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8.1 Arc Length

Suppose a curve C is defined by equation y = f (x), where f (x)
is continuous on [a,b]. We subdivide [a,b] with points
x0 = a, x1, x2, . . . , xn−1, xn = b into equal-size intervals.

If yi = f (xi) then the point Pi = (xi , yi) is on C.

Definition
The length L of C is defined as

L = lim
n→∞

n∑
i=1

|Pi−1Pi |



For ∆yi = yi − yi−1 and ∆x = xi − xi−1 we get

|Pi−1Pi | =
√

(xi − xi−1)2 + (yi − yi−1)2 =
√

(∆x)2 + (∆yi)2

By the Mean Value Theorem, for some x∗i ∈ [xi−1, xi ] it holds

∆yi = f (xi)− f (xi−1) = f ′(x∗i )(xi − xi−1) = f ′(x∗i )∆x

Thus,

|Pi−1Pi | =
√

(∆x)2 + (∆yi)2 =
√

(∆x)2 + [f ′(x∗i )∆x ]2

=
√

1 + [f ′(x∗i )]2 ·
√

(∆x)2 =
√

1 + [f ′(x∗i )]2 ·∆x

Therefore, if f (x) is continuous on [a,b], then

lim
n→∞

n∑
i=1

√
1 + [f ′(x∗i )]2 ·∆x = L =

∫ b

a

√
1 + (f ′(x))2 dx



Example
Find the length of the curve y2 = x3 between (1,1) and (4,8).
We have

y = x3/2 dy
dx

=
3
2

x1/2

So, the length is

L =

∫ 4

1

√
1 +

(
dy
dx

)2

dx =

∫ 4

1

√
1 +

9
4

x dx

Substituting u = 1 + (9/4)x , du = (9/4)x dx , we get

L =
4
9

∫ 10

13/4

√
u du =

4
9
· 2

3
u3/2

]10

13/4

=
8

27

[
103/2 −

(
13
4

)3/2
]

=
1

27

(
80
√

10− 13
√

13
)



If the curve is x = g(y) and g′(y) is continuous on [c,d ] then

L =

∫ d

c

√
1 + [g′(y)]2 dy =

∫ d

c

√
1 +

(
dx
dy

)2

dy

Example
Find the length of y2 = x from (0,0) to (1,1). We have

L =

∫ 1

0

√
1 +

(
dx
dy

)2

dy =

∫ 1

0

√
1 + 4y2 dy

We use trigonometric substitution y = 1
2 tan θ with dy = 1

2 sec2 θ

and
√

1 + 4y2 =
√

1 + tan2 θ = sec θ. For y = 0, tan θ = 0, so
θ = 0. For y = 1, tan θ = 2, so θ = tan−1 2 = α.



Putting all together we get

L =

∫ α

0
sec θ · 1

2
sec2 θ dθ =

1
2

∫ α

0
sec3 θ dθ

=
1
4

[sec θ tan θ + ln | sec θ + tan θ|]α0

=
1
4

(secα tanα + ln | secα + tanα|)

For tanα = 2 we have sec2 α = 1 + tan2 α = 5, so secα =
√

5.

Therefore,

L =

√
5

2
+

ln(
√

5 + 2)

4



The Arc Length Function
Definition
For a smooth curve y = f (x) on [a,b] let s(x) denote the arc
length from (a, f (a)) to (x , f (x)) (the arc length function)

s(x) =

∫ x

a

√
1 + [f ′(t)]2 dt

Example
Find the arc length function for y = x2 − 1

8 ln x from (1,1).

f ′(x) = 2x − 1
8x

1 + [f (x)]2 = 1 +

(
2x − 1

8x

)2

= 1 + 4x2 − 1
2

+
1

64x2

= 4x2 +
1
2

+
1

64x2 =

(
2x +

1
8x

)2



So,
√

1 + [f ′(x)]2 = 2x + 1
8x and the arc length is

s(x) =

∫ x

1

√
1 + [f ′(t)]2 dt

=

∫ x

1

(
2t +

1
8t

)
dt = t2 +

1
8

ln t
]x

1

= x2 +
1
8

ln x − 1

In particular, the arc length from (1,1) to (3, f (3)) is

s(3) = 32 +
1
8

ln 3− 1 = 8 +
ln 3
8

Why s(x) < 0 for x < 1 ?



