
1

CHAPTER 1

Regular Languages

Outline
• Finite Automata (FA or DFA)

• definitions, examples, designing, regular operations

• Non-deterministic Finite Automata (NFA)

• definitions, equivalence of NFAs and DFAs, closure under regular
operations

• Regular expressions

• definitions, equivalence with finite automata

• Non-regular Languages

• the pumping lemma for regular languages

2

Finite Automata

• A simplest computational model

• Models computers with very small amount of memory

• various electromechanical devices

• Example: automatic door controller

• i.e., entries, exits in supermarkets

• Two states: open, closed

• 4 possible inputs (from two sensors)

• State transition table

front

rear

front both rear neither

neither front rear both

closed closed open closed closed
open closed open open open

State

Input signal

• State diagram

openclosed

rear
both
neither

front
rear
bothfront

neither

3

Finite Automata

• Other examples:

• elevator controller, dish washers, digital watches, calculators …

• Next we will give

• a definition of FA from mathematical prospective

• terminology for describing and manipulating FA

• theoretic results describing their power and limitation

• A finite automaton that has three states

q1q0

0 0

q2

0, 1 1

1

1M

4

(Deterministic) Finite Automata: Definition

• An important way to describe certain simple but highly useful
languages called ‘regular languages’. It is

• A graph with a finite number of nodes, called states.

• Arcs are labeled with one or more symbols from some alphabet.

• One state is chosen as the start state or initial state.

• Some states are final states or accepting states.

• The language of the FA is the set of strings that label paths that go from the
start state to some final state.

• Example: a finite automaton that has three states

q1q0

0 0

q2

0, 1 1

1

1M

5

Formal Definition of DFAs

• A deterministic finite automaton (DFA) is specified by a 5-tuple
, where

is a finite set of states,

is a finite alphabet,

is the transition function,

is the initial state,

is the set of final states.

• A DFA is usually represented by a directed labeled graph (so called
transition diagram)

• nodes = states,

• arc from q to p is labeled by the set of input symbols a such that

• no arc if no such a,

• start state indicated by word ‘start’ and an arrow,

• accepting states get double circles.

• For DFA we have q1q0

0 0

q2

0, 1 1

1

1M

),,,,(0 FqQ δΣ

QQ →Σ×:δ

QF ⊆

Qq ∈0

Σ
Q

paq =),(δ

...,1)0,2(,1)1,0(qqqq == δδ

}1{qF =

00 qq =

}1,0{=Σ

}2,1,0{ qqqQ =

6

Acceptance of Strings and the Language of DFA

• Let M= be a finite automaton

• Let be a string over

• M accepts w if a sequence of states exists in Q with
the following three conditions:

for and

q1q0

0 0

q2

0, 1 1

11M

),,,,(0 FqQ δΣ

,1,...,0),(.2 11 −== ++ nirwr iiiδ

Frn ∈.3

,.1 00 qr =

Σnwwww ,...,, 21=

nrrrr ,...,,, 210

• If L is a set of strings that M accepts, we say that L is the
language of machine M and write L=L(M).

• We say M recognizes L or M accepts L.

• In our example, L()=L,

where L={w: w contains at least one 1

and an even number of 0s follow the last 1}

7

Regular Languages

• A language is called regular language if some finite automaton
recognizes it.

• Main questions is:

Given a language L, construct, if possible, a FA M which
recognizes L, i.e., L(M)=L. (Is L a regular language?)

• Another question is

Given a FA M, describe its language L(M) as a set of strings over
its alphabet.

• First consider some examples:

q1

1

q2

0

3ML()={w: w is or ends in a 0}

0 1

ε

10 1

q2

0

2ML()={w: w ends in a 1}

q1
q1 r1

q2 r2

s

L()={w: w starts and ends with the same symbol}4M

ab

b
a ba

baab

8

Design of DFAs
• Given a language, design a finite automaton that recognizes it.

• This is a creative process, is art.

• No simple universal methods.

• One intuitive way: put yourself in the place of the machine you are
trying to design and see how you would go about performing the
machine’s task.

• we need to receive a string and to determine whether it is a member of the
language.

