Outline

Section 8: Further Applications of Integration
8.1 Arc Length
8.2 Area of a Surface of Revolution
8.3 Applications to Physics and Engineering
8.4 Applications to Biology

8.1 Arc Length

Suppose a curve C is defined by equation $y=f(x)$, where $f(x)$ is continuous on $[a, b]$. We subdivide $[a, b]$ with points $x_{0}=a, x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}=b$ into equal-size intervals.

If $y_{i}=f\left(x_{i}\right)$ then the point $P_{i}=\left(x_{i}, y_{i}\right)$ is on C.

Definition

The length L of C is defined as

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|
$$

For $\Delta y_{i}=y_{i}-y_{i-1}$ and $\Delta x=x_{i}-x_{i-1}$ we get

$$
\left|P_{i-1} P_{i}\right|=\sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(y_{i}-y_{i-1}\right)^{2}}=\sqrt{(\Delta x)^{2}+\left(\Delta y_{i}\right)^{2}}
$$

By the Mean Value Theorem, for some $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ it holds

$$
\Delta y_{i}=f\left(x_{i}\right)-f\left(x_{i-1}\right)=f^{\prime}\left(x_{i}^{*}\right)\left(x_{i}-x_{i-1}\right)=f^{\prime}\left(x_{i}^{*}\right) \Delta x
$$

Thus,

$$
\begin{aligned}
\left|P_{i-1} P_{i}\right| & =\sqrt{(\Delta x)^{2}+\left(\Delta y_{i}\right)^{2}}=\sqrt{(\Delta x)^{2}+\left[f^{\prime}\left(x_{i}^{*}\right) \Delta x\right]^{2}} \\
& =\sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \cdot \sqrt{(\Delta x)^{2}}=\sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \cdot \Delta x
\end{aligned}
$$

Therefore, if $f(x)$ is continuous on $[a, b]$, then

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \cdot \Delta x=L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

Example

Find the length of the curve $y^{2}=x^{3}$ between $(1,1)$ and $(4,8)$.
We have

$$
y=x^{3 / 2} \quad \frac{d y}{d x}=\frac{3}{2} x^{1 / 2}
$$

So, the length is

$$
L=\int_{1}^{4} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{1}^{4} \sqrt{1+\frac{9}{4} x} d x
$$

Substituting $u=1+(9 / 4) x, d u=(9 / 4) x d x$, we get

$$
\begin{aligned}
L & \left.=\frac{4}{9} \int_{13 / 4}^{10} \sqrt{u} d u=\frac{4}{9} \cdot \frac{2}{3} u^{3 / 2}\right]_{13 / 4}^{10} \\
& =\frac{8}{27}\left[10^{3 / 2}-\left(\frac{13}{4}\right)^{3 / 2}\right]=\frac{1}{27}(80 \sqrt{10}-13 \sqrt{13})
\end{aligned}
$$

If the curve is $x=g(y)$ and $g^{\prime}(y)$ is continuous on $[c, d]$ then

$$
L=\int_{c}^{d} \sqrt{1+\left[g^{\prime}(y)\right]^{2}} d y=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y
$$

Example

Find the length of $y^{2}=x$ from $(0,0)$ to $(1,1)$. We have

$$
L=\int_{0}^{1} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y=\int_{0}^{1} \sqrt{1+4 y^{2}} d y
$$

We use trigonometric substitution $y=\frac{1}{2} \tan \theta$ with $d y=\frac{1}{2} \sec ^{2} \theta$ and $\sqrt{1+4 y^{2}}=\sqrt{1+\tan ^{2} \theta}=\sec \theta$. For $y=0, \tan \theta=0$, so $\theta=0$. For $y=1, \tan \theta=2$, so $\theta=\tan ^{-1} 2=\alpha$.

Putting all together we get

$$
\begin{aligned}
L & =\int_{0}^{\alpha} \sec \theta \cdot \frac{1}{2} \sec ^{2} \theta d \theta=\frac{1}{2} \int_{0}^{\alpha} \sec ^{3} \theta d \theta \\
& =\frac{1}{4}[\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|]_{0}^{\alpha} \\
& =\frac{1}{4}(\sec \alpha \tan \alpha+\ln |\sec \alpha+\tan \alpha|)
\end{aligned}
$$

For $\tan \alpha=2$ we have $\sec ^{2} \alpha=1+\tan ^{2} \alpha=5$, so $\sec \alpha=\sqrt{5}$.