8.2 Area of a Surface of Revolution
Cutting a circular cone with base radius r and slant length `
results in a plain circle sector with radius ` and central angle
θ = 2πr/`. Its area is

A =
1
2
`2θ =

1
2
`2
(

2πr
`

)
= πr`

Similarly, the area of a frustum of a cone with radii r1 and r2 and
slant length ` can be found as

A = 2π`
r1 + r2

2

In general, if a curve y = f (x) is rotating about the x-axis, we
approximate it by line segments and approximate the surface of
its rotation as the sum of cone areas

2π
yi−1 + yi

2
|Pi−1Pi | = 2π

yi−1 + yi

2

√
1 + [f ′(x∗i )]2



Since f is continuous, yi−1 ≈ yi ≈ f (x∗i ), so

A ≈
n∑

i=1

2πf (x∗i )
√

1 + [f ′(x∗i )]2∆x

and

lim
n→∞

n∑
i=1

2πf (x∗i )
√

1 + [f ′(x∗i )]2∆x =

∫ b

a
2πf (x)

√
1 + [f ′(x)]2 dx

This leads to the formulas (for a ≤ x ≤ b, c ≤ y ≤ d)

S = 2π
∫ b

a
y
√

1 + (y ′)2 dx (rotation of y(x) about the x−axis)

S = 2π
∫ d

c
y
√

1 + (x ′)2 dy (rotation of x(y) about the x−axis)



The formulas for computing the area or rotation about the
y -axis are similar (for a ≤ x ≤ b, c ≤ y ≤ d):

S = 2π
∫ b

a
x
√

1 + (y ′)2 dx (rotation of y(x) about the y−axis)

S = 2π
∫ d

c
x
√

1 + (x ′)2 dy (rotation of x(y) about the y−axis)



Example
Find the area of the surface obtained by rotating the curve
y =
√

4− x2, −1 ≤ x ≤ 1 about the x-axis.

S =

∫ 1

−1
2πy

√
1 +

(
dy
dx

)2

dx

=

∫ 1

−1
2π
√

4− x2

√
1 +

x2

4− x2 dx

= 2π
∫ 1

−1

√
4− x2 2√

4− x2
dx

= 4π
∫ 1

−1
1 dx = 4π(2)

= 8π



Example
The arc of parabola y = x2 from (1,1) to (2,4) is rotated about
the y -axis. Find the area of the resulting surface.

S =

∫ 2

1
2πx

√
1 +

(
dy
dx

)2

dx

= 2π
∫ 2

1
x
√

1 + 4x2 dx

=
π

4

∫ 17

5

√
u du (u = 1 + 4x2, du = 8x dx)

=
π

6
u
√

u|17
5

=
π

6
(17
√

17− 5
√

5)



Alternative solution: use the inverse function x =
√

y and rotate
it about the x-axis:

S =

∫ 4

1
2πx

√√√√1 +

(
dx
dy

2
)

dy

= 2π
∫ 4

1

√
y

√
1 +

1
4y

dy

= π

∫ 4

1

√
4y + 1 dy

=
π

4

∫ 17

5

√
u du (u = 1 + 4y)

=
π

6
(17
√

17− 5
√

5)



Example
Find the area of the surface generated by rotating the curve
y = ex , 0 ≤ x ≤ 1, about the x-axis.

S =

∫ 1

0
2πy

√
1 +

(
dy
dx

)2

dx

= 2π
∫ 1

0
ex
√

1 + e2x dx

= 2π
∫ 1

0

√
1 + u2 du (u = ex )

= 2π
∫ α

π/4
sec3 θ dθ (u = tan θ, α = tan−1 e)

= π[sec θ tan θ + ln | sec θ + tan θ|]απ/4

= π[secα tanα + ln(secα + tanα)−
√

2− ln(
√

2 + 1)

= π[e
√

1 + e2 + ln(e +
√

1 + e2)−
√

2− ln(
√

2 + 1)

(since tanα = e, we have secα =
√

1 + e2)



Example
Find the area of the surface obtained by rotating the curve
x = 1

3(y2 + 2)3/2, 1 ≤ y ≤ 2 about the x-axis.