• we get to see the symbols in the string one by one.

• after each symbol we must decide whether the string seen so far is in the
language (we don’t know when the end of the string is coming, so we
must always be ready with the answer).

• we have a finite memory, so we have to figure out what we need to
remember about the string as we are reading it (we cannot remember all
we have seen). In this way we will find out how many states our
automaton will have (and what are the states).

• Example: the language consists of all strings over alphabet {0,1}
with odd number of 1s.

9

Design of a FA for L={strings containing 001}

• We scan our string. There are four possibilities:
1. have not just seen any symbol of the pattern,
2. have just seen a 0,
3. have just seen 00, or
4. have seen the entire pattern 001.

• So, four states q, q0, q00, q001
• Therefore,

q

0

q0

1

0

00 1

qo

1

qe

L={strings with odd number of 1s}

q00

1

q001

0 0,1

Two possibilities:
1. Even so far,
2. Odd so far.

• Hence two states.

1

10

Regular Operations

• Let L1 and L2 be languages. We define the regular operations
union, intersection, concatenation, and star as follows.

• Union:

• Intersection:

• Concatenation:

• Star:

• Example: Let the alphabet be the standard 26 letters {a,b,…,z}.
• If L1={good, bad} and L2= {boy, girl}, then

}.10:...{1

}.21:{21

}.21:{21

}.21:{21

21

*
LweachandkwwwL

LvandLwwvLL

LwandLwwLL

LworLwwLL

ik ∈≥=

∈∈=

∈∈=∩

∈∈=∪

o

Σ

=

=

∅=∩

=∪

*1

21

21

21

L

LL

LL

LL

o

{good, bad, boy, girl}.

{goodboy, badboy, goodgirl, badgirl}.

{ , good, bad, goodgood, badgood, badbad, goodbad,
goodgoodgood, goodgoodbad, goodbadbad, …}

ε

11

Product construction

• It would be useful if we can construct FAs for and
from FAs for L1 and L2, no matter what L1 and L2.

• This would give a systematic way of constructing from the
automata M1 and M2 an automaton that checks

“if the input contains an odd number of 1’s or the substring 000”

as well as

“if the input contains an odd number of 1’s and the substring 000”.

L(M1)={w: w contains an odd number of 1’s} L(M2)={w: w contains substring 000}

2121 LLLL ∩∪

00 1

qodd

1

qeven q

0

q0

1

0
q00

1
q000

1

0,1
0

• we can run both automata ‘in parallel’, by remembering the states
of both automata while reading the input.

• This is achieved by the product construction

12

Product construction

• Let M1= and M2= be two FA with the
same alphabet.

• We define a finite automaton such that and

such that as follows.

where
),,,,(

),,,,(

0

0

∩∩

∪∪

Σ=

Σ=

FqQM

FqQM

δ

δ

00

1

1

A,R
0

A,S
1

1

A,T

1

A,U

1

0

1

),,,,(10111 FqQ δΣ),,,,(20222 FqQ δΣ

∪M

∩M

)2()1()(MLMLML ∪=∪

)2()1()(MLMLML ∩=∩

.),(

,),(

),,(

)),,(),,(()),,((

,

221121

221121

02010

221121

21

FqorFqiffFqq

FqandFqiffFqq

qqq

aqaqaqq

QQQ

∈∈∈

∈∈∈

=

=

×=

∪

∩

δδδ

00
B,R

0
B,S B,T B,U

0

1

Here,
A=qood
B=qeven
R=q
S=q0
T=q00
U=q000

={w: w contains an odd number of 1’s and the substring 000})2()1()(MLMLML ∩=∩

13

Product construction

00

1

1

A,R
0

A,S

1
1

A,T

1

A,U

1

0

1

00
B,R

0
B,S B,T B,U

0

1

={w: w contains an odd number of 1’s or the substring 000})2()1()(MLMLML ∪=∪

We have proved by construction that

Theorem 1. The class of regular languages is closed under the union
operation.

Theorem 2. The class of regular languages is closed under the

intersection operation.

Later we will show that they are closed under concatenation and star operations.

