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6.1 Definition

Definition
A function f is called one-to-one if

f (x1) 6= f (x2) whenever x1 6= x2

A function is one-to-one iff no horizontal line intersects its graph
more than twice.

Definition
Let f be a one-to-one function with domain A and range B.
Then its inverse function f−1 has domain B and range A and
is defined by

f−1(y) = x iff f (x) = y



Note that:
∀x ∈ A : f−1(f (x)) = x

∀x ∈ B : f (f−1(x)) = x

The graph of f−1(x) is obtained by reflecting the one of f about
the line y = x .

To find inverse of a one-to-one function f :
1. Write y = f (x)

2. Interchange x and y
3. Solve the obtained equation for y



Example
Find the inverse of f (x) = x3 + 2.

1. Write y = f (x):
y = x3 + 2

2. Interchange x and y :

x = y3 + 2

3. Solve the obtained equation for y :

y3 = x − 2 =⇒ y =
3
√

x − 2

Finally,
f−1(x) =

3
√

x − 2



The Calculus of Inverse Functions
Theorem
If f is a one-to one continuous function defined on an interval,
then its inverse function f−1 is also continuous.

Informally, for f (b) = a (thus, f−1(a) = b) one has

(f−1)′(a) =
∆y
∆x

=
1

∆x/∆y
=

1
f ′(b)

Theorem
If f is one-to-one differentiable function with inverse function f−1

and f ′(f−1(a)) 6= 0, then the inverse function is differentiable at
a and

(f−1)′(a) =
1

f ′(f−1(a))



Proof.
Let f (y) = x and f (b) = a. Hence, f−1(x) = y and f−1(a) = b.

Since f is differentiable, f is continuous, so f−1 is continuous.

Therefore, f−1(x)→ f−1(a) (i.e. y → b) as x → a.

(f−1)′(a) = lim
x→a

f−1(x)− f−1(a)

x − a
= lim

y→b

y − b
f (y)− f (b)

= lim
y→b

1
f (y)−f (b)

y−b

=
1

lim
y→b

f (y)−f (b)
y−b

=
1

f ′(b)
=

1
f ′(f−1(a))



Example
For y = x2 and 0 ≤ x ≤ 2 one has

(f−1)′(1) =
1

f ′(f−1(1))
=

1
f ′(1)

=
1
2

Example
For y = 2x + cos x the function y is increasing, hence
one-to-one.

(f−1)′(1) =
1

f ′(f−1(1))
=

1
f ′(0)

=
1

2− sin 0
=

1
2



6.2 Exponential Functions and Their Derivatives

Definition
Exponential function is a function of the form

f (x) = ax for a > 0

If x = n a positive integer,

an = a · a · · · a n terms

If x = 0 then a0 = 1, and if x = −n then

a−n =
1
an

If x = p/q is rational then

ap/q =
q
√

ap = ( q
√

a)p



In general define

ax = lim
r→x

ar r rational

Theorem
If a > 0 and a 6= 1, then f (x) = ax is continuous with domain IR
and range (0,∞). For 0 < a < 1, ax is decreasing and for
1 < a, ax is increasing. Furthermore, ∀a,b > 0 and x , y ∈ IR,

ax+y = axay ax−y =
ax

ay (ax )y = axy (ab)x = axbx



Let f (x) = ax . Then

f ′(x) = lim
h→0

f (x + h)− f (x)

h
= lim

h→0

ax+h − ax

h

= lim
h→0

axah − ax

h
= lim

h→0

ax (ah − 1)

h

= ax lim
h→0

ah − 1
h

= f ′(0)ax

Definition
The Number e is defined by equation

lim
h→0

eh − 1
h

= 1

One has then (ex )′ = ex .



Example

lim
x→∞

e2x

e2x + 1
= 1

Example
Sketch the graph of f (x) = e1/x .

Example ∫
x2ex3

dx =
1
3

ex3
+ C



6.3 Logarithmic Functions
Definition
Logarithmic function is the inverse of exponential one.

Example
log3 81 = 4 because 34 = 81.
log2 32 = 5 because 25 = 32.

