Outline

Section 6: Inverse Functions

6.1 Definition
6.2 Exponential Functions
6.3 Logarithmic Functions
6.4 Derivatives of Logarithmic Functions
6.6 Inverse Trigonometric Functions
6.7 Hyperbolic Functions
6.8 Indeterminate Forms and l'Hospital's Rule

6.1 Definition

Definition

A function f is called one-to-one if

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \quad \text { whenever } \quad x_{1} \neq x_{2}
$$

A function is one-to-one iff no horizontal line intersects its graph more than twice.

Definition
Let f be a one-to-one function with domain A and range B. Then its inverse function f^{-1} has domain B and range A and is defined by

$$
f^{-1}(y)=x \quad \text { iff } \quad f(x)=y
$$

Note that:

$$
\begin{aligned}
& \forall x \in A: f^{-1}(f(x))=x \\
& \forall x \in B: f\left(f^{-1}(x)\right)=x
\end{aligned}
$$

The graph of $f^{-1}(x)$ is obtained by reflecting the one of f about the line $y=x$.

To find inverse of a one-to-one function f :

1. Write $y=f(x)$
2. Interchange x and y
3. Solve the obtained equation for y

Example

Find the inverse of $f(x)=x^{3}+2$.

1. Write $y=f(x)$:

$$
y=x^{3}+2
$$

2. Interchange x and y :

$$
x=y^{3}+2
$$

3. Solve the obtained equation for y :

$$
y^{3}=x-2 \quad \Longrightarrow \quad y=\sqrt[3]{x-2}
$$

Finally,

$$
f^{-1}(x)=\sqrt[3]{x-2}
$$

The Calculus of Inverse Functions

Theorem

If f is a one-to one continuous function defined on an interval, then its inverse function f^{-1} is also continuous.

Informally, for $f(b)=a$ (thus, $f^{-1}(a)=b$) one has

$$
\left(f^{-1}\right)^{\prime}(a)=\frac{\Delta y}{\Delta x}=\frac{1}{\Delta x / \Delta y}=\frac{1}{f^{\prime}(b)}
$$

Theorem
If f is one-to-one differentiable function with inverse function f^{-1} and $f^{\prime}\left(f^{-1}(a)\right) \neq 0$, then the inverse function is differentiable at a and

$$
\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}
$$

Proof.

Let $f(y)=x$ and $f(b)=a$. Hence, $f^{-1}(x)=y$ and $f^{-1}(a)=b$.
Since f is differentiable, f is continuous, so f^{-1} is continuous.
Therefore, $f^{-1}(x) \rightarrow f^{-1}(a)$ (i.e. $\left.y \rightarrow b\right)$ as $x \rightarrow a$.

$$
\begin{aligned}
\left(f^{-1}\right)^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f^{-1}(x)-f^{-1}(a)}{x-a}=\lim _{y \rightarrow b} \frac{y-b}{f(y)-f(b)} \\
& =\lim _{y \rightarrow b} \frac{1}{\frac{f(y)-f(b)}{y-b}}=\frac{1}{\lim _{y \rightarrow b} \frac{f(y)-f(b)}{y-b}} \\
& =\frac{1}{f^{\prime}(b)}=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}
\end{aligned}
$$

Example

For $y=x^{2}$ and $0 \leq x \leq 2$ one has

$$
\left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}=\frac{1}{f^{\prime}(1)}=\frac{1}{2}
$$

Example

For $y=2 x+\cos x$ the function y is increasing, hence one-to-one.

$$
\left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{2-\sin 0}=\frac{1}{2}
$$

6.2 Exponential Functions and Their Derivatives

Definition

Exponential function is a function of the form

$$
f(x)=a^{x} \quad \text { for } \quad a>0
$$

If $x=n$ a positive integer,

$$
a^{n}=a \cdot a \cdots a \quad n \text { terms }
$$

If $x=0$ then $a^{0}=1$, and if $x=-n$ then

$$
a^{-n}=\frac{1}{a^{n}}
$$

If $x=p / q$ is rational then

$$
a^{p / q}=\sqrt[q]{a^{p}}=(\sqrt[q]{a})^{p}
$$

In general define

$$
a^{x}=\lim _{r \rightarrow x} a^{r} \quad r \text { rational }
$$

Theorem
If $a>0$ and $a \neq 1$, then $f(x)=a^{x}$ is continuous with domain \mathbb{R} and range $(0, \infty)$. For $0<a<1, a^{x}$ is decreasing and for $1<a, a^{x}$ is increasing. Furthermore, $\forall a, b>0$ and $x, y \in \mathbb{R}$,

$$
a^{x+y}=a^{x} a^{y} \quad a^{x-y}=\frac{a^{x}}{a^{y}} \quad\left(a^{x}\right)^{y}=a^{x y} \quad(a b)^{x}=a^{x} b^{x}
$$

