CHAPTER 4
Decidability

Outline

e Decidable Languages
 decidable problems concerning regular languages

 decidable problems concerning context-free languages

e The Halting Problem

e The diagonalization method
 The halting problem is undecidable

* A Turing unrecognizable languages



Decidability (1ntro.)

* We have introduced Turing machines as a model of a general purpose computer

* We defined the notion of algorithm in terms of Turing machines by means of the
Church-Turing thesis

* In this chapter we
* begin to investigate the power of algorithms to solve problems

e demonstrate certain problems that can be solved algorithmically and others
that cannot

e Our objective is to explore the limits of algorithmic solvability

e Why should we study unsolvability? Showing that a problem is unsolvable
doesn’t appear to be of any use if we have to solve it. But ...

* We need to study this phenomenon for two reasons:

* First, knowing that a problem is algorithmically unsolvable is useful
because then you realize that the problem must be simplified or altered
before you can find an algorithmic solution.

* The second reason is cultural. Even if you deal with problems that clearly
are solvable, a glimpse of the unsolvable can stimulate your imagination
and help you gain an important perspective on computation.



Decidable Languages

* In this section we give some examples of languages that are decidable by
algorithms.

e For example, we present an algorithm which tests whether a string 1s a member of
a context-free language.

e This problem is related to the problem of recognizing and compiling programs in a
programming language.

Decidable Problems Concerning Regular Languages

* We begin with certain computation problems concerning finite automata

* We give algorithms for testing whether a finite automata accepts a string, whether
the language of a finite automaton is empty, and whether two finite automata are
equivalent.

» For convenience we use languages to represent various computational problems.

* For example, the acceptance problem for DFAs of testing whether a particular
finite automaton accepts a given string can be expressed as a language, A, .

Appy =< B,w>:B is a DFA that accepts input string w}.

 The problem of testing whether a DFA B accepts an input w is the same as the
problem of testing whether <B,w> is a member of the language A, .

e Similarly, we can formulate other computational problems in terms of testing
membership in a language. Showing that a landguage 1s decidable 1s the same as
showing that the computation problem is decidable (= algorithmically solvable).



The Acceptance Problem for DFAs 1s Decidable

Theorem 1 A, is a decidable language.

We present a TM M that decides App, .

M = “on input <B,w>, where B 1s a DFA and w is a string:

1. Simulate B on input w.

2. If the simulation ends in an accept state, accept. If it ends in a non-
accepting state, reject. “

A few implementation details:

The input is <B,w>. Itis a representation of a DFA B together with a string w. One
reasonable representation of B is a list of its five components, Q,%,0,q,,

When M receives its input, M first checks on whether it properly represents a DFA B and
a string w. If not, it rejects.

Then M carries out the simulation in a direct way. It keeps track of B’s current state and
B’s current position in the input w.

Initially, B’s current state is ¢, and B’s current position is the leftmost symbol of w.
The states and position are updated according to the specified transition function .

When M finishes %rocessmg the last symbol of w, M accepts if B 1s in an accepting
state; M rejects if B is in a non-accepting state.



The Acceptance Problem for NFAs and REXs.

We can prove similar result for NFAs and Regular Expressions.

Aypy =< B,w>: B is a NFA that accepts input string wi.
Theorem 2: A, is a decidable language.
N = “on input <B,w>, where B 1s a NFA and w 1s a string:

1. Convert NFA B to an equivalent DFA C using the Procedure for this
conversion given in Theorem “‘subset construction”.

2. Run TM M from Theorem 1 on input <C,w>.
3. If M accepts, accept, otherwise reject.”

Running TM M in stage 2 means incorporating M into the design of N as a subprocedure.

Appy ={<R,w>: R is a regular Expression that generates string w}.
Theorem 3: Azex is a decidable language.

P = “on input <R,w>, where R 1s a reg.expr. and w 1s a string:

1. Convert R to an equivalent DFA C using the procedure for this conversion
given in Theorem earlier.

2. Run TM M from Theorem 1 on input <C,w>.
3. If M accepts, accept, otherwise reject.”



The Emptiness Problem for the Language of a
Finite Automaton.

E . ={<A> Ais a DFA and L(A)=J}.

Theorem 4-: E,., 1sadecidable language.

