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11.1 Sequences
A sequence is a list of numbers written in a definite order

a1,a2, . . . ,an, . . .

The sequence {a1,a2, . . . } is also denoted by {an} or {an}∞n=1.

Example{
n

n + 1

}∞
n=2

{0,1,
√

2,
√

3, . . . ,
√

n, . . . }

Example
The general term of the sequence{

3
5
,− 4

25
,

5
125

,− 6
625

, . . .

}
is obviously

an = (−1)n−1 n + 2
5n



Definition
A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n→∞

if for every ε > 0 there is N such that

|an − L| < ε whenever n > N

If the lim exists the sequence is called convergent and
divergent otherwise.

Theorem
If limx→∞ f (x) = L and f (n) = an then limn→∞ an = L.

Example
The sequence 1/nr is convergent for r ≥ 0 and divergent
otherwise.



Definition
limn→∞ an =∞ means that for every positive M there is an N
such that

an > M whenever n > N

We say that {an} diverges to infinity.
If {an} and {bn} are convergent and c is a constant then

lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn

lim
n→∞

c · an = c · lim
n→∞

an

lim
n→∞

anbn = lim
n→∞

an · lim
n→∞

bn

lim
n→∞

an

bn
= lim

n→∞
an / lim

n→∞
bn if lim

n→∞
bn 6= 0

lim
n→∞

ac
n =

[
lim

n→∞
an

]c
if c > 0 and an > 0



The following theorems can be adopted from functions to
sequences

Theorem
If an ≤ bn ≤ cn and limn→∞ an = limn→∞ cn = L then
limn→∞ bn = L.

Theorem
If limn→∞ |an| = 0 then limn→∞ an = 0.

Example
Find limn→∞

n
n+1 . One has

lim
n→∞

n
n + 1

= lim
n→∞

1
1 + 1

n

=
1

1 + limn→∞
1
n

=
1

1 + 0
= 1



Example

lim
n→∞

n√
10 + n

= lim
n→∞

1√
1
n2 + 10

n

=∞

Example

lim
n→∞

ln n
n

= lim
x→∞

ln x
x

= lim
n→∞

1/x
1

= 0 (l′Hospital′sRule)

Example
The sequence an = (−1)n is divergent.

Example

lim
n→∞

(−1)n

n
= 0 since lim

n→∞

∣∣∣∣(−1)n

n

∣∣∣∣ = lim
n→∞

1
n
= 0



Theorem
If limn→∞ an = L and f is continuous at L then

lim
n→∞

f (an) = f (L)

Example

lim
n→∞

sin(π/n) = sin
(

lim
n→∞

(π/n)
)
= sin 0 = 0

Example
For the sequence an = n!/nn we cannot apply the l’Hospital’s
rule. However,

0 < an =
1
n

(
2 · 3 · · · · · n
n · n · · · · · n

)
<

1
n

Hence, limn→∞ an = 0 by the Squeeze Theorem.



Properties of exponential functions imply

lim
n→∞

rn =


∞, if r > 1
1, if r = 1
0, if 0 ≤ r < 1

Hence, {rn} is convergent for −1 < r ≤ 1 and divergent for all
other values.

Definition
A sequence {an} is called increasing if an < an+1 for all n ≥ 1.
It is called decreasing if an > an+1 for all n ≥ 1. A sequence is
called monotonic if it is either increasing or decreasing.



Example
The sequence

{
3

n+5

}
is decreasing because

3
n + 5

>
3

(n + 1) + 5
=

3
n + 6

Example
The sequence an = n

n2+1 is decreasing because an+1 < an is
equivalent to

n + 1
(n + 1)2 + 1

<
n

n2 + 1
⇐⇒ 1 < n2 + n

Alternatively, the sequence is decreasing because the function
f (x) = x

x2+1 is decreasing:

f ′(x) =
x2 + 1− 2x2

(x2 + 1)2 =
1− x2

(x2 + 1)2 < 0



Definition
A sequence {an} is called bounded above if there is M such
that

an ≤ M for all n ≥ 1

and bounded below if there is m such that

m ≤ an for all n ≥ 1

If {an} is bounded above and below it is called bounded.

Example
The sequence { n

n+1} is bounded since its general term an
satisfies 0 < an < 1. In this case 1 is its least upper bound.