Rewrite the equation in the form 3x = (y2 + 2)3/2, from where
we get y =

√
(3x)2/3 − 2.

Then y ′ = 1
2
√

(3x)2/3−2
· 2

3 ·
3

(3x)1/3 = 1√
(3x)2/3−2·(3x)1/3

and

1 + (y ′)2 = 1 +
1

((3x)2/3 − 2)(3x)2/3

=
((3x)2/3)2 − 2 · (3x)2/3 + 1

((3x)2/3 − 2)(3x)2/3

=
((3x)2/3 − 1)2

((3x)2/3 − 2)(3x)2/3



Therefore,

S =

∫ √8

1
2π
√

(3x)2/3 − 2
(3x)2/3 − 1√

(3x)2/3 − 2) · (3x)1/3
dx

=

∫ √8

1
2π

(3x)2/3 − 1
(3x)1/3 dx

= 2π
∫ √8

1
((3x)2/3 − 1) · 3

2
· 1

3
d
(

(3x)2/3 − 1
)

= π

∫ 2 3√9−1

3√9−1
u du

(
u = (3x)2/3 − 1

)
= . . . the rest is just arithmetic



Alternative solution: x ′ = 1
3 ·

3
2

√
y2 + 2 · 2y = y

√
y2 + 2.

Hence, 1 + (x ′)2 = y2(y2 + 2) + 1 = (y2 + 1)2. So,

S = 2π
∫ 2

1
y
√

1 + (x ′)2 dy

= 2π
∫ 2

1
y(y2 + 1) dy

= 2π
∫ 2

1
(y2 + 1) d

(
y2 + 1

2

)
=

π

2
(y2 + 1)2

]2

1

=
π

2
(25− 4)

=
21π

2



8.3 Applications to Physics and Engineering

Hydrostatic Pressure and Force

If a plain surface of area A is submerged into a fluid at depth d ,
then the fluid above the area has volume V = Ad and weight
m = ρV = ρAd . The force exerted by the fluid and the pressure
on the plain is then

F = mg = ρgAd P =
F
A

= ρgd

where g = 9.81m/s2 is the gravitation constant. The density of
water ρ = 1000kg/m3.

Important principle: at any point in a liquid the pressure is the
same in all directions.



Moments and Centers of Mass

If masses m1,m2, . . . ,mn are located at points x1, x2, . . . , xn on
a line, then the moment of the system about the origin and
the center of mass of the system are defined as

M =
n∑

i=1

mixi

x =

∑n
i=1 mixi∑n
i=1 mi

For a 2-dim area we define the moments about the x- and
y -axes Mx and My in a similar way. The center of mass is the
point (x , y) with

x =
Mx

m
, y =

My

m
where m =

n∑
i=1

mi



For a plane plate with density ρ bounded by a smooth curve
y = f (x) on [a,b], we subdivide the interval [a,b] with points
x1, . . . , xn on subintervals of equal length ∆x . This splits the
area below the curve into rectangles. The centroid of the i-th
rectangle is Ci =

(
xi ,

1
2 f (xi)

)
, where xi = (xi−1 + xi)/2.

The rectangle area and mass is f (xi)∆x and ρf (xi)∆x . The
moment of the rectangle Ri is then

My (Ri) = [ρf (xi)∆x ]xi = ρxi f (xi)∆x

By letting n→∞ we derive the following formula

My = lim
n→∞

n∑
i=1

ρxi f (xi)∆x = ρ

∫ b

a
xf (x) dx



Similarly, the moment of Ri about the x-axis is

Mx (Ri) = [ρf (xi)∆x ]
1
2

f (xi) =
ρ

2
[f (xi)]2∆x

and

Mx = lim
n→∞

n∑
i=1

ρ

2
[f (xi)]2∆x =

ρ

2

∫ b

a
[f (x)]2 dx

Taking into account that the mass of the area is
m = ρA = ρ

∫ b
a f (x) dx we get

x =
My

m
=

∫ b
a xf (x) dx∫ b
a f (x) dx

y =
Mx

m
=

1
2

∫ b
a [f (x)]2 dx∫ b
a f (x) dx



Example
Find the center of mass of a semicircular plate of radius r .
By putting the origin into the circle center we have
f (x) =