» A DFA accepts some string if and only if reaching an accept state from the
start state by traveling along the arrows of the DFA is possible.

* To test this condition we can design a TM T that uses marking algorithm
similar to that used in example “connectedness of a graph”.

T = “on input <A>, where A is a DFA :
I. Mark the start state of A.
2. Repeat the following stage until no new states get marked:

3. Mark any state that has a transition coming into it from any state
that 1s already marked.

4. If no accept state 1s marked, accept; otherwise reject.”



The Equivalence Problem for Finite Automata.

EQ,.. ={<A,B> A and B are DFAs and L(A)=L(B)}.

Theorem 5: EQ,., is a decidable language.

* Consider a symmetric difference of L(A) and L(B), 1.e a language L(C)

L(C) (L[.l] ‘WJ U (Ll_l N l.u;n;h),
\ The complement of L(A)
e Hence, L(C) =Q if and only if L(A)= L(B).

* We can construct C from A and B with the constructions for proving the class of
regular languages closed under complementation, union, and intersection.

e These constructions are algorithms that can be carried out by Turing machines.

F="*on input <A,B>, where A,B are DFAs : L(A) L(B)
1. Construct DFA C as described. \ /

2. Run TM T from theorem 4 on input <C>.
3. If T accepts, accept; if T rejects, reject.”




Decidable Problems Concerning CFLSs

* Here we describe algorithms to test whether a CFG generates a particular string
and to test whether the language of a CFG 1s empty.

*Let Ay ={<G,w> G is a CFG that generates string w}.

Theorem 6: A ;; is a decidable language.

For CFG G and string w we want to test whether G generates w.

One idea is to use G to go through all derivations to determine whether any is a
derivation of w. This idea doesn’t work, as infinitely many derivations may have to be
tried. If G does not generate w, this algorithm would never halt. Hence this idea gives a
TM which is recognizer, not a decider.

To make this TM into a decider we need to ensure that the algorithm tries only finite
many derivations.

If G 1s in Chomsky normal form, any derivation of w has 2n-1 steps, where n is the
length of w. Only finite many such derivations exist.

We present a TM S that decides A CFG -

S = “on input <G,w>, where G 1s a CFG and w 1s a string:

I. Convert G to an equivalent grammar in Chomsky normal form.

2. List all derivations with 2n-1/ steps, where n 1s the length of w, except if
n=0, then instead list all derivations with 1 step.

3. If any of these derivations generate w, accept; if not, reject. *



Decidable Problems Concerning CFLs(cont.)

® Here we describe an algorithm to test whether the language of a CFG is empty.
eLet E .. ={<G>GisaCFG and L(G)=}.
Theorem 7. E.. is a decidable language.

For CFG G we need to test whether the start variable can generate a string of terminals.

The aligorlthm does so by solving a more general problem. It determines for each
variable whether that variable is capable of generating a string of terminals.

When the algorithm has determined that a variable can generate some string of
terminals, the algorithm keeps track of this information by placing a mark on that
variable. First the algorithm marks all terminal symbols in the grammar.

Then it scans all the rules of the grammar. If it ever finds a rule that permits some
variable to be replaced by some string of symbols all of which are already marked, the
algorithm knows that this variable can be marked, too.

The algorithm continues in this way until it cannot mark any additional variables. The
TM R implements this algorithm.

“on input <G>, where G is a CFG:

1. Mark all terminals in G. Repeat (2) until no new variables get marked:

2. Mark any variable A where G has arule A -UU,..U, and each
symbol U,,U,,..,U, has already been mar rked. *

3. If the start symbol is not marked, accept; otherwise reject. “



Decidable Problems Concerning CFLs(cont.)

*Let EQ .. ={<G,H >:Gand H are CFGs and L(G)=L(H)}.

* This language 1s undecidable (we cannot apply technique used in “ EQ, ., is decidable”;
the class of CFLs is not closed under complementation and intersection).

» We can prove now the following.

eTheorem 8: Every CFL is decidable.
® Let A bea CFL and G be a CFG for A.

Turing-recognizable

decidable

e Here is a TM M(G) that decides A.
e We build a copy of G into M(G).
e Si1s a TM from Theorem 6.

context-free

regular

M(G) = “on input w:
I. RunTM S on input <G,w>

2. If this machine accepts, accept;
if it rejects, reject. «

10



