CHAPTER 2
Context-Free Languages

Outline

e Context-Free Grammars

e definitions, examples, designing, ambiguity, Chomsky normal form

e Pushdown Automata

e definitions, examples, equivalence with context-free grammars
e Non-Context-Free Languages

* the pumping lemma for context-free languages

Context-Free Grammars: an overview

e Context-free grammars is a more powerful method of describing
languages.

* Such grammars can describe certain features that have a recursive
structure which makes them useful in a variety of applications.

e The collection of languages associated with context-free grammars
are called the context-free languages.

e They include all the regular languages and many additional
languages.

* We will give a formal definition of context-free grammars and
study the properties of context-free languages.

* We will also introduce pushdown automata, a class of machines
recognizing the context-free languages.

Context-Free Grammars

* Consider the following example of a context-free grammar, call it G 1.

A — 0A1 » A grammar consists of a collection of substitution rules, also called

productions.
A—B L .

 Each rule appears as a line in the grammar and comprises a symbol
B—e¢& and a string, separated by an arrow.

» The symbol is called a variable (capital letters; A,B). The string consists of variables and
other symbols called ferminals (lowercase letters, numbers, or special symbols; 0,1, €).

* One variable is designated the start variable. (usually, the variable on the left-hand side of
the topmost rule; A).

* We use grammars to describe a language by generating each string of that
language.
* For example, grammar G/ generates the string 000111
» The sequence of substitutions to obtain a string is called a derivation.
A derivation of string 000111 in grammar G/ is

A= 0Al= 00A11= 000A111=000B111= 000111

(this can be shown also by a parse tree)

 All strings generated in this way constitute the language
of the grammar G1, L(G1).
e Itis clear that L(GI)is {0™1": n=m)}.

n —O-» P>

000 111

Context-Free Grammars (cont.)

* Any language that can be generated by some context-free grammar is called a
context-free language (CFL)

 For convenience when presenting a context-free grammar, we abbreviate several
rules with the same left-hand variable, such as A 0A1 and A 2B, into a single line
A2 0Al | B, using the symbol “I” as an “or”’.

e Example of a context-free grammar called G2, which describes a fragment of the
English language:

< SENTENCE > — < NOUN — PHRASE ><VERB — PHRASE >
< NOUN — PHRASE > - < CMPLX — NOUN >|< CMPLX — NOUN >< PREP - PHRASE >
<VERB - PHRASE > —» < CMPLX —VERB >|< CMPLX —VERB >< PREP — PHRASE >
< PREP— PHRASE > — < PREP >< CMPLX — NOUN >
<CMPLX — NOUN > — < ARTICLE >< NOUN >
< CMPLX —VERB > — <VERB >|<VERB >< NOUN — PHRASE >
< ARTICLE > — althe
< NOUN > — boyl girl| flower
< VERB > — touchesllikes|sees
< PREP > — with a boy sees

the boy sees a flower
e Strings in L(G2) include the following three examples | @ 8irl with a flower likes the boy

e Each of these strings has a derivation in grammar G2. The following is a derivation of the

I rine on the i
first string on the St< SENTENCE > = < NOUN — PHRASE ><VERB — PHRASE >= < CMPLX — NOUN >< VERB — PHRASE >

= < ARTICLE >< NOUN ><VERB — PHRASE >=a < NOUN ><VERB — PHRASE >—=
a boy <VERB — PHRASE > = a boy <CMPLX —VERB > = a boy <VERB > = a boy sees

Formal Definition of a Context-Free Grammar
e A context-free grammar is a 4-tuple (V,%,R,S), where

1% is a finite set called variables,
y is a finite set (=alphabet), disjoint from V, called the terminals,
R is a finite set of rules, with each rule being a variable and a string

of variables and terminals, and
SeV s the start variable.

e If u, v, and w are strings of variables and terminals, and A 2 w is a
rule of the grammar, we say that uAv yields uwv, writing uAv = uwv.

e Write uév if u=v or ifa SEqQueEnce u..u-.....u exists fOl‘kZ()aIld
190 900 U
I/t:>l/t1:>bt2:>...:>btk:>\/'.

