w>'M is a TM that halts on input string w},
E;, ={<M >M is a TM such that L(M) =},
EQ,y ={c M, M, > MM, are TMs with L(M,) =L(M,)}.



The Halting Problem for TMs.

 \WWe have seen that the acceptance problem for TMs is undecidable
A, ={<M,w>M is a TM that accepts input string w}.
Theorem: A, isundecidable.

» Consider the problem determining whether a Turing machine halts (by accepting
or rejecting) on a given input.

HALT,,, ={<M,w>'M is a TM that halts on input string wj}.
Theorem 1: HALT,, IS undecidable.

» \WWe use undecidability of y L0 prove the undecidability of HALT,,, by
reducing ATM to HALTTM ;

e Let assume that TM R decides HALTTM ~We constructa TM S to decide ATM,
S = “on input <M,w>, where M isa TM and w is a string:

1. RunTM R on input <M,w>.

2. If R rejects, reject.

3. If R accepts, simulate M on w until it halts.

4. If M has accepted, accept; if M rejected, reject.”

Clearly, if R decides HALT;,,, then S decides A;,,. Because A, is
undecidable, HALTTM IS undecidable too.




The Emptiness Problem for the Language of a TM.

E.,, ={<M >M is a TM such that L(M) =<}
Theorem 2: E.,, IS undecidable.
- Let assume that TM R decides E.,, . We constructa TM S to decide A;,,.

e [dea is for S to run R on input <M> and see whether it accepts. If it does then
L(M) is empty and hence M does not accept w. But if M rejects ...(???) we still do
not know whether M accepts w.

» Instead of running R on <M> we run R on a modification of <M> (<M1>). The
only string M1 accepts is w, so its language is nonempty if and only if it accepts w.

S = “on input <M,w>, an encoding of a TM M and a string w:

1. Use the description of M and w to construct the following TM ML1.
M1 = “on input X:
1. If x=w, reject.
2. 1fx=w, run M on input w and accept if M does.”

2. RunR oninput <M1>.
3. If R accepts, reject; if R rejects, accept.”

® The test whether x = w is obvious; scan the input and compare it character by character
with w to determine whether they are the same.

» Note that S must be able to compute a description of M1 from a description of M and w. It
IS able because it needs only add extra states to M that perform the x = w test.

- If R were a decider for E,,, S would be a decider for Ay,, which is impossible.



The Equivalence Problem for TMs.
EQ;y ={<M,M, > M, M, are TMs with L(M,) =L(M,)}.

Theorem 3: EQ.,, IS undecidable.

« \We could prove it by a reduction from ATM_, but we use this opportunity to give an
example of an undecidability proof by reduction fromE,,, .

» Let TM R decides EQy,, and construct TM S to decide E.,, as follows.

S = “on input <M>, an encoding of a TM M:
1. Run R on input <M,M1>, where M1 is a TM that rejects all inputs.
2. If R accepts, accept; if R rejects, reject.”

* The E;y problem is a special case of the EQyy, problem wherein one of the
machines Is fixed to recognize the empty language.

* This idea makes giving the reduction easy.

 So, If R were a decider for E , Swould be a decider for E_.. , whichis
impossible. Qrv i

* One can also show that EQTM Is neither Turing-recognizable nor co-Turing-recognizable.

In the textbook, a simple problem called Post Correspondence Problem is shown to be
unsolvable by algorithms.