Note that
loga x = y iff ay = x

It follows:

loga(ax ) = x ∀x ∈ IR
aloga x = x ∀x > 0



Properties of logarithmic function

Theorem
If x , y > 0 and r is a real number then:

1. loga(xy) = loga x + loga y

2. loga

(
x
y

)
= loga x − loga y

3. loga(x r ) = r loga x



If a > 1 then

lim
x→∞

loga x = +∞ and lim
x→0+

loga x = −∞

If a < 1 then

lim
x→∞

loga x = −∞ and lim
x→0+

loga x = +∞

Natural logarithm:
loge x = ln x

Hence,

ln(ex ) = x ∀x ∈ IR
eln x = x ∀x > 0



Theorem
Change of base formula:

loga x =
ln x
ln a

Proof.
If y = loga x then ay = x . Taking the ln of both parts, we get

y ln a = ln x i.e. y =
ln x
ln a

Corollary

logb a =
1

loga b
for a,b > 0



6.4 Derivatives of Logarithmic Functions

Theorem

d
dx

(ln x) =
1
x

Proof.
If y = ln x then ey = x . Differentiating implicitly by x we get

ey dy
dx

= 1

Hence,
dy
dx

=
1
ey =

1
x



In general we get

d
dx

[ln(g(x)] =
g′(x)

g(x)

Example

d
dx

ln(sin x) =
1

sin x
· d

dx
(sin x) =

1
sin x

cos x = cot x

Example

d
dx

√
ln x =

1
2

(ln x)−
1
2

d
dx

(ln x) =
1

2
√

ln x
· 1

x

=
1

2x
√

ln x



Example

d
dx

ln
x + 1√
x − 2

=
1

x+1√
x−2

· d
dx

[
x + 1√
x − 2

]

=

√
x − 2

x + 1
·
√

x − 2− (x + 1)1
2(x − 2)−

1
2

x − 2

=
x − 2− 1

2(x + 1)

(x + 1)(x − 2)
=

x − 5
2(x + 1)(x − 2)

Another solution:

d
dx

ln
x + 1√
x − 2

=
d
dx

[
ln(x + 1)− 1

2
ln(x − 2)

]
=

1
x + 1

−1
2

(
1

x − 2

)



Example
Find d

dx ln |x |

Since

f (x) =

{
ln x if x > 0
ln(−x) if x < 0

We get

f ′(x) =

{ 1
x if x > 0
1
−x (−1) = 1

x if x < 0

Therefore,
d
dx

(ln |x |) =
1
x

and ∫
1
x

dx = ln |x |+ C



Example
Evaluate

∫ x
x2+1dx . Use substitution u = x2 + 1, so du = 2x dx :∫

x
x2 + 1

dx =
1
2

∫
du
u

=
1
2

ln |u|+ C

=
1
2

ln |x2 + 1|+ C =
1
2

ln(x2 + 1) + C

Example
With u = ln x one has∫ e

1

ln x
x

dx =

∫ 1

0
u du =

u2

2

]1

0
=

1
2



Example
Calculate

∫
tan x dx . Note that∫

tan x dx =

∫
sin x
cos x

dx

Substituting u = cos x (hence, du = − sin x dx) we get∫
tan x dx =

∫
sin x
cos x

dx = −
∫

du
u

= − ln |u|+ C = − ln | cos x |+ C

= ln
1

| cos x |
+ C = ln | sec x |+ C



General Logarithmic and Exponential Functions
Since loga x = ln x

ln a we get

d
dx

(loga x) =
1

x ln a

Theorem

d
dx

(ax ) = ax ln a
∫

axdx =
ax

ln a
+ C a 6= 1

Proof.
We use the fact that eln a = a:

d
dx

(ax ) =
d
dx

(eln a)x =
d
dx

e(ln a)x = (eln a)x d
dx

((ln a)x)

