
1

CHAPTER  4

Decidability 

Outline

• Decidable Languages

• decidable problems concerning regular languages

• decidable problems concerning context-free languages

• The Halting Problem

• The diagonalization method

• The halting problem is undecidable

• A Turing unrecognizable languages



2

Decidability (intro.)

• We have introduced Turing machines as a model of a general purpose computer

• We defined the notion of algorithm in terms of Turing machines by means of the
Church-Turing thesis

• In this chapter we

• begin to investigate the power of algorithms to solve problems

• demonstrate certain problems that can be solved algorithmically and others
that cannot

• Our objective is to explore the limits of algorithmic solvability

• Why should we study unsolvability? Showing that a problem is unsolvable
doesn’t appear to be of any use if we have to solve it. But …

• We need to study this phenomenon for two reasons:

• First, knowing that a problem is algorithmically unsolvable is useful
because then you realize that the problem must be simplified or altered
before you can find an algorithmic solution.

• The second reason is cultural. Even if you deal with problems that clearly
are solvable, a glimpse of the unsolvable can stimulate your imagination
and help you gain an important perspective on computation.



3

Decidable Languages
• In this section we give some examples of languages that are decidable by
algorithms.

• For example, we present an algorithm which tests whether a string is a member of
a context-free language.

• This problem is related to the problem of recognizing and compiling programs in a
programming language.

Decidable Problems Concerning Regular Languages
• We begin with certain computation problems concerning finite automata

• We give algorithms for testing whether a finite automata accepts a string, whether
the language of a finite automaton is empty, and whether two finite automata are
equivalent.

• For convenience we use languages to represent various computational problems.

• For example, the acceptance problem for  DFAs of testing whether a particular
finite automaton accepts a given string can be expressed as a language,          .

• The problem of testing whether a DFA B accepts an input w is the same as the
problem of testing whether <B,w> is a member of the language          .

• Similarly, we can formulate other computational problems in terms of testing
membership in a language. Showing that a language is decidable is the same as
showing that the computation problem is decidable (= algorithmically solvable).

DFAA

}.:,{ wstringinputacceptsthatDFAaisBwBADFA ><=

DFAA



4

• We present a TM M that decides          .

M = “on input <B,w>, where B is a DFA and w is a string:

1. Simulate B on input w.

2. If the simulation ends in an accept state, accept. If it ends in a non-
accepting state, reject. “

A few implementation details:

• The input is <B,w>. It is a representation of a DFA B together with a string w. One
reasonable representation of B is a list of its five components, 

• When M receives its input, M first checks on whether it properly represents a DFA B and
a string w. If not, it rejects.

• Then M carries out the simulation in a direct way. It keeps track of B’s current state and
B’s current position in the input w.

• Initially, B’s current state is      and B’s current position is the leftmost symbol of w. 

• The states and position are updated according to the specified transition function     .

• When M finishes processing the last symbol of w, M accepts if B is in an accepting
state; M rejects if B is in a non-accepting state.

The Acceptance Problem for DFAs is Decidable

Theorem 1 is a decidable language.

0q

DFAA

DFAA

.,,,, 0 FqQ δΣ

δ



5

Theorem 3:           is a decidable language.

N = “on input <B,w>, where B is a NFA and w is a string:

1. Convert NFA B to an equivalent DFA C using the procedure for this
conversion given in Theorem “subset construction”.

2. Run TM M from Theorem 1 on input <C,w>.

3. If M accepts, accept, otherwise reject.”

Running TM M in stage 2 means incorporating M into the design of N as a subprocedure.

The Acceptance Problem for NFAs and REXs.

Theorem 2:           is a decidable language.NFAA

REXA

We can prove similar result for NFAs and Regular Expressions. 

}.:,{ wstringinputacceptsthatNFAaisBwBANFA ><=

}.:,{ wstringgeneratesthatExpressionregularaisRwRAREX ><=

P = “on input <R,w>, where R is a reg.expr. and w is a string:

1. Convert R to an equivalent DFA C using the procedure for this conversion
given in Theorem earlier.

2. Run TM M from Theorem 1 on input <C,w>.

3. If M accepts, accept, otherwise reject.”



6

T = “on input <A>, where A is a DFA :

1. Mark the start state of A.

2. Repeat the following stage until no new states get  marked:

3. Mark any state that has a transition coming into it from any state
that is already marked.

4. If no accept state is marked, accept; otherwise reject.”

The Emptiness Problem for the Language of a 

Finite Automaton.