Therefore,

$$
L=\frac{\sqrt{5}}{2}+\frac{\ln (\sqrt{5}+2)}{4}
$$

The Arc Length Function

Definition
For a smooth curve $y=f(x)$ on $[a, b]$ let $s(x)$ denote the arc length from $(a, f(a))$ to $(x, f(x))$ (the arc length function)

$$
s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t
$$

Example

Find the arc length function for $y=x^{2}-\frac{1}{8} \ln x$ from (1, 1).

$$
\begin{aligned}
f^{\prime}(x) & =2 x-\frac{1}{8 x} \\
1+[f(x)]^{2} & =1+\left(2 x-\frac{1}{8 x}\right)^{2}=1+4 x^{2}-\frac{1}{2}+\frac{1}{64 x^{2}} \\
& =4 x^{2}+\frac{1}{2}+\frac{1}{64 x^{2}}=\left(2 x+\frac{1}{8 x}\right)^{2}
\end{aligned}
$$

So, $\sqrt{1+\left[f^{\prime}(x)\right]^{2}}=2 x+\frac{1}{8 x}$ and the arc length is

$$
\begin{aligned}
s(x) & =\int_{1}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t \\
& \left.=\int_{1}^{x}\left(2 t+\frac{1}{8 t}\right) d t=t^{2}+\frac{1}{8} \ln t\right]_{1}^{x} \\
& =x^{2}+\frac{1}{8} \ln x-1
\end{aligned}
$$

In particular, the arc length from $(1,1)$ to $(3, f(3))$ is

$$
s(3)=3^{2}+\frac{1}{8} \ln 3-1=8+\frac{\ln 3}{8}
$$

Why $s(x)<0$ for $x<1$?

8.2 Area of a Surface of Revolution

Cutting a circular cone with base radius r and slant length ℓ results in a plain circle sector with radius ℓ and central angle $\theta=2 \pi r / \ell$. Its area is

$$
A=\frac{1}{2} \ell^{2} \theta=\frac{1}{2} \ell^{2}\left(\frac{2 \pi r}{\ell}\right)=\pi r \ell
$$

Similarly, the area of a frustum of a cone with radii r_{1} and r_{2} and slant length ℓ can be found as

$$
A=2 \pi \ell \frac{r_{1}+r_{2}}{2}
$$

In general, if a curve $y=f(x)$ is rotating about the x-axis, we approximate it by line segments and approximate the surface of its rotation as the sum of cone areas

$$
2 \pi \frac{y_{i-1}+y_{i}}{2}\left|P_{i-1} P_{i}\right|=2 \pi \frac{y_{i-1}+y_{i}}{2} \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}}
$$

Since f is continuous, $y_{i-1} \approx y_{i} \approx f\left(x_{i}^{*}\right)$, so

$$
A \approx \sum_{i=1}^{n} 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x
$$

and
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left[f^{\prime}\left(x_{i}^{*}\right)\right]^{2}} \Delta x=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$
This leads to the formulas (for $a \leq x \leq b, c \leq y \leq d$)

$$
S=2 \pi \int_{a}^{b} y \sqrt{1+\left(y^{\prime}\right)^{2}} d x \quad \text { (rotation of } y(x) \text { about the } x \text {-axis) }
$$

$$
S=2 \pi \int_{c}^{d} y \sqrt{1+\left(x^{\prime}\right)^{2}} d y \quad \text { (rotation of } x(y) \text { about the } x \text {-axis) }
$$

The formulas for computing the area or rotation about the y-axis are similar (for $a \leq x \leq b, c \leq y \leq d$):

$$
S=2 \pi \int_{a}^{b} x \sqrt{1+\left(y^{\prime}\right)^{2}} d x \quad \text { (rotation of } y(x) \text { about the } y \text {-axis) }
$$