= (eln a)x (ln a) = ax ln a



Example

d
dx

log10(2+sin x) =
1

(2 + sin x) ln 10
d
dx

(2+sin x) =
cos x

(2 + sin x) ln 10

Example

d
dx

(10x2
) = 10x2

(ln 10)
d
dx

(x2) = (2 ln 10)x10x2

Example ∫ 5

2
2xdx =

2x

ln 2

]5

0
=

25

ln 2
− 20

ln 2
=

31
ln 2



Logarithmic Differentiation

Example

Differentiate y =
x3/4
√

x2 + 1
(3x + 2)5 Take ln of both sides

ln y =
3
4

ln x +
1
2

ln(x2 + 1)− 5 ln(3x + 2)

and differentiate it implicitly:

1
y

dy
dx

=
3
4
· 1

x
+

1
2
· 2x

x2 + 1
− 5 · 3

3x + 2

Solving for y ′ results

dy
dx

= y
(

3
4x

+
x

x2 + 1
− 15

3x + 2

)



Finally, we get

dy
dx

=
x3/4
√

x2 + 1
(3x + 2)5

(
3

4x
+

x
x2 + 1

− 15
3x + 2

)

Steps in logarithmic differentiation:
1. Take ln of both sides of an equation y = f (x) and simplify it
2. Differentiate implicitly with respect to x
3. Solve the resulting equation for y ′



The Number e as a Limit
For f (x) = ln x we have

f ′(1) = lim
h→0

f (1 + h)− f (1)

h
= lim

x→0

f (1 + x)− f (1)

x

= lim
x→0

ln(1 + x)− ln 1
x

= lim
x→0

1
x

ln(1 + x)

= lim
x→0

ln(1 + x)1/x = 1

From here it follows that

e = lim
x→0

(1 + x)1/x

If we put n = 1/x , then n→∞ as x → 0, hence

e = lim
n→∞

(
1 +

1
n

)n



6.6 Inverse Trigonometric Functions
y = sin−1 x or y = arcsin x with −π

2 ≤ y ≤ π
2

y = cos−1 x or y = arccos x with 0 ≤ y ≤ π

y = tan−1 x or y = arctan x with −π
2 ≤ y ≤ π

2

y = cot−1 x with 0 ≤ y ≤ π

y = csc−1 x with y ∈ (0, π2 ] ∪ (π, 3π
2 ]

y = sec−1 x with y ∈ (0, π2 ] ∪ (π, 3π
2 ]



Derivatives of Inverse Trigonometric Functions

d
dx

(sin−1 x) =
1√

1− x2

d
dx

(csc−1 x) = − 1
x
√

x2 − 1

d
dx

(cos−1 x) = − 1√
1− x2

d
dx

(sec−1 x) =
1

x
√

x2 − 1

d
dx

(tan−1 x) =
1

1 + x2
d
dx

(cot−1 x) = − 1
1 + x2

Proof.
If y = sin−1 x then sin y = x . Differentiating implicitly we get
(cos y) · y ′ = 1, So

y ′ =
d
dx

(sin−1 x) =
1

cos y
=

1√
1− sin2 y

=
1√

1− x2



Example
Differentiate y =

1
sin−1 x

dy
dx

=
d
dx

(sin−1 x)−1 = −(sin−1 x)−2 d
dx

(sin−1 x)

= − 1
(sin−1 x)2

√
1− x2

The formulas in the frame box on the previous page can be
rewritten as ∫

1√
1− x2

dx = sin−1 x + C

∫
1

x2 + 1
dx = tan−1 x + C



Example
Evaluate

∫
dx

x2 + a2 , where a = const and a 6= 0.

∫
dx

x2 + a2 =

∫
dx

a2
(

x2

a2 + 1
) =

1
a2

∫
dx(x

a

)2
+ 1

Substitute u = x/a. Then du = dx/a and dx = a du, so

∫
dx

x2 + a2 =
1
a2

∫
a du

u2 + 1
=

1
a

∫
du

u2 + 1
=

1
a

tan−1 u + C

This implies ∫
1

x2 + a2 dx =
1
a

tan−1
(x

a

)
+ C



6.7 Hyperbolic Functions

sinh x =
ex − e−x

2
csch x =

1
sinh x

cosh x =
ex + e−x

2
sech x =

1
cosh x

tanh x =
sinh x
cosh x

coth x =
1

tanh x

sinh(−x) = − sinh x cosh(−x) = cosh x

cosh2 x − sinh2 x = 1 1− tanh2 x = sech 2x

sinh(x + y) = sinh x cosh y + cosh x sinh y

cosh(x + y) = cosh x cosh y + sinh x sinh y



Derivatives of Hyperbolic Functions

d
dx

(sinh x) = cosh x
d
dx

(csch x) = −csch x · coth x

d
dx

(cosh x) = sinh x
d
dx

(sech x) = −sech x · tanh x

d
dx

(tanh x) = sech2 x
d
dx

(coth x) = −csch2 x

Proof.

