
1

CHAPTER 2

Context-Free Languages

Outline

• Context-Free Grammars

• definitions, examples, designing, ambiguity, Chomsky normal form

• Pushdown Automata

• definitions, examples, equivalence with context-free grammars

• Non-Context-Free Languages

• the pumping lemma for context-free languages

2

Pushdown Automata (PDAs)
• A new type of computational model.

• It is like a NFA but has an extra component called stack.

• The stack provides additional memory beyond the finite amount available in the
control.

• The stack allows pushdown automata to recognize some non-regular languages.

• Pushdown automata are equivalent in power to context-free grammars.

a a b b
State

control input

a a b b
x
y
z

…

State

control input

stackSchematic of a finite automaton

Schematic of a
pushdown automaton

• A PDA can write symbols on stack and read them back later

• Writing a symbol is pushing, removing a symbol is popping

• Access to the stack, for both reading and writing, may be done only at the top
(last in, first out)

• A stack is valuable because it can hold an unlimited amount of information.

3

Example
• Consider the language

• Finite automaton is unable to recognize this language.

• A PDA is able to do this.

}.0:10{ ≥nnn

Informal description how the PDA for this language works.

• Read symbols from the input.

• As each 0 is read, push it into the stack.

• As soon as 1s are seen, pop a 0 off the stack for each 1 read.

• If reading the input is finished exactly when the stack becomes empty of
0s, accept the input.

• If the stack becomes empty while 1s remain or

if the 1s are finished while the stack still contains 0s or

if any 0s appear in the input following 1s,

reject the input.

4

)(: εεεδ Γ×Ρ→Γ×Σ× QQ

• A pushdown automaton (PDA) is specified by a 6-tuple

, where
is a finite set of states,

is a finite input alphabet,

is a finite stack alphabet,

is the transition function,

is the initial state,

is the set of final states.

• It computes as follows: it accepts input w if w can be written as
where each and a sequence of states and strings

exist that satisfy the next three conditions (the strings
represent the sequence of stack contents that PDA has on the accepting branch of
the computation.

Formal Definition of PDAs

),,,,(0 FqQ δΓΣ

QF ⊆

Qq ∈0

Σ
Q

Non-deterministic

Is a collection of all subsets

}{

}{

ε

ε

ε

ε

U

U

Γ=Γ

Σ=ΣΓ

.,, *

1 Γ∈Γ∈== + tandbasomeforbtsatswhere ii ε

,1,...,0,),,(),(.2 11 −=∈ ++ niawrbr iii δ

Frn ∈.3

ε== 000 ,.1 sqr

,,...,, 21 nwwww =
Qrrrr n ∈,...,,, 210εΣ∈iw

*

210 ,...,,, Γ∈nssss is

5

Input: 0 1

Stack: 0 $ 0 $ 0 $

q1 {(q2,$)}

ε

:δ q2 {(q2,0)} {(q3,)}
q3 {(q3,)} {(q4,)}
q4

∅
∅

∅

∅∅

q4q1 q2 q3

}4,1{ qqF =

}1,0{=Σ

}4,3,2,1{ qqqqQ =

),1,,,(FqQM δΓΣ=

Example
• Consider the language }.0:10{ ≥nnn

,$}0{=Γ

ε

ε ε

ε
ε ε

$, →εε ε→0,1

0,0 →ε ε→0,1

εε →,$

: when the machine is reading an a from the input it may replace the symbol b on the

top of stack with a c. Any of a,b, and c may be .

a is , the machine may take this transition without reading any input symbol.

b is , the machine may take this transition without reading and popping any stack symbol.

c is , the machine does not write any symbol on the stack when going along this transition.

cba →,

ε

ε

ε

ε

6

q1 q4q2 q3

More Examples
• Language }.0,,:{ kiorjiandkjicba kji

==≥

$, →εε εεε →,

aa →ε, ε→ab,

εε →,$

q7q5 q6

εε →,b ε→ac,

εε →,$

εεε →,

εε →,c

εεε →,

• Language }*}.1,0{:{ ∈wwwR

q4q1 q2 q3
$, →εε

1,1

0,0

→

→

ε

ε

ε

ε

→

→

0,0

1,1

εε →,$εεε →,

7

Equivalence with Context-free Grammars

• Context-free grammars and pushdown automata are equivalent in their
descriptive power. Both describe the class of context-free languages.

• Any context-free grammar can be converted into a pushdown automaton that
recognizes the same language, and vice versa.

• We will prove the following result

Theorem. A language is context-free if and only if some pushdown
automaton recognizes it.

• This theorem has two directions. We state each direction as a separate lemma.

Lemma 1. If a language is context-free, then some pushdown
automaton recognizes it.

• We have a context-free grammar G describing the context-free language L.

• We show how to convert G into an equivalent PDA P.

• The PDA P will accept string w iff G generates w, i.e., if there is a leftmost
derivation for w.

• Recall that a derivation is simply the sequence of substitution made as a
grammar generates a string.