√
r2 − x2. By symmetry, x = 0.

y =
1

2A

∫ r

−r
[f (x)]2 dx

=
1

1
2πr2

· 1
2

∫ r

−r

(√
r2 − x2

)2
dx

=
2
πr2

∫ r

0
(r2 − x2) dx

=
2
πr2

[
r2x − x3

3

]r

0

=
2
πr2

2r3

3
=

4r
3π



Example
Find the centroid of the area bounded by the curves y = cos x ,
y = 0, x = 0, x = π/2.

The area of the plate is
∫ π/2

0
cos x dx = 1. We get

x =
1
A

∫ π/2

0
xf (x) dx =

∫ π/2

0
x cos x dx

= x sin x ]
π/2
0 −

∫ π/2

0
sin x dx

=
π

2
− 1

y =
1

2A

∫ π/2

0
[f (x)]2 dx =

1
2

∫ π/2

0
cos2 x dx

=
1
4

∫ π/2

0
(1 + cos 2x) dx =

1
4

[
x +

1
2

sin 2x
]π/2

0

=
π

8



A similar approach works for computing the centroid of a region
between two curves f (x) and g(x). The formulas become:

x =
1
A

∫ b

a
x [f (x)− g(x)] dx

y =
1

2A

∫ b

a

(
[f (x)]2 − [g(x)]2

)
dx

Example
Find the centroid of the region bounded by y = x and y = x2.
The curves intersect at points x = 0 and x = 1. We have

A =

∫ 1

0
(x − x2) dx =

x2

2
− x3

3

]1

0
=

1
6



Therefore,

x =
1
A

∫ 1

0
x [f (x)− g(x)] dx = 6

∫ 1

0
x(x − x2) dx

= 6
∫ 1

0
(x2 − x3) dx

= 6
[

x3

3
− x4

4

]1

0

=
1
2

y =
1

2A

∫ 1

0
([f (x)]2 − [g(x)]2) dx = 3

∫ 1

0
(x2 − x4) dx

= 3
[

x3

3
− x5

5

]1

0

=
2
5



Theorem (of Pappus)
Let R be a plane region that lies entirely on one side of a line `
in the plane. If R is rotated about `, then the volume of the
resulting solid is the product of the area A of R and the distance
d traveled by the centroid of R.
The proof is for a special case when R lies between curves f (x)
and g(x) and ` is the y -axis. We have

V = 2π
∫ b

a
x [f (x)− g(x)] dx (see Section 5.3)

= 2π(xA) = (2πx)A = dA

Example
Find the volume of the torus obtained by rotating a circle of
radius r , that is at distance R (R > r ) from the center, about the
y -axis.

V = dA = (2πR)(πr2) = 2πr2R



8.4 Applications to Biology
Blood Flow

The law of laminar flow

v(r) =
P

4η`
(R2 − r2)

gives the velocity of blood that flows along a blood vessel with
radius R and length ` at a distance r from the central axis.

We compute the rate of blood flow (volume per unit time) by
splitting the vessel section in concentric circles of equally
spaced radii r1, r2, . . . , rn. The approximate area of a washer of
outer radius ri and width ∆r is 2πri∆r . The flow of blood across
the washer section is then

(2πri∆r)v(ri) = 2πriv(ri)∆r



The total volume of blood across the entire vessel section is

n∑
i=1

2πriv(ri)∆r

For the total amount of flux we have

F = lim
n→∞

n∑
i=1

2πri v(ri)∆r =

∫ R

0
2πr v(r) dr

=

∫ R

0
2πr

P
4η`

(R2 − r2) dr

= 2π
P

4η`

∫ R

0
(R2r − r3) dr =

πP
2η`

[
R2 r2

2
− r4

4

]R

0

=
πP
2η`

[
R4

2
− R4

4

]
=
πPR4

8η`

This is Poiseuille’s Law.
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