d
dx

(sinh x) =
d
dx

(
ex − e−x

2

)
=

ex + e−x

2
= cosh x



Inverse Hyperbolic Functions

y = sinh−1 x ⇐⇒ sinh y = x

y = cosh−1 x ⇐⇒ cosh y = x

y = tanh−1 x ⇐⇒ tanh y = x

One has

sinh−1 x = ln
(

x +
√

x2 + 1
)

x ∈ IR

cosh−1 x = ln
(

x +
√

x2 − 1
)

x ≥ 1

tanh−1 x =
1
2

ln
(

1 + x
1− x

)
−1 < x < 1



Derivatives of Inverse Hyperbolic Functions

d
dx

(sinh−1 x) =
1√

x2 + 1
d
dx

(csch−1 x) = − 1
|x |
√

x2 + 1

d
dx

(cosh−1 x) =
1√

x2 − 1
d
dx

(sech−1 x) = − 1
x
√

1− x2

d
dx

(tanh−1 x) =
1

1− x2
d
dx

(coth−1 x) =
1

1− x2

Proof.
Let y = sinh−1 x , then sinh y = x and (cosh x)dy

dx = 1. Hence,

dy
dx

=
1

cosh y
=

1√
1 + sinh2 y

=
1√

1 + x2



Example

d
dx

[tanh−1(sin x)] =
1

1− sin2 x
(sin x)′

=
1

1− sin2 x
cos x =

cos x
cos2 x

= sec x

Example

∫ 1

0

dx√
1 + x2

= sinh−1 x
]1

0

= sinh−1 1
= ln(1 +

√
2)



6.8 Indeterminate Forms and l’Hospital’s Rule

Theorem
Suppose f (x) and g(x) are differentiable and g′(x) 6= 0 on an
open interval containing a. Suppose that

lim
x→a

f (x) = 0 and lim
x→a

g(x) = 0

or that

lim
x→a

f (x) = ±∞ and lim
x→a

g(x) = ±∞

(indeterminate forms of type 0
0 or ∞∞ ). Then

lim
x→a

f (x)

g(x)
= lim

x→a

f ′(x)

g′(x)

if the limit on the R.H.S. exists (or is∞ or −∞).



Example
Find lim

x→1

ln x
x − 1

. It is indeterminate form of type 0
0 .

lim
x→1

ln x
x − 1

= lim
x→1

1/x
1

= 1

Example

Find lim
x→∞

ex

x2 . We got an indeterminate form of type ∞∞ .

We apply l’Hospital’s rule twice:

lim
x→∞

ex

x2 = lim
x→∞

ex

2x
= lim

x→∞

ex

2
=∞



Example
Find lim

x→∞

ln x
3
√

x
. l’Hospital’s rule applies:

lim
x→∞

ln x
3
√

x
= lim

x→∞

1/x
1
3x−2/3

= lim
x→∞

3
3
√

x
= 0

Example
Find lim

x→0

tan x − x
x3 . This indeterminate form of type 0

0 .

lim
x→0

tan x − x
x3 = lim

x→0

sec2 x − 1
3x2

= lim
x→0

2 sec2 x tan x
6x

=
1
3

lim
x→0

tan x
x

=
1
3

lim
x→0

sin x
x

=
1
3

lim
x→0

cos x
1

=
1
3



Indeterminate Products

Assume lim
x→a

f (x) = 0 and lim
x→a

g(x) =∞ and we need to

compute lim
x→a

f (x) · g(x). This is indeterminate form of type
0 · ∞.
We turn it to indeterminate form 0

0 or ∞∞ by rewriting it as

fg =
f

1/g
or fg =

g
1/f

Example

lim
x→0+

x ln x = lim
x→0+

ln x
1/x

= lim
x→0+

1/x
−1/x2 = lim

x→0+
(−x) = 0



Indeterminate Differences
Assume lim

x→a
f (x) =∞ and lim

x→a
g(x) =∞ and we need to

compute lim
x→a

(f (x)− g(x)). This is indeterminate form of type
∞−∞.
We turn it to indeterminate form 0

0 or ∞∞ by using a common
denominator, or rationalization, or factoring out a common
factor.