Let $f(x)=a^{x}$. Then

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x} a^{h}-a^{x}}{h}=\lim _{h \rightarrow 0} \frac{a^{x}\left(a^{h}-1\right)}{h} \\
& =a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h} \\
& =f^{\prime}(0) a^{x}
\end{aligned}
$$

Definition
The Number e is defined by equation

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

One has then $\left(e^{x}\right)^{\prime}=e^{x}$.

Example

$$
\lim _{x \rightarrow \infty} \frac{e^{2 x}}{e^{2 x}+1}=1
$$

Example
Sketch the graph of $f(x)=e^{1 / x}$.

Example

$$
\int x^{2} e^{x^{3}} d x=\frac{1}{3} e^{x^{3}}+C
$$

6.3 Logarithmic Functions

Definition
Logarithmic function is the inverse of exponential one.

Example

 $\log _{3} 81=4$ because $3^{4}=81$.$\log _{2} 32=5$ because $2^{5}=32$.

Note that

$$
\log _{a} x=y \quad \text { iff } \quad a^{y}=x
$$

It follows:

$$
\begin{aligned}
\log _{a}\left(a^{x}\right) & =x & & \forall x \in \mathbb{R} \\
a^{\log _{a} x} & =x & & \forall x>0
\end{aligned}
$$

Properties of logarithmic function

Theorem
If $x, y>0$ and r is a real number then:

1. $\log _{a}(x y)=\log _{a} x+\log _{a} y$
2. $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
3. $\log _{a}\left(x^{r}\right)=r \log _{a} x$

If $a>1$ then

$$
\lim _{x \rightarrow \infty} \log _{a} x=+\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} \log _{a} x=-\infty
$$

If $a<1$ then

$$
\lim _{x \rightarrow \infty} \log _{a} x=-\infty \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} \log _{a} x=+\infty
$$

Natural logarithm:

$$
\log _{e} x=\ln x
$$

Hence,

$$
\begin{array}{rlr}
\ln \left(e^{x}\right)=x & & \forall x \in \mathbb{R} \\
e^{\ln x}=x & & \forall x>0
\end{array}
$$

Theorem
Change of base formula:

$$
\log _{a} x=\frac{\ln x}{\ln a}
$$

Proof.
If $y=\log _{a} x$ then $a^{y}=x$. Taking the In of both parts, we get

$$
y \ln a=\ln x \quad \text { i.e. } \quad y=\frac{\ln x}{\ln a}
$$

Corollary

$$
\log _{b} a=\frac{1}{\log _{a} b} \quad \text { for } a, b>0
$$

6.4 Derivatives of Logarithmic Functions

Theorem

$$
\frac{d}{d x}(\ln x)=\frac{1}{x}
$$

Proof.
If $y=\ln x$ then $e^{y}=x$. Differentiating implicitly by x we get

$$
e^{y} \frac{d y}{d x}=1
$$

Hence,

$$
\frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{x}
$$

In general we get

$$
\frac{d}{d x}\left[\ln (g(x)]=\frac{g^{\prime}(x)}{g(x)}\right.
$$

Example

$$
\frac{d}{d x} \ln (\sin x)=\frac{1}{\sin x} \cdot \frac{d}{d x}(\sin x)=\frac{1}{\sin x} \cos x=\cot x
$$

Example

$$
\begin{aligned}
\frac{d}{d x} \sqrt{\ln x} & =\frac{1}{2}(\ln x)^{-\frac{1}{2}} \frac{d}{d x}(\ln x)=\frac{1}{2 \sqrt{\ln x}} \cdot \frac{1}{x} \\
& =\frac{1}{2 x \sqrt{\ln x}}
\end{aligned}
$$