* The language of the grammar is {we X" : S = w}.

® Hence, for GI: V={A,B}, ¥ ={0,1,&}, S=A, and R is the collection of those three rules.

for G2: V={<SENTENCE>,<NOUN-PHRASE>,<VERB-PHRASE> <PREP-PHRASE>,
<CMPLX-NOUN>,<CMPLX-VERB>,<ARTICLE>,<NOUN>,<VERB>,
<PREP>}, X ={a,b,c,...,7," "}.

« Example: G3=({S},{(,)},R,S). The set of rulesis § — (S)ISS|e.
L(G3) 1s the language of all strings of properly nested parentheses.

Designing Context-Free Grammars

The design of context-free grammars requires creativity (no simple universal
methods).

The following techm% es will be helpful, singly or in combination, when you
are faced with the problem of constructing a CFG.

a) Many CFGs are the union of simpler CFGs. If you must construct a CFG
for a CFL that you can break into simpler pieces, do so and then construct
individual grammars for each piece. These individual grammars can be
easily combined into a grammar for the original langu fe by putting all
their rules together and then adding the new rule S — §,15,1...1S,,
where the variables S; are the start variables for the 1nd1v1dua1 grammars.
Solving several 31mpler problems 1s often easier than solving one
complicated problem.

To get a grammar for {0"1":n =0} U{1"0" :n >0}
first construct two grammars

S, =085 11le for {0"1":n=0} and

S, —»18,0 le for {1"0":n>0},

and then add therule § — §, 1S, to give the grammar
S—=>515,; S, = 08,1 le; S, = 15,0 le

Designing Context-Free Grammars (cont.)

b) Constructing a CFG for a language that happens to be regular is easy if you
can construct a DFA for that language. You can convert any DFA into an
equivalent CFG as follows:

e Make a variable R; for each state g; of the DFA.

* Addrule R — 4R tothe CRG if thereis an arc from ¢; tog; with
label a. : 4

e Addtherule R, = € if ¢, is an accept state of the DFA.

e Make R, the start variable of the grammar, where ¢, is the start state
of the machine.

Verify on your own that the resulting CFG generates the same language that
the DFA recognizes.

R, = OR, | 1R,
R —1R I0R, | €
R, - OR, | 1R,

={w: w contains at least one 1 and an even number of Os follow the last 1 }

e Thus, any regular language is a CFL.

c)

Designing Context-Free Grammars (cont.)

Use the rule of the form R — yRy if context-free languages contain strings
with two substrings that are ‘linked’ in the sense that a machine for such a
language would need to remember an unbounded amount of information about
one of the substrings to verify that it corresponds properly to the other
substring.

this situation occurs in the language {0™1" : n=m]}.

In more complex languages, the strings may contain certain structures that
appear recursively as part of other (or the same) structures.

this situation occurs in the language of all strings of properly nested parentheses.
S —=(S)ISSle.

the situation occurs also in grammar that generates arithmetic expressions.

<EXPR> — <EXPR>+<TERM >|<TERM >
G,: <TERM > — <TERM >x< FACTOR >|< FACTOR >
<FACTOR > — (< EXPR>)la

G;: <EXPR> — <EXPR>+<EXPR>|<EXPR>x<EXPR>| (<EXPR>)|a

* Place the variable symbol generating the structure in the location of the
rules corresponding to where that structure may recursively appear.

[eftmost and Rightmost Derivations

* We have a choice of variable to replace at each step.

* derivations may appear different only because we make the same replacement in a
different order.

* to avoid such differences, we may restrict the choice.
* A leftmost derivation always replace the leftmost variable in a string.
» A rightmost derivation always replace the rightmost variable in a string.
. :> , = used to indicate derivations are leftmost or rightmost.
0 Example strings of 0’s and 1’s such that each block of 0’s is followed by at least as many 1’s.

