CHAPTER 1 Regular Languages

Outline

- Finite Automata (FA or DFA)
 - definitions, examples, designing, regular operations
- Non-deterministic Finite Automata (NFA)
 - definitions, equivalence of NFAs and DFAs, closure under regular operations
- Regular expressions
 - definitions, equivalence with finite automata
- Non-regular Languages
 - the pumping lemma for regular languages

Non-regular Languages

- To understand the power of finite automata we must also understand their limitation.
- We will show that certain languages cannot be recognized by any finite automaton.
- Try to build an automaton that recognizes the language

$$L = \{0^m 1^n : n = m\}.$$

- The automaton starts by seeing 0 inputs.
- It has to remember the exact number of 0 inputs, since it will later check that number against the number of 1 inputs.
- But the number of 0 inputs can be arbitrary large.
- Intuitively, no finite number of states can remember the exact number of 0 inputs.
- We conclude that this language is not regular.
- The Pumping Lemma for regular languages formalize this argument.

Pumping Lemma

Lemma. For any regular language L, there exists a number $p \ge 1$ such that for every word $w \in L$ with at least p letters there exist x, y, z with w = xyz and |y| > 0 and $|xy| \le p$ such that for every number $i \ge 0$, $xy^iz \in L$.

• We call p the pumping number of L, and xyz the pumping decomposition of w.

Proof

- Consider a regular language L.
- *L* is accepted by some finite automaton *M*.
- Let p be the number of states of M.
- Now consider a word in L with at least p letters.
- Then w is accepted by M along some path that contains a loop.
- We can construct other paths of M by going through the loop $0,1,2,\ldots$ times.
- These paths also accept words in L.
- In other words, any accepting word w of length at least p can be "pumped" to find infinitely many other accepted words.

How to prove that a language is not regular?

- Suppose we want to prove that a language L is not regular.
- We can do this by showing that the pumping lemma does not hold for L; that is, we prove the negation of the pumping lemma:

for any number $p \ge 1$ **there exists** a word $w \in L$ with at least p letters such that **for all** x, y, z with w = xyz and |y| > 0 and $|xy| \le p$ **there exists** a number $i \ge 0$ such that $xy^iz \notin L$.

- •We have to consider all possibilities for the pumping number p,
- all possibilities for the pumping decomposition x, y, z (often by case analysis).
- But we are free to choose a single word w,
- and a single iteration number *i*.
- Choosing a suitable w is usually the crux of the proof (one needs a bit of creative thinking)
- For i, we can typically choose i=0 or i=2.
- Example: $L = \{0^m 1^n : n = m\}$ is not regular.
- Choose any pumping number p (we know only that $p \ge 1$). Choose $w = o^p 1^p$.
- Consider any pumping decomposition w=xyz (|y|>0 and $|xy| \le p$).
- Hence $x = 0^a$ and $y = 0^b$ and $z = 0^{p-a-b}1^p$, for $b \ge 1$.
- Choose i=2. Since $b \ge 1$, $xy^2z = 0^{p+b}1^p$ is not in L.

More Examples

Example 2: $L_2 = \{xx: x \in \{0,1\}^*\}$ is not regular.

- Choose any pumping number p (we know only that $p \ge 1$).
- Choose $w = 10^{p} 10^{p}$.
- Consider any pumping decomposition w=xyz (|y|>0 and $|xy| \le p$).
- There are two possibilities;
 - a) $x = 10^a$ and $y = 0^b$ and $z = 0^{p-a-b}10^p$, for $b \ge 1$. b) $x = \varepsilon$ and $y = 10^b$ and $z = 0^{p-b}10^p$.
- Choose i=2. We need to show that xy^2z is not in L_2 .
 - a) $xy^2z = 10^{p+b}10^p$, which is not in L_2 , since $b \ge 1$
 - b) $xy^2z = 10^b 10^p 10^p$, which is not in L_2 , since it contains three 1's.

Example 3: $L_3 = \{1^{n^2}: n \ge 0\}$ is not regular.

- Choose any pumping number p (we know only that $p \ge 1$).
- Choose $w = 1^{p^z}$.
- Consider any pumping decomposition w=xyz (|y|>0 and $|xy| \le p$).
- Hence, $x = 1^a$ and $y = 1^b$ and $z = 1^{p^2 a b}$, for $b \ge 1$ and $a + b \le p$. Choose i = 2. We need to show that $xy^2z = 1^{p^2 + b}$ is not in L_3 , i.e., $p^2 + b$ is not a square.
- Indeed, $b \ge 1 \Rightarrow p^2 + b > p^2$. $a+b \le p \Rightarrow p^2 + b \le p^2 + p < (p+1)^2$.

Proving (non)regularity.

- To prove that a language L is regular, there are essentially two options:
 - 1. Find a finite automaton (or regular expression) that defines L.
 - 2. Show that L can be built from simpler regular languages using operations that are known to preserve regularity $(i.e., \cup, \cap, \circ, *)$.
- To prove that a language L is not regular, there are again two options:
 - 1. Show that the negation of the pumping lemma holds for L.
 - 2. Show that a language that is known to be non-regular can be built from *L* and languages that are known to be regular using operations that are known to preserve regularity.
- Example (of the second proof technique):
 - $L_4 = \{w \in \{0,1\}^* : w \text{ contains the same number of 1's and 0's} \}$ is not regular, since $L = L_4 \cap (0^*1^*)$ (if L_4 were regular, then L would also be regular, which contradicts the first example).