$S=2 \pi \int_{c}^{d} x \sqrt{1+\left(x^{\prime}\right)^{2}} d y \quad$ (rotation of $x(y)$ about the y-axis)

Example

Find the area of the surface obtained by rotating the curve $y=\sqrt{4-x^{2}},-1 \leq x \leq 1$ about the x-axis.

$$
\begin{aligned}
S & =\int_{-1}^{1} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =\int_{-1}^{1} 2 \pi \sqrt{4-x^{2}} \sqrt{1+\frac{x^{2}}{4-x^{2}}} d x \\
& =2 \pi \int_{-1}^{1} \sqrt{4-x^{2}} \frac{2}{\sqrt{4-x^{2}}} d x \\
& =4 \pi \int_{-1}^{1} 1 d x=4 \pi(2) \\
& =8 \pi
\end{aligned}
$$

Example

The arc of parabola $y=x^{2}$ from $(1,1)$ to $(2,4)$ is rotated about the y-axis. Find the area of the resulting surface.

$$
\begin{aligned}
S & =\int_{1}^{2} 2 \pi x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =2 \pi \int_{1}^{2} x \sqrt{1+4 x^{2}} d x \\
& =\frac{\pi}{4} \int_{5}^{17} \sqrt{u} d u \quad\left(u=1+4 x^{2}, \quad d u=8 x d x\right) \\
& =\left.\frac{\pi}{6} u \sqrt{u}\right|_{5} ^{17} \\
& =\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5})
\end{aligned}
$$

Alternative solution: use the inverse function $x=\sqrt{y}$ and rotate it about the x-axis:

$$
\begin{aligned}
S & =\int_{1}^{4} 2 \pi x \sqrt{1+\left(\frac{d x^{2}}{d y}\right)} d y \\
& =2 \pi \int_{1}^{4} \sqrt{y} \sqrt{1+\frac{1}{4 y}} d y \\
& =\pi \int_{1}^{4} \sqrt{4 y+1} d y \\
& =\frac{\pi}{4} \int_{5}^{17} \sqrt{u} d u \quad(u=1+4 y) \\
& =\frac{\pi}{6}(17 \sqrt{17}-5 \sqrt{5})
\end{aligned}
$$

Example

Find the area of the surface generated by rotating the curve $y=e^{x}, 0 \leq x \leq 1$, about the x-axis.

$$
\begin{aligned}
S & =\int_{0}^{1} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& =2 \pi \int_{0}^{1} e^{x} \sqrt{1+e^{2 x}} d x \\
& =2 \pi \int_{0}^{1} \sqrt{1+u^{2}} d u \quad\left(u=e^{x}\right) \\
& =2 \pi \int_{\pi / 4}^{\alpha} \sec ^{3} \theta d \theta \quad\left(u=\tan \theta, \alpha=\tan ^{-1} e\right) \\
& =\pi[\sec \theta \tan \theta+\ln |\sec \theta+\tan \theta|]_{\pi / 4}^{\alpha} \\
& =\pi[\sec \alpha \tan \alpha+\ln (\sec \alpha+\tan \alpha)-\sqrt{2}-\ln (\sqrt{2}+1) \\
& =\pi\left[e \sqrt{1+e^{2}}+\ln \left(e+\sqrt{1+e^{2}}\right)-\sqrt{2}-\ln (\sqrt{2}+1)\right.
\end{aligned}
$$

(since $\tan \alpha=e$, we have $\sec \alpha=\sqrt{1+e^{2}}$)

Example

Find the area of the surface obtained by rotating the curve $x=\frac{1}{3}\left(y^{2}+2\right)^{3 / 2}, 1 \leq y \leq 2$ about the x-axis.

Rewrite the equation in the form $3 x=\left(y^{2}+2\right)^{3 / 2}$, from where we get $y=\sqrt{(3 x)^{2 / 3}-2}$.