S —> ASle¢
A — 0Al1Il A1101

*S = AS = ALS = 0115 = 011AS = 0110ALS => 01100118 => 0110011 / \
m m m m m m m A
OS:>AS:>AAS:>AA:>AOA1:>A0011:>A10011:>0110011 /‘ / \
rm rm rm rm
One can prove the following for a grammar G S A
S Sw(ie., wisin L(G)) iff / \ / ‘ \
S =Sw iff 0 1 0 A 1

A /\
' ' 0 1

there is a parse tree for G with root S and yield
(labels of leaves, from the left) w.

Ambiguous Grammars

* A CFG G 1s ambiguous if one or more words from L(G) have multiple leftmost
derivations from the start variable.

e equivalently: multiple rightmost derivations, or multiple parse trees.

* Example: consider ¢ _, 45|g A — 0411 A1]01 and the string 00111.
{ strings of 0’s and 1’s such that each block of 0’s is followed by at least as many 1’s }

OSﬁASﬁOAlSﬁOAHSﬁ 001115%%00111

°§ = AS = AlS = 0A11S =001115S = 00111

Im Im Im Im Im

Inherently Ambiguous Languages

* A CFL L isinherently ambiguous if every CFG for L is ambiguous.
e such CFLs exist: e.g., {21172":i=jor j=k}.

e an inherently ambiguous languages would absolutely unsuitable as a
programming language.

* The language of our example grammar is not inherently ambiguous, even
though the grammar is ambiguous.

e Change the grammar to force the extra 1’s to be generated last.

S—> ASle;, A— OAllB; B—B1101

10

Chomsky Normal Form

* A context-free grammar is in Chomsky form if every rule is of the form

A — BC
- a

where a 1s any terminal and A, B, C are any variables- except that B and C may not
be the start variable. In addition we permit the rule § — ¢ , where § is the start
variable.

Theorem: Any CFL is generated by a CFG in Chomsky form.
Proof (by construction; we convert any grammar into Chomsky form)

e add start symbol Sy and the rule § =S where S was the original start symbol.

e remove an € -rule A _s ¢, where A is not the start variable (v,u,ware strings of
variables and terminals).

e then for each occurrence of an A on the right-hand side of a rule, add a new rule with
that occurrence deleted (e.g2., R > uAv >— R —uv

R — uAvAw >— R — uvAw;, R — uAvw;, R — uvw.
eif wehave p_y 4 weadd R _ ¢ unless we had previously removed the rule p _ ¢
e repeat this step until we eliminate all ¢ - rules not involving the start symbol.

e remove a unite rule 4'~y'p Whenever arule g _,, appears, add the rule 4 _5,, unless
this was a unit rule previously deleted. Repeat.

o replace each rule A —> uu,...u, , where k 23 and each u,is a variable or terminal with
rules : : . are new variables.

. A%ulAl, Al %u214.2, A2 %.l/l3A3, cee o Ak_z %uk_luk.. A‘[.

if k>?2, replace any terminal ; in the preceding rule(s) with new variable {7 and add

the rule U —u,. 1

Example

S — ASAlaB Sp=25 Be Sy — S
A> BlS | 5 ASAIB gy | G ASA|aBla
B— ble A— BIS A— BlSle
B— ble B—>b I
W
So— S
S, —> S
A 1A 0
i:gslfgmmms A TS sy S —> ASAlaBla | SA 1AS
= — A— BIS I
B— b
B— b
4{
So— _ASAlaBla | SA 1AS " S, — ASAlaBla | SA |AS
S — ASAlaBla | SA 1AS S — ASAlaBla | SA 1AS
PR = A— b1ASAlaBla |SA |AS
A—>S B— b
B— b

Final step: we simplified the resulting

grammar by using a single variable U and rule
U—>a

S, —> AA IUBla | SA 1AS

S = AA IUBla | SA |AS
A— b I1AA IUBla | SA |AS
A — SA

U—a

B— b 12