Example

lim
x→(π/2)−

(sec x − tan x) = lim
x→(π/2)−

(
1

cos x
− sin x

cos x

)
= lim

x→(π/2)−

1− sin x
cos x

= lim
x→(π/2)−

− cos x
− sin x

= 0



Indeterminate Powers

The following situations can occur while computing the limit

lim
x→a

[f (x)]g(x)

1. limx→a f (x) = 0 and limx→a g(x) = 0: type 00

2. limx→a f (x) =∞ and limx→a g(x) = 0: type∞0

3. limx→a f (x) = 1 and limx→a g(x) = ±∞: type 1∞

We turn it into indeterminate form of type 0 · ∞ by taking the
logarithm ln

(
[f (x)]g(x)

)
= g(x) ln f (x) and using the

exponentiation

lim
x→a

[f (x)]g(x) = lim
x→a

eg(x) ln f (x)



Example
Find limx→0+(1 + sin 4x)cot x . For y = (1 + sin 4x)cot x we have
ln y = cot x ln(1 + sin 4x), so

lim
x→0+

ln y = lim
x→0+

ln(1 + sin 4x)

tan x
= lim

x→0+

4 cos 4x
1 + sin 4x

sec2 x
= 4

Hence, limx→0+(1 + sin 4x)cot x = e4.

Example

lim
x→0+

xx = lim
x→0+

ex ln x = e0 = 1



Cauchy’s Mean Value Theorem

Theorem
Assume f (x) and g(x) are continuous on [a,b] and
differentiable on (a,b), and g′(x) 6= 0 for all x ∈ (a,b). Then
there is a number c ∈ (a,b) such that

f ′(c)

g′(c)
=

f (b)− f (a)

g(b)− g(a)

Note that for g(x) = x (so g′(x) = 1) the theorem becomes the
Mean Value Theorem.
In general, the proof can be deduced along the lines with the
proof of Rolle’s theorem by applying the argument to the
function

h(x) = f (x)− f (a)− f (b)− f (a)

g(b)− g(a)
[g(x)− g(a)]



Proof of L’Hospital’s Rule
Assuming limx→a f (x) = 0 and limx→a g(x) = 0, denote

L = lim
x→a

=
f ′(x)

g′(x)

We show that limx→a[f (x)/g(x)] = L. For that define

F (x) =

{
f (x) if x 6= a
0 if x = a

G(x) =

{
g(x) if x 6= a
0 if x = a

F (x) and G(x) are continuous on I. Let x ∈ I and x > a. Then
F (x) and G(x) are continuous on [a, x ] and differentiable on
(a, x) and G′(x) 6= 0 there. By Cauchy’s theorem,

F ′(y)

G′(y)
=

F (x)− F (a)

G(x)−G(a)
=

F (x)

G(x)
for some y ∈ (a, x)

If we let x → a+, then y → a+, so

lim
x→a+

f (x)

g(x)
= lim

x→a+

F (x)

G(x)
= lim

x→a+

F ′(x)

G′(x)
= lim

x→a+

f ′(x)

g′(x)
= L



Similar argument also works for x → a−.

If a is infinite, we let t = 1/x . Then t → 0+ as x →∞, so

lim
x→∞

f (x)

g(x)
= lim

t→0+

f (1/t)
g(1/t)

= lim
t→0+

f ′(1/t)(−1/t2)

g′(1/t)(−1/t2)

= lim
t→0+

f ′(1/t)
g′(1/t)

= lim
x→∞

f ′(x)

g′(x)
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