Then $y^{\prime}=\frac{1}{2 \sqrt{(3 x)^{2 / 3}-2}} \cdot \frac{2}{3} \cdot \frac{3}{(3 x)^{1 / 3}}=\frac{1}{\sqrt{(3 x)^{2 / 3}-2 \cdot(3 x)^{1 / 3}}}$ and

$$
\begin{aligned}
1+\left(y^{\prime}\right)^{2} & =1+\frac{1}{\left((3 x)^{2 / 3}-2\right)(3 x)^{2 / 3}} \\
& =\frac{\left((3 x)^{2 / 3}\right)^{2}-2 \cdot(3 x)^{2 / 3}+1}{\left((3 x)^{2 / 3}-2\right)(3 x)^{2 / 3}} \\
& =\frac{\left((3 x)^{2 / 3}-1\right)^{2}}{\left((3 x)^{2 / 3}-2\right)(3 x)^{2 / 3}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
S & =\int_{1}^{\sqrt{8}} 2 \pi \sqrt{(3 x)^{2 / 3}-2} \frac{(3 x)^{2 / 3}-1}{\sqrt{\left.(3 x)^{2 / 3}-2\right)} \cdot(3 x)^{1 / 3}} d x \\
& =\int_{1}^{\sqrt{8}} 2 \pi \frac{(3 x)^{2 / 3}-1}{(3 x)^{1 / 3}} d x \\
& =2 \pi \int_{1}^{\sqrt{8}}\left((3 x)^{2 / 3}-1\right) \cdot \frac{3}{2} \cdot \frac{1}{3} d\left((3 x)^{2 / 3}-1\right) \\
& =\pi \int_{\sqrt[3]{9}-1}^{2 \sqrt[3]{9}-1} u d u \quad\left(u=(3 x)^{2 / 3}-1\right) \\
& =\ldots \quad \text { the rest is just arithmetic }
\end{aligned}
$$

Alternative solution: $x^{\prime}=\frac{1}{3} \cdot \frac{3}{2} \sqrt{y^{2}+2} \cdot 2 y=y \sqrt{y^{2}+2}$. Hence, $1+\left(x^{\prime}\right)^{2}=y^{2}\left(y^{2}+2\right)+1=\left(y^{2}+1\right)^{2}$. So,

$$
\begin{aligned}
S & =2 \pi \int_{1}^{2} y \sqrt{1+\left(x^{\prime}\right)^{2}} d y \\
& =2 \pi \int_{1}^{2} y\left(y^{2}+1\right) d y \\
& =2 \pi \int_{1}^{2}\left(y^{2}+1\right) d\left(\frac{y^{2}+1}{2}\right) \\
& \left.=\frac{\pi}{2}\left(y^{2}+1\right)^{2}\right]_{1}^{2} \\
& =\frac{\pi}{2}(25-4) \\
& =\frac{21 \pi}{2}
\end{aligned}
$$

8.3 Applications to Physics and Engineering

Hydrostatic Pressure and Force

If a plain surface of area A is submerged into a fluid at depth d, then the fluid above the area has volume $V=A d$ and weight $m=\rho V=\rho A d$. The force exerted by the fluid and the pressure on the plain is then

$$
F=m g=\rho g A d \quad P=\frac{F}{A}=\rho g d
$$

where $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$ is the gravitation constant. The density of water $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$.

Important principle: at any point in a liquid the pressure is the same in all directions.

Moments and Centers of Mass

If masses $m_{1}, m_{2}, \ldots, m_{n}$ are located at points $x_{1}, x_{2}, \ldots, x_{n}$ on a line, then the moment of the system about the origin and the center of mass of the system are defined as

$$
\begin{aligned}
M & =\sum_{i=1}^{n} m_{i} x_{i} \\
\bar{x} & =\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}
\end{aligned}
$$

For a 2-dim area we define the moments about the x - and y-axes M_{x} and M_{y} in a similar way. The center of mass is the point (\bar{x}, \bar{y}) with

$$
\bar{x}=\frac{M_{x}}{m}, \quad \bar{y}=\frac{M_{y}}{m} \quad \text { where } m=\sum_{i=1}^{n} m_{i}
$$

For a plane plate with density ρ bounded by a smooth curve $y=f(x)$ on $[a, b]$, we subdivide the interval $[a, b]$ with points x_{1}, \ldots, x_{n} on subintervals of equal length Δx. This splits the area below the curve into rectangles. The centroid of the i-th rectangle is $C_{i}=\left(\overline{x_{i}}, \frac{1}{2} f\left(\overline{x_{i}}\right)\right)$, where $\overline{x_{i}}=\left(x_{i-1}+x_{i}\right) / 2$.