Theorem
Every bounded monotonic sequence is convergent.

Proof.
If {an} is increasing bounded, by the Completeness Axiom it
has a least upper bound L. Since L− ε is not an upper bound
and {an} is increasing then L− ε < an ≤ L whenever n > N for
some N. Thus, limn→∞ an = L.
The proof for decreasing sequences is similar.

Example
The sequence an = 1− 1

n is increasing and bounded by 1.
Hence, it is convergent. Moreover, limn→∞ an = 1



11.2 Series

For a sequence {an} the following sum is called series:

∞∑
i=1

ai = a1 + a2 + · · ·+ an + · · ·

Definition
Given a series

∑∞
i=1 ai , let sn denote its partial sum:

sn =
n∑

i=1

ai = a1 + a2 + · · ·+ an

Is the sequence sn is convergent to a real number s then the
series

∑
ai is called convergent and s is called its sum.

Otherwise, the series is called divergent.



Example
Geometric series for a 6= 0:

a + ar + ar2 + ar3 + · · ·+ arn−1 + · · · =
∞∑

i=1

ar i−1

If r = 1 the series is obviously divergent. For r 6= 1 we have:

sn = a + ar + ar2 + · · ·+ arn−1

rsn = ar + ar2 + · · ·+ arn−1 + arn

So, sn − rsn = a− arn and sn = a(1−rn)
1−r . Therefore, the

geometric series is convergent if |r | < 1 and

∞∑
i=1

ar i−1 =
a

1− r
|r | < 1



Example
Is the series

∑∞
n=1 22n 31−n convergent or divergent?

We rewrite the general term in the form arn−1:

22n 31−n =
(

22
)n

3−(n−1) =
4n

3n−1 = 4
(

4
3

)n−1

So, a = 4 and r = 4/3. Since r > 1 the series is divergent.

Example
Show that the series

∑∞
n=1

1
n(n+1) is convergent and find its

sum. One has

sn =
n∑

i=1

1
i(i + 1)

=
n∑

i=1

(
1
i
− 1

i + 1

)
= 1− 1

n + 1

Hence, the series converges to 1 because

lim
n→∞

sn = lim
n→∞

(
1− 1

n + 1

)
= 1



Example
Show that the Harmonic series is divergent

∞∑
n=1

1
n
= 1 +

1
2
+

1
3
+

1
4
+ · · ·

We have

s2 = 1 +
1
2

s4 = 1 +
1
2
+

(
1
3
+

1
4

)
> 1 +

1
2
+

(
1
4
+

1
4

)
= 1 +

2
2

s8 = 1 +
1
2
+

(
1
3
+

1
4

)
+

(
1
5
+

1
6
+

1
7
+

1
8

)
> 1 +

1
2
+

(
1
4
+

1
4

)
+

(
1
8
+

1
8
+

1
8
+

1
8

)
= 1 +

3
2

Similarly, s2n > 1 + n
2 , so the series is divergent.



Theorem
If the series

∑∞
n=1 an is convergent then limn→∞ an = 0.

Proof.
For sn = a1 + a2 + · · ·+ an we have an = sn − sn−1. Since

∑
an

is convergent, sn is convergent to some number s. One has

lim
n→∞

an = lim
n→∞

(sn − sn−1) = lim
n→∞

sn − lim
n→∞

sn−1 = s − s = 0

Corollary
Test for divergence: if limn→∞ an 6= 0 or does not exist, then
the series is divergent.



Example
The series

∑∞
n=1

n2

5n2+4 is divergent because

lim
n→∞

an = lim
n→∞

n2

5n2 + 4
=

1
5
6= 0

Note that the Test for convergence only works in one direction
and its converse is not true, in general.