Theorem 4:           is a decidable language.

• A DFA accepts some string if and only if reaching an accept state from the
start state by traveling along the arrows of the DFA is possible.

• To test this condition we can design a TM T that uses marking algorithm
similar to that used in example “connectedness of a graph”.

DFAE

}.)(:{ ∅=><= ALandDFAaisAAEDFA



7

F= “on input <A,B>, where A,B are DFAs :

1. Construct DFA C as described.

2. Run TM T from theorem 4 on input <C>.

3. If T accepts, accept; if T rejects, reject.”

The Equivalence Problem for Finite Automata.

Theorem 5:             is a decidable language.

• Consider a symmetric difference of L(A) and L(B), i.e a language L(C)

• Hence,  

• We can construct C from A and B with the constructions for proving the class of
regular languages closed under complementation, union, and intersection.

• These constructions are algorithms that can be carried out by Turing machines.

DFAEQ

)}.()(:,{ BLALandDFAsareBandABAEQDFA =><=

The complement of L(A)

).()()( BLALifonlyandifCL =∅=

L(A)  L(B) 



8

• For CFG G and string w we want to test whether G generates w.

• One idea is to use G to go through all derivations to determine whether any is a
derivation of w. This idea doesn’t work, as infinitely many derivations may have to be
tried. If G does not generate w, this algorithm would never halt. Hence this idea gives a
TM which is recognizer, not a decider.

• To make this TM into a decider we need to ensure that the algorithm tries only finite
many derivations.

• If G is in Chomsky normal form, any derivation of w has 2n-1 steps, where n is the
length of w. Only finite many such derivations exist.

• We present a TM S that decides      .

S = “on input <G,w>, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky normal form.

2. List all derivations with 2n-1 steps, where n is the length of w, except if
n=0, then instead list all derivations with 1 step.

3. If any of these derivations generate w, accept; if not, reject. “

• Here we describe algorithms to test whether a CFG generates a particular string
and to test whether the language of a CFG is empty.

• Let

Theorem 6:           is a decidable language.CFGA

Decidable Problems Concerning CFLs

}.:,{ wstringgeneratesthatCFGaisGwGACFG ><=

CFGA



9

• For CFG G we need to test whether the start variable can generate a string of terminals.

• The algorithm does so by solving a more general problem. It determines for each
variable whether that variable is capable of generating a string of terminals.

• When the algorithm has determined that a variable can generate some string of
terminals, the algorithm keeps track of this information by placing a mark on that
variable. First the algorithm marks all terminal symbols in the grammar.

• Then it scans all the rules of the grammar. If it ever finds a rule that permits some
variable to be replaced by some string of symbols all of which are already marked, the
algorithm knows that this variable can be marked, too.

• The algorithm continues in this way until it cannot mark any additional variables. The
TM R implements this algorithm.

R = “on input <G>, where G is a CFG:

1. Mark all terminals in G. Repeat (2) until no new variables get marked:

2. Mark any variable A where G has a rule                       and each 
symbol                    has already been marked.

3. If the start symbol is not marked, accept; otherwise reject. “

• Here we describe an algorithm to test whether the language of a CFG is empty.

• Let 

Theorem 7:           is a decidable language.CFGE

Decidable Problems Concerning CFLs(cont.)

}.)(:{ ∅=><= GLandCFGaisGGECFG

kUUUA ...21→

kUUU ,...,, 21



10

M(G) = “on input w:

1. Run TM S on input <G,w>

2. If this machine accepts, accept;
if it rejects, reject. “

• Let

• This language is undecidable (we cannot apply technique used in “        is decidable”; 
the class of CFLs is not closed under complementation and intersection).

• We can prove now the following.

•Theorem 8:   Every CFL is decidable.

• Let A be a CFL and G be a CFG for A.

• Here is a TM M(G) that decides  A.

• We build a copy of G into M(G).

• S is a TM from Theorem 6.

Decidable Problems Concerning CFLs(cont.)

)}.()(:,{ HLGLandCFGsareHandGHGEQCFG =><=

DFAEQ

regular

context-free

decidable

Turing-recognizable