The rectangle area and mass is $f\left(\overline{x_{i}}\right) \Delta x$ and $\rho f\left(\overline{x_{i}}\right) \Delta x$. The moment of the rectangle R_{i} is then

$$
M_{y}\left(R_{i}\right)=\left[\rho f\left(\overline{x_{i}}\right) \Delta x\right] \overline{x_{i}}=\rho \overline{x_{i}} f\left(\overline{x_{i}}\right) \Delta x
$$

By letting $n \rightarrow \infty$ we derive the following formula

$$
M_{y}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \rho \overline{x_{i}} f\left(\overline{x_{i}}\right) \Delta x=\rho \int_{a}^{b} x f(x) d x
$$

Similarly, the moment of R_{i} about the x-axis is

$$
M_{x}\left(R_{i}\right)=\left[\rho f\left(\overline{x_{i}}\right) \Delta x\right] \frac{1}{2} f\left(\overline{x_{i}}\right)=\frac{\rho}{2}\left[f\left(\overline{x_{i}}\right)\right]^{2} \Delta x
$$

and

$$
M_{x}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\rho}{2}\left[f\left(\overline{x_{i}}\right)\right]^{2} \Delta x=\frac{\rho}{2} \int_{a}^{b}[f(x)]^{2} d x
$$

Taking into account that the mass of the area is $m=\rho A=\rho \int_{a}^{b} f(x) d x$ we get

$$
\begin{aligned}
\bar{x} & =\frac{M_{y}}{m}=\frac{\int_{a}^{b} x f(x) d x}{\int_{a}^{b} f(x) d x} \\
\bar{y} & =\frac{M_{x}}{m}=\frac{\frac{1}{2} \int_{a}^{b}[f(x)]^{2} d x}{\int_{a}^{b} f(x) d x}
\end{aligned}
$$

Example

Find the center of mass of a semicircular plate of radius r. By putting the origin into the circle center we have $f(x)=\sqrt{r^{2}-x^{2}}$. By symmetry, $\bar{x}=0$.

$$
\begin{aligned}
\bar{y} & =\frac{1}{2 A} \int_{-r}^{r}[f(x)]^{2} d x \\
& =\frac{1}{\frac{1}{2} \pi r^{2}} \cdot \frac{1}{2} \int_{-r}^{r}\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x \\
& =\frac{2}{\pi r^{2}} \int_{0}^{r}\left(r^{2}-x^{2}\right) d x \\
& =\frac{2}{\pi r^{2}}\left[r^{2} x-\frac{x^{3}}{3}\right]_{0}^{r} \\
& =\frac{2}{\pi r^{2}} \frac{2 r^{3}}{3}=\frac{4 r}{3 \pi}
\end{aligned}
$$

Example

Find the centroid of the area bounded by the curves $y=\cos x$, $y=0, x=0, x=\pi / 2$.
The area of the plate is $\int_{0}^{\pi / 2} \cos x d x=1$. We get

$$
\begin{aligned}
\bar{x} & =\frac{1}{A} \int_{0}^{\pi / 2} x f(x) d x=\int_{0}^{\pi / 2} x \cos x d x \\
& =x \sin x]_{0}^{\pi / 2}-\int_{0}^{\pi / 2} \sin x d x \\
& =\frac{\pi}{2}-1 \\
\bar{y} & =\frac{1}{2 A} \int_{0}^{\pi / 2}[f(x)]^{2} d x=\frac{1}{2} \int_{0}^{\pi / 2} \cos ^{2} x d x \\
& =\frac{1}{4} \int_{0}^{\pi / 2}(1+\cos 2 x) d x=\frac{1}{4}\left[x+\frac{1}{2} \sin 2 x\right]_{0}^{\pi / 2} \\
& =\frac{\pi}{8}
\end{aligned}
$$