Example
The Harmonic series

∑∞
n=1

1
n passes the Test for convergence

lim
n→∞

an = lim
n→∞

1
n
= 0

However, the series is divergent. On the other hand, the series∑∞
n=1

1
n2 also passes the Test and is convergent.

lim
n→∞

an = lim
n→∞

1
n2 = 0



Theorem
If
∑

an and
∑

bn are convergent series, then so are the series
can (c is a constant) and

∑
(an ± bn). Moreover

I

∞∑
n=1

can = c
∞∑

n=1

an

I

∞∑
n=1

(an ± bn) =
∞∑

n=1

an ±
∞∑

n=1

bn

Example

Find the sum of the series
∞∑

n=1

(
3

n(n + 1)
+

1
2n

)
For the sum of geometric series,

∑∞
n=1

1
2n = 1. Furthermore,

∞∑
n=1

3
n(n + 1)

= 3
∞∑

n=1

1
n(n + 1)

= 3

So, the total sum is 3 + 1 = 4.



11.3 The Integral Test and Estimates of Sums
Theorem
Suppose f is continuous, positive, decreasing on [1,∞) and let
an = f (n). Then the series

∑∞
n=1 an is convergent iff the

improper integral
∫∞

1 f (x) dx is convergent.

Proof.
The proof follows immediately from the inequalities∫ n

1
f (x) dx + an ≤ a1 + a2 + · · ·+ an ≤ a1 +

∫ n

1
f (x) dx

Note that for convergent series
∑∞

n=1 f (n) 6=
∫∞

1 f (x) dx , in
general. For example,

∞∑
n=1

1
n2 =

π2

6
whereas

∫ ∞
1

1
x2 dx = 1



Example∑∞
n=1

ln n
n is divergent because∫ ∞
1

ln x
x

dx = lim
t→∞

∫ t

1

ln x
x

dx = lim
n→∞

(ln x)2

2

]t

1

= lim
t→∞

(ln t)2

2
=∞

Example
For what values of p is the series

∑∞
n=1

1
np convergent?

The series is obviously divergent for p ≤ 0. If p > 0 then
f (x) = 1/x is continuous, positive, and decreasing. As we
already know∫ ∞

1

1
xp dx is convergent only for p > 1

So, the series is convergent for p > 1, otherwise divergent.



Estimating the Sums of Series
Assume

∑
an =

∑
f (n) is convergent series and we want to

find an approximation for its sum s. For this we estimate the
remainder

Rn = s − sn = an+1 + an+2 + · · ·

By using a similar approach as in the Integral Test Theorem,∫ ∞
n+1

f (x) dx ≤ Rn ≤
∫ ∞

n
f (x) dx

Example
Estimate the error of approximation of

∑
(1/n3) with s10.

With f (x) = 1/x3 we get∫ ∞
n

dx
x3 = lim

t→∞

[
− 1

2x2

]t

n
= lim

t→∞

(
− 1

2t2 +
1

2n2

)
=

1
2n2



Therefore,

∞∑
n=1

1
n3 ≈ s10 =

1
13 +

1
23 + · · ·+ 1

103 ≈ 1.1975

For the remainder it holds

R10 ≤
∫ ∞

n

dx
x3 =

1
2 · 102 = 0.005

How many terms of the sum should we take to reach the
accuracy 0.0005?

The inequality Rn ≤ 0.0005 is equivalent to 1
2n2 ≤ 0.0005 from

where n ≥ 32 follows.



A better approximation to the sum
∑

an follows from
sn + Rn = s and the estimates of Rn from above:

sn +

∫ ∞
n+1

f (x) dx ≤ s ≤ sn +

∫ ∞
n

f (x) dx

Example
To estimate

∑∞
n=1(1/n

3) we apply the above formula with
n = 10:

s10 +

∫ ∞
11

dx
x3 ≤ s ≤ s10 +

∫ ∞
10

dx
x3

from where we get

s10 +
1

2 · 112 ≤ s ≤ s10 +
1

2 · 102

Using s10 ≈ 1.197532 we obtain

1.201664 ≤ s ≤ 1.202532

Hence, the sum is approx. 1.2021 with error < 0.0005.



11.4 The Comparison Tests
Theorem
Suppose that

∑
an and

∑
bn are series with positive terms.

I If an ≤ bn for all n and
∑

bn is convergent then
∑

an is
convergent.

I If an ≥ bn for all n and
∑

bn is divergent then
∑

an is
divergent.

Proof.

Denote sn =
n∑

i=1

ai tn =
n∑

i=1

bi t =
∞∑

bi=1

I Since sn and tn are increasing, sn ≤ tn and sn ≤ t . By the
Monotonic Sequence Theorem

∑
an is convergent.