Example

$$
\begin{aligned}
\frac{d}{d x} \ln \frac{x+1}{\sqrt{x-2}} & =\frac{1}{\frac{x+1}{\sqrt{x-2}} \cdot \frac{d}{d x}\left[\frac{x+1}{\sqrt{x-2}}\right]} \\
& =\frac{\sqrt{x-2}}{x+1} \cdot \frac{\sqrt{x-2}-(x+1) \frac{1}{2}(x-2)^{-\frac{1}{2}}}{x-2} \\
& =\frac{x-2-\frac{1}{2}(x+1)}{(x+1)(x-2)}=\frac{x-5}{2(x+1)(x-2)}
\end{aligned}
$$

Another solution:

$$
\frac{d}{d x} \ln \frac{x+1}{\sqrt{x-2}}=\frac{d}{d x}\left[\ln (x+1)-\frac{1}{2} \ln (x-2)\right]=\frac{1}{x+1}-\frac{1}{2}\left(\frac{1}{x-2}\right)
$$

Example

Find $\frac{d}{d x} \ln |x|$
Since

$$
f(x)= \begin{cases}\ln x & \text { if } x>0 \\ \ln (-x) & \text { if } x<0\end{cases}
$$

We get

$$
f^{\prime}(x)= \begin{cases}\frac{1}{x} & \text { if } x>0 \\ \frac{1}{-x}(-1)=\frac{1}{x} & \text { if } x<0\end{cases}
$$

Therefore,

$$
\frac{d}{d x}(\ln |x|)=\frac{1}{x}
$$

and

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

Example

Evaluate $\int \frac{x}{x^{2}+1} d x$. Use substitution $u=x^{2}+1$, so $d u=2 x d x$:

$$
\begin{aligned}
\int \frac{x}{x^{2}+1} d x & =\frac{1}{2} \int \frac{d u}{u}=\frac{1}{2} \ln |u|+C \\
& =\frac{1}{2} \ln \left|x^{2}+1\right|+C=\frac{1}{2} \ln \left(x^{2}+1\right)+C
\end{aligned}
$$

Example

With $u=\ln x$ one has

$$
\left.\int_{1}^{e} \frac{\ln x}{x} d x=\int_{0}^{1} u d u=\frac{u^{2}}{2}\right]_{0}^{1}=\frac{1}{2}
$$

Example

Calculate $\int \tan x d x$. Note that

$$
\int \tan x d x=\int \frac{\sin x}{\cos x} d x
$$

Substituting $u=\cos x$ (hence, $d u=-\sin x d x$) we get

$$
\begin{aligned}
\int \tan x d x & =\int \frac{\sin x}{\cos x} d x=-\int \frac{d u}{u} \\
& =-\ln |u|+C=-\ln |\cos x|+C \\
& =\ln \frac{1}{|\cos x|}+C=\ln |\sec x|+C
\end{aligned}
$$

General Logarithmic and Exponential Functions

Since $\log _{a} x=\frac{\ln x}{\ln a}$ we get

$$
\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}
$$

Theorem

$$
\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a \quad \int a^{x} d x=\frac{a^{x}}{\ln a}+C \quad a \neq 1
$$

Proof.
We use the fact that $e^{\ln a}=a$:

$$
\begin{aligned}
\frac{d}{d x}\left(a^{x}\right) & =\frac{d}{d x}\left(e^{\ln a}\right)^{x}=\frac{d}{d x} e^{(\ln a) x}=\left(e^{\ln a}\right)^{x} \frac{d}{d x}((\ln a) x) \\
& =\left(e^{\ln a}\right)^{x}(\ln a)=a^{x} \ln a
\end{aligned}
$$

Example

$$
\frac{d}{d x} \log _{10}(2+\sin x)=\frac{1}{(2+\sin x) \ln 10} \frac{d}{d x}(2+\sin x)=\frac{\cos x}{(2+\sin x) \ln 10}
$$

Example

$$
\frac{d}{d x}\left(10^{x^{2}}\right)=10^{x^{2}}(\ln 10) \frac{d}{d x}\left(x^{2}\right)=(2 \ln 10) \times 10^{x^{2}}
$$

Example

$$
\left.\int_{2}^{5} 2^{x} d x=\frac{2^{x}}{\ln 2}\right]_{0}^{5}=\frac{2^{5}}{\ln 2}-\frac{2^{0}}{\ln 2}=\frac{31}{\ln 2}
$$