A similar approach works for computing the centroid of a region between two curves $f(x)$ and $g(x)$. The formulas become:

$$
\begin{aligned}
& \bar{x}=\frac{1}{A} \int_{a}^{b} x[f(x)-g(x)] d x \\
& \bar{y}=\frac{1}{2 A} \int_{a}^{b}\left([f(x)]^{2}-[g(x)]^{2}\right) d x
\end{aligned}
$$

Example

Find the centroid of the region bounded by $y=x$ and $y=x^{2}$.
The curves intersect at points $x=0$ and $x=1$. We have

$$
\left.A=\int_{0}^{1}\left(x-x^{2}\right) d x=\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{6}
$$

Therefore,

$$
\begin{aligned}
\bar{x} & =\frac{1}{A} \int_{0}^{1} x[f(x)-g(x)] d x=6 \int_{0}^{1} x\left(x-x^{2}\right) d x \\
& =6 \int_{0}^{1}\left(x^{2}-x^{3}\right) d x \\
& =6\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1} \\
& =\frac{1}{2} \\
\bar{y} & =\frac{1}{2 A} \int_{0}^{1}\left([f(x)]^{2}-[g(x)]^{2}\right) d x=3 \int_{0}^{1}\left(x^{2}-x^{4}\right) d x \\
& =3\left[\frac{x^{3}}{3}-\frac{x^{5}}{5}\right]_{0}^{1} \\
& =\frac{2}{5}
\end{aligned}
$$

Theorem (of Pappus)

Let R be a plane region that lies entirely on one side of a line ℓ in the plane. If R is rotated about ℓ, then the volume of the resulting solid is the product of the area A of R and the distance d traveled by the centroid of R.
The proof is for a special case when R lies between curves $f(x)$ and $g(x)$ and ℓ is the y-axis. We have

$$
\begin{aligned}
V & =2 \pi \int_{a}^{b} x[f(x)-g(x)] d x \quad(\text { see Section 5.3) } \\
& =2 \pi(\bar{x} A)=(2 \pi \bar{x}) A=d A
\end{aligned}
$$

Example

Find the volume of the torus obtained by rotating a circle of radius r, that is at distance $R(R>r)$ from the center, about the y-axis.

$$
V=d A=(2 \pi R)\left(\pi r^{2}\right)=2 \pi r^{2} R
$$

8.4 Applications to Biology

Blood Flow

The law of laminar flow

$$
v(r)=\frac{P}{4 \eta \ell}\left(R^{2}-r^{2}\right)
$$

gives the velocity of blood that flows along a blood vessel with radius R and length ℓ at a distance r from the central axis.

We compute the rate of blood flow (volume per unit time) by splitting the vessel section in concentric circles of equally spaced radii $r_{1}, r_{2}, \ldots, r_{n}$. The approximate area of a washer of outer radius r_{i} and width Δr is $2 \pi r_{i} \Delta r$. The flow of blood across the washer section is then

$$
\left(2 \pi r_{i} \Delta r\right) v\left(r_{i}\right)=2 \pi r_{i} v\left(r_{i}\right) \Delta r
$$

The total volume of blood across the entire vessel section is

$$
\sum_{i=1}^{n} 2 \pi r_{i} v\left(r_{i}\right) \Delta r
$$

For the total amount of flux we have

$$
\begin{aligned}
F & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi r_{i} v\left(r_{i}\right) \Delta r=\int_{0}^{R} 2 \pi r v(r) d r \\
& =\int_{0}^{R} 2 \pi r \frac{P}{4 \eta \ell}\left(R^{2}-r^{2}\right) d r \\
& =2 \pi \frac{P}{4 \eta \ell} \int_{0}^{R}\left(R^{2} r-r^{3}\right) d r=\frac{\pi P}{2 \eta \ell}\left[R^{2} \frac{r^{2}}{2}-\frac{r^{4}}{4}\right]_{0}^{R} \\
& =\frac{\pi P}{2 \eta \ell}\left[\frac{R^{4}}{2}-\frac{R^{4}}{4}\right]=\frac{\pi P R^{4}}{8 \eta \ell}
\end{aligned}
$$

This is Poiseuille's Law.