01|1|10

|

AAA

ASS

→

→ ε

lm lm lm lm lm lm lm
01100110110011101100110111 ⇒⇒⇒⇒⇒⇒⇒• SSAASSSAASS

8

01|1|10

|

AAA

ASS

→

→ ε

lm lm lm lm lm lm lm

01100110110011101100110111 ⇒⇒⇒⇒⇒⇒⇒• SSAASSSAASS

How do we check that G generates 0110011 ?

ε

SASA 11010 ⇒

01101 ⇒S

SA11

SASA 1110110 ⇒

...01 ⇒AS

SA1100

S0011

Promising variants

• We can use stack to store an intermediate string of
variables and terminals.

• It is better to keep only part (suffix) of the
intermediate string, the symbols starting with the first
variable.

• Any terminal symbols appearing before the first
variable are matched immediately with symbols in the
input string.

• Use non-determinism, make copies.

Idea

9

Informal description of PDA P

1. Place the marker symbol $ and the start symbol on the stack.

2. Repeat the following steps forever.

a) If top of stack is a variable symbol A, non-deterministically select one of
the rules for A and substitute A by the string on the right-hand side of the
rule.

b) If the top of stack is terminal symbol a, read the next symbol from the
input and compare it to a. If they match, pop a and repeat. If they do not
match, reject on this branch of the non-determinism.

c) If the top of the stack is the symbol $, enter the accept state. Doing so
accepts the input if it has all been read.

lm lm lm lm lm lm lm

01100110110011101100110111 ⇒⇒⇒⇒⇒⇒⇒• SSAASSSAASS

ε

SASA 11010 ⇒

SA11

SASA 1110110 ⇒

SA1100

S0011

10

Construction of PDA P

acceptq

startq

loopq

$, S→εε

εε →,$

wAruleeachforwA →→,ε

aterminaleachforaa ε→, String of terminals

and variables

For |w|>1 use

extensions

q

2q
r

1q
q

r

xyzsa →,

zsa →,

x→εε ,

y→εε ,

11

Example

acceptq

startq

loopq

$, →εε

εε →,$

aT →,ε

ε

ε

εε

ε

→

→

→

→

bb

aa

T

bS

,

,

,

,

T→εε ,

bS →,ε

a→εε ,T→εε ,

ε|

|

TaT

baTbS

→

→

S→εε ,

12

Equivalence with Context-free Grammars

• We are working on the proof of the following result

Theorem. A language is context-free if and only if some pushdown
automaton recognizes it.

• We have proved

Lemma 1. If a language is context-free, then some pushdown
automaton recognizes it.

• We have shown how to convert a given CFG G into an equivalent PDA P.

• Now we will consider the other direction

Lemma 2. If a pushdown automaton recognizes some language, then
it is context-free.

• We have a PDA P, and want to create a CFG G that generates all strings that
P accepts.

• That is G should generate a string if that string causes the PDA to go from its
start state to an accept state (takes P from start state to an accept state).

13

• Let P be an arbitrary PDA.

• For each pair of states p and q in P the grammar will contain a variable

• This variable will generate all strings that can take P from state p with empty stack
to q with an empty stack

• Clearly, all those strings can also take P from p to q, regardless of the stack
contents at p, leaving the stack at q in the same condition as it was at p.

q1

q4

q2

q3

$, →εε

ε→0,1

0,0 →ε

ε→0,1
εε →,$

pqA

• string 000111 takes P from start state

to a finite state;

• string 00011 does not.

Example

Design a Grammar

14

Design a Grammar (cont.)

First we modify P slightly to give it the following three features.

1. It has a single accept state, .

2. It empties its stack before accepting.

3. Each transition either pushes a symbol onto stack (a push move)

or pops one off the stack (a pop move), but does not do both at

the same time.

acceptq

. . .

εεε →,

εεε →,

εεε →,

q1 q2
cba →,

q1 q2
εε →,a

q1 q2ε→ba, c→εε ,

q1 q2εε →b,ba →ε,

. . .

15

Design a Grammar (ideas)

• For any string x that take P from p to q, starting and ending with an empty
stack, P’s first move on x must be a push; the last move on x must be a pop.
(Why?)

• If the symbol pushed at the beginning is the symbol popped at the end, the
stack is empty only at the beginning and the end of P’s computation on x.

• We simulate this by the rule , where a is the input symbol
read at the first move, b is the symbol read at the last move, r is the state
following p, and s the state preceding q.

• Else, the initially pushed symbol must get popped at some point
before the end of x, and thus the stack becomes empty at this
point.

• We simulate this by the rule , r is the state when the stack
becomes empty.

baAA rspq →

rqprpq AAA →

p

r

q

s
ta →ε,

ε→tb,

p

r
q

16

Formal Design

• Let

• We construct G as follows.

• The variables are

• The start variable is

• Rules:

• For each p,q,r,s from Q,, if we have

put the rule in G.

• For each p,q,r from Q,, put the rule in G.

• For each p from Q,, put the rule in G.

εΣ∈Γ∈ bat ,,

acceptqqA
0

p

r

q

sta →ε, ε→tb,

}).{,,,,,(0 acceptqqQP δΓΣ=

},:{ QqpApq ∈

rqprpq AAA →

ε→ppA

baAA rspq →

. . .