Logarithmic Differentiation

Example
Differentiate $y=\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2)^{5}}$ Take In of both sides

$$
\ln y=\frac{3}{4} \ln x+\frac{1}{2} \ln \left(x^{2}+1\right)-5 \ln (3 x+2)
$$

and differentiate it implicitly:

$$
\frac{1}{y} \frac{d y}{d x}=\frac{3}{4} \cdot \frac{1}{x}+\frac{1}{2} \cdot \frac{2 x}{x^{2}+1}-5 \cdot \frac{3}{3 x+2}
$$

Solving for y^{\prime} results

$$
\frac{d y}{d x}=y\left(\frac{3}{4 x}+\frac{x}{x^{2}+1}-\frac{15}{3 x+2}\right)
$$

Finally, we get

$$
\frac{d y}{d x}=\frac{x^{3 / 4} \sqrt{x^{2}+1}}{(3 x+2)^{5}}\left(\frac{3}{4 x}+\frac{x}{x^{2}+1}-\frac{15}{3 x+2}\right)
$$

Steps in logarithmic differentiation:

1. Take In of both sides of an equation $y=f(x)$ and simplify it
2. Differentiate implicitly with respect to x
3. Solve the resulting equation for y^{\prime}

The Number e as a Limit

For $f(x)=\ln x$ we have

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{x \rightarrow 0} \frac{f(1+x)-f(1)}{x} \\
& =\lim _{x \rightarrow 0} \frac{\ln (1+x)-\ln 1}{x}=\lim _{x \rightarrow 0} \frac{1}{x} \ln (1+x) \\
& =\lim _{x \rightarrow 0} \ln (1+x)^{1 / x}=1
\end{aligned}
$$

From here it follows that

$$
e=\lim _{x \rightarrow 0}(1+x)^{1 / x}
$$

If we put $n=1 / x$, then $n \rightarrow \infty$ as $x \rightarrow 0$, hence

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

6.6 Inverse Trigonometric Functions

$y=\sin ^{-1} x$ or $y=\arcsin x$ with $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
$y=\cos ^{-1} x$ or $y=\arccos x$ with $0 \leq y \leq \pi$
$y=\tan ^{-1} x$ or $y=\arctan x$ with $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
$y=\cot ^{-1} x$ with $0 \leq y \leq \pi$
$y=\csc ^{-1} x$ with $y \in\left(0, \frac{\pi}{2}\right] \cup\left(\pi, \frac{3 \pi}{2}\right]$
$y=\sec ^{-1} x$ with $y \in\left(0, \frac{\pi}{2}\right] \cup\left(\pi, \frac{3 \pi}{2}\right]$

Derivatives of Inverse Trigonometric Functions

$$
\begin{aligned}
\frac{d}{d x}\left(\sin ^{-1} x\right) & =\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}\left(\csc ^{-1} x\right)=-\frac{1}{x \sqrt{x^{2}-1}} \\
\frac{d}{d x}\left(\cos ^{-1} x\right) & =-\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}} \\
\frac{d}{d x}\left(\tan ^{-1} x\right) & =\frac{1}{1+x^{2}} & \frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}}
\end{aligned}
$$

Proof.
If $y=\sin ^{-1} x$ then $\sin y=x$. Differentiating implicitly we get $(\cos y) \cdot y^{\prime}=1$, So

$$
y^{\prime}=\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\cos y}=\frac{1}{\sqrt{1-\sin ^{2} y}}=\frac{1}{\sqrt{1-x^{2}}}
$$

Example
Differentiate $y=\frac{1}{\sin ^{-1} x}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\sin ^{-1} x\right)^{-1}=-\left(\sin ^{-1} x\right)^{-2} \frac{d}{d x}\left(\sin ^{-1} x\right) \\
& =-\frac{1}{\left(\sin ^{-1} x\right)^{2} \sqrt{1-x^{2}}}
\end{aligned}
$$

The formulas in the frame box on the previous page can be rewritten as

$$
\int \frac{1}{\sqrt{1-x^{2}}} d x=\sin ^{-1} x+C
$$

$$
\int \frac{1}{x^{2}+1} d x=\tan ^{-1} x+C
$$

Example

Evaluate $\int \frac{d x}{x^{2}+a^{2}}$, where $a=$ const and $a \neq 0$.

$$
\int \frac{d x}{x^{2}+a^{2}}=\int \frac{d x}{a^{2}\left(\frac{x^{2}}{a^{2}}+1\right)}=\frac{1}{a^{2}} \int \frac{d x}{\left(\frac{x}{a}\right)^{2}+1}
$$

Substitute $u=x / a$. Then $d u=d x / a$ and $d x=a d u$, so

$$
\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a^{2}} \int \frac{a d u}{u^{2}+1}=\frac{1}{a} \int \frac{d u}{u^{2}+1}=\frac{1}{a} \tan ^{-1} u+C
$$

This implies

$$
\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C
$$

6.7 Hyperbolic Functions

$$
\begin{array}{ll}
\sinh x=\frac{e^{x}-e^{-x}}{2} & \operatorname{csch} x=\frac{1}{\sinh x} \\
\cosh x=\frac{e^{x}+e^{-x}}{2} & \operatorname{sech} x=\frac{1}{\cosh x} \\
\tanh x=\frac{\sinh x}{\cosh x} & \operatorname{coth} x=\frac{1}{\tanh x}
\end{array}
$$

$$
\sinh (-x)=-\sinh x \quad \cosh (-x)=\cosh x
$$

$$
\cosh ^{2} x-\sinh ^{2} x=1 \quad 1-\tanh ^{2} x=\operatorname{sech}^{2} x
$$

$\sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y$
$\cosh (x+y)=\cosh x \cosh y+\sinh x \sinh y$

Derivatives of Hyperbolic Functions

$$
\begin{aligned}
\frac{d}{d x}(\sinh x) & =\cosh x & \frac{d}{d x}(\operatorname{csch} x) & =-\operatorname{csch} x \cdot \operatorname{coth} x \\
\frac{d}{d x}(\cosh x) & =\sinh x & \frac{d}{d x}(\operatorname{sech} x) & =-\operatorname{sech} x \cdot \tanh x \\
\frac{d}{d x}(\tanh x) & =\operatorname{sech}^{2} x & \frac{d}{d x}(\operatorname{coth} x) & =-\operatorname{csch}^{2} x
\end{aligned}
$$

Proof.

$$
\frac{d}{d x}(\sinh x)=\frac{d}{d x}\left(\frac{e^{x}-e^{-x}}{2}\right)=\frac{e^{x}+e^{-x}}{2}=\cosh x
$$

Inverse Hyperbolic Functions

$$
\begin{array}{lll}
y=\sinh ^{-1} x & \Longleftrightarrow & \sinh y=x \\
y=\cosh ^{-1} x & \Longleftrightarrow & \cosh y=x \\
y=\tanh ^{-1} x & \Longleftrightarrow & \tanh y=x
\end{array}
$$

One has

$$
\begin{aligned}
\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right) & x \in \mathbb{R} \\
\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right) & x \geq 1 \\
\tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) & -1<x<1
\end{aligned}
$$

Derivatives of Inverse Hyperbolic Functions

$$
\begin{aligned}
& \frac{d}{d x}\left(\sinh ^{-1} x\right)=\frac{1}{\sqrt{x^{2}+1}} \\
& \frac{d}{d x}\left(\operatorname{csch}^{-1} x\right)=-\frac{1}{|x| \sqrt{x^{2}+1}} \\
& \frac{d}{d x}\left(\cosh ^{-1} x\right)=\frac{1}{\sqrt{x^{2}-1}} \\
& \frac{d}{d x}\left(\operatorname{sech}^{-1} x\right)=-\frac{1}{x \sqrt{1-x^{2}}} \\
& \frac{d}{d x}\left(\tanh ^{-1} x\right)=\frac{1}{1-x^{2}}
\end{aligned} \quad \frac{d}{d x}\left(\operatorname{coth}^{-1} x\right)=\frac{1}{1-x^{2}}
$$

Proof.
Let $y=\sinh ^{-1} x$, then $\sinh y=x$ and $(\cosh x) \frac{d y}{d x}=1$. Hence,

$$
\frac{d y}{d x}=\frac{1}{\cosh y}=\frac{1}{\sqrt{1+\sinh ^{2} y}}=\frac{1}{\sqrt{1+x^{2}}}
$$

Example

$$
\begin{aligned}
\frac{d}{d x}\left[\tanh ^{-1}(\sin x)\right] & =\frac{1}{1-\sin ^{2} x}(\sin x)^{\prime} \\
& =\frac{1}{1-\sin ^{2} x} \cos x=\frac{\cos x}{\cos ^{2} x}=\sec x
\end{aligned}
$$

Example

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{\sqrt{1+x^{2}}} & \left.=\sinh ^{-1} x\right]_{0}^{1} \\
& =\sinh ^{-1} 1 \\
& =\ln (1+\sqrt{2})
\end{aligned}
$$

6.8 Indeterminate Forms and l'Hospital's Rule

Theorem
Suppose $f(x)$ and $g(x)$ are differentiable and $g^{\prime}(x) \neq 0$ on an open interval containing a. Suppose that

$$
\lim _{x \rightarrow a} f(x)=0 \quad \text { and } \quad \lim _{x \rightarrow a} g(x)=0
$$

or that

$$
\lim _{x \rightarrow a} f(x)= \pm \infty \quad \text { and } \quad \lim _{x \rightarrow a} g(x)= \pm \infty
$$

(indeterminate forms of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$). Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the limit on the R.H.S. exists (or is ∞ or $-\infty$).

Example

Find $\lim _{x \rightarrow 1} \frac{\ln x}{x-1}$. It is indeterminate form of type $\frac{0}{0}$.

$$
\lim _{x \rightarrow 1} \frac{\ln x}{x-1}=\lim _{x \rightarrow 1} \frac{1 / x}{1}=1
$$

Example

Find $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}$. We got an indeterminate form of type $\frac{\infty}{\infty}$.
We apply l'Hospital's rule twice:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{2}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{2 x}=\lim _{x \rightarrow \infty} \frac{e^{x}}{2}=\infty
$$

Example

Find $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[3]{x}}$. l'Hospital's rule applies:

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[3]{x}}=\lim _{x \rightarrow \infty} \frac{1 / x}{\frac{1}{3} x^{-2 / 3}}=\lim _{x \rightarrow \infty} \frac{3}{\sqrt[3]{x}}=0
$$

Example

Find $\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}}$. This indeterminate form of type $\frac{0}{0}$.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}} & =\lim _{x \rightarrow 0} \frac{\sec ^{2} x-1}{3 x^{2}} \\
& =\lim _{x \rightarrow 0} \frac{2 \sec ^{2} x \tan x}{6 x}=\frac{1}{3} \lim _{x \rightarrow 0} \frac{\tan x}{x} \\
& =\frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{1}{3} \lim _{x \rightarrow 0} \frac{\cos x}{1}=\frac{1}{3}
\end{aligned}
$$

Indeterminate Products

Assume $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=\infty$ and we need to compute $\lim _{x \rightarrow a} f(x) \cdot g(x)$. This is indeterminate form of type $0 \cdot \infty$.
We turn it to indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ by rewriting it as

$$
f g=\frac{f}{1 / g} \quad \text { or } \quad f g=\frac{g}{1 / f}
$$

Example

$$
\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}}=\lim _{x \rightarrow 0^{+}}(-x)=0
$$

Indeterminate Differences

Assume $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=\infty$ and we need to compute $\lim _{x \rightarrow a}(f(x)-g(x))$. This is indeterminate form of type $\infty-\infty$.
We turn it to indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$ by using a common denominator, or rationalization, or factoring out a common factor.

Example

$$
\begin{aligned}
\lim _{x \rightarrow(\pi / 2)^{-}}(\sec x-\tan x) & =\lim _{x \rightarrow(\pi / 2)^{-}}\left(\frac{1}{\cos x}-\frac{\sin x}{\cos x}\right) \\
& =\lim _{x \rightarrow(\pi / 2)^{-}} \frac{1-\sin x}{\cos x} \\
& =\lim _{x \rightarrow(\pi / 2)^{-}} \frac{-\cos x}{-\sin x}=0
\end{aligned}
$$

Indeterminate Powers

The following situations can occur while computing the limit

$$
\lim _{x \rightarrow a}[f(x)]^{g(x)}
$$

1. $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$: type 0^{0}
2. $\lim _{x \rightarrow a} f(x)=\infty$ and $\lim _{x \rightarrow a} g(x)=0$: type ∞^{0}
3. $\lim _{x \rightarrow a} f(x)=1$ and $\lim _{x \rightarrow a} g(x)= \pm \infty$: type 1^{∞}

We turn it into indeterminate form of type $0 \cdot \infty$ by taking the logarithm $\ln \left([f(x)]^{g(x)}\right)=g(x) \ln f(x)$ and using the exponentiation

$$
\lim _{x \rightarrow a}[f(x)]^{g(x)}=\lim _{x \rightarrow a} e^{g(x) \ln f(x)}
$$

Example

Find $\lim _{x \rightarrow 0^{+}}(1+\sin 4 x)^{\cot x}$. For $y=(1+\sin 4 x)^{\cot x}$ we have In $y=\cot x \ln (1+\sin 4 x)$, so

$$
\lim _{x \rightarrow 0^{+}} \ln y=\lim _{x \rightarrow 0^{+}} \frac{\ln (1+\sin 4 x)}{\tan x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{4 \cos 4 x}{1+\sin 4 x}}{\sec ^{2} x}=4
$$

Hence, $\lim _{x \rightarrow 0^{+}}(1+\sin 4 x)^{\cot x}=e^{4}$.

Example

$$
\lim _{x \rightarrow 0^{+}} x^{x}=\lim _{x \rightarrow 0^{+}} e^{x \ln x}=e^{0}=1
$$

Cauchy's Mean Value Theorem

Theorem

Assume $f(x)$ and $g(x)$ are continuous on $[a, b]$ and differentiable on (a, b), and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Then there is a number $c \in(a, b)$ such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Note that for $g(x)=x\left(\right.$ so $\left.g^{\prime}(x)=1\right)$ the theorem becomes the Mean Value Theorem.
In general, the proof can be deduced along the lines with the proof of Rolle's theorem by applying the argument to the function

$$
h(x)=f(x)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}[g(x)-g(a)]
$$

Proof of L'Hospital's Rule

Assuming $\lim _{x \rightarrow a} f(x)=0$ and $\lim _{x \rightarrow a} g(x)=0$, denote

$$
L=\lim _{x \rightarrow a}=\frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

We show that $\lim _{x \rightarrow a}[f(x) / g(x)]=L$. For that define

$$
F(x)=\left\{\begin{array}{ll}
f(x) & \text { if } x \neq a \\
0 & \text { if } x=a
\end{array} \quad G(x)= \begin{cases}g(x) & \text { if } x \neq a \\
0 & \text { if } x=a\end{cases}\right.
$$

$F(x)$ and $G(x)$ are continuous on I. Let $x \in I$ and $x>a$. Then $F(x)$ and $G(x)$ are continuous on $[a, x]$ and differentiable on (a, x) and $G^{\prime}(x) \neq 0$ there. By Cauchy's theorem,

$$
\frac{F^{\prime}(y)}{G^{\prime}(y)}=\frac{F(x)-F(a)}{G(x)-G(a)}=\frac{F(x)}{G(x)} \quad \text { for some } y \in(a, x)
$$

If we let $x \rightarrow a^{+}$, then $y \rightarrow a^{+}$, so

$$
\lim _{x \rightarrow a^{+}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a^{+}} \frac{F(x)}{G(x)}=\lim _{x \rightarrow a^{+}} \frac{F^{\prime}(x)}{G^{\prime}(x)}=\lim _{x \rightarrow a^{+}} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L
$$

Similar argument also works for $x \rightarrow a^{-}$.

If a is infinite, we let $t=1 / x$. Then $t \rightarrow 0^{+}$as $x \rightarrow \infty$, so

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)} & =\lim _{t \rightarrow 0^{+}} \frac{f(1 / t)}{g(1 / t)} \\
& =\lim _{t \rightarrow 0^{+}} \frac{f^{\prime}(1 / t)\left(-1 / t^{2}\right)}{g^{\prime}(1 / t)\left(-1 / t^{2}\right)} \\
& =\lim _{t \rightarrow 0^{+}} \frac{f^{\prime}(1 / t)}{g^{\prime}(1 / t)} \\
& =\lim _{x \rightarrow \infty} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\end{aligned}
$$