I Since an ≥ bn, sn ≥ tn. Thus sn →∞.



Most of the time the power series
∑

1/np (convergency for
p > 1 only) or geometric series are used for comparison.

Example
Investigate the series

∑∞
n=1

5
2n2+4n+3 for convergency. One has

5
2n2 + 4n + 3

≤ 5
2n2 and

∞∑
n=1

5
2n2 + 4n + 3

≤ 5
2

∞∑
n=1

1
n2

Since
∑ 1

n2 is convergent, so is the series in question.

Example
Investigate the series

∑∞
n=1

ln n
n for convergency. One has

ln n
n
≥ 1

n
for n 6= 3

Since the Harmonic series
∑ 1

n is divergent, so is the one in
question.



Theorem
Suppose

∑
an and

∑
bN are series with positive terms. If

lim
n→∞

an

bn
= c

for some finite c > 0 then either both series converge of both
diverge.

Proof.
Since an/bn converges to c, for large n > N and some m,M
with m < c < M we have

m <
an

bn
< M ⇐⇒ mbn < an < Mbn for n > N

If
∑

bn converges, so does
∑

Mbn, hence
∑

an converges by
the Comparison Test.
Similarly, if

∑
bn diverges, so does

∑
mbn, hence

∑
an

diverges.



Example

Investigate the series
∞∑

n=1

2n2 + 3n√
5 + n5

for convergency.

The dominant terms of the numerator and denominator are n2

and n5, respectively. This suggests taking

an =
2n2 + 3n√

5 + n5
bn =

2n2

n5/2 =
2

n1/2

lim
n→∞

an

bn
= lim

n→∞

2n2 + 3n√
5 + n5

· n1/2

2
= lim

n→∞

2n5/2 + 3n1/2

2
√

5 + n5

= lim
n→∞

2 + 3
n

2
√

5
n5 + 1

=
2 + 0

2
√

0 + 1
= 1

Since
∑ 1

n1/2 is divergent, so is the series in question.



Estimating Sums

If
∑

an and
∑

bn pass the comparison test, an ≤ bn and
∑

bn
is convergent then Rn ≤ Tn where

Rn = s − sn = an+1 + an+2 + · · ·
Tn = t − tn = bn+1 + bn+2 + · · ·

If
∑

bn is geometric series, it is easy to estimate the Rn.

Example
For the series

∑
1/(n3 + 1) and

∑
1/n3 we have

1/(n3 + 1) < 1/n3. Earlier we showed Tn ≤
∫ ∞

n

dx
x3 =

1
2n2 .

Hence for the remainder term of the first series one has

Rn ≤ Tn ≤
1

2n

For n = 100, Rn ≤ 0.0005 and
∑100

n=1 1/(n3 + 1) ≈ 0.6864538
with accuracy 0.0005.



11.5 Alternating Series

An alternating series is a series whose terms are alternately
positive or negative. Example:

1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · · =

∞∑
n=1

(−1)n−1 1
n

Theorem

If the alternating series
∞∑

n=1

(−1)n−1bn satisfies

I bn+1 ≤ bn, for all n
I lim

n→∞
bn = 0

then the series is convergent.



Proof.
We first consider the even partial sums

s2 = b1 − b2 ≥ 0
s4 = s2 + (b3 − b4) ≥ s2

s2n = s2n−2 + (b2n−1 − b2n) ≥ s2n−2

On the other hand,

s2n = b1− (b2−b3)− (b4−b5)−· · ·− (b2n−2−b2n−1)−b2n ≤ b1

Since s2n is increasing and bounded it is convergent:
limn→∞ s2n = s for some s. For the odd partial sums we have:

lim
n→∞

s2n+1 = lim
n→∞

(s2n + b2n+1)

= lim
n→∞

s2n + lim
n→∞

b2n+1

= s + 0 = s

Hence, for any partial sum we have limn→∞ sn = s.



Example

The alternating Harmonic series
∞∑

n=1

(−1)n−1

n
is convergent

because
I bn+1 < bn is equivalent to 1

n+1 <
1
n

I limn→∞ bn = limn→∞ 1/n = 0

Example

For the series
∞∑

n=1

(−1)n 3n
4n − 1

we have

lim
n→∞

bn = lim
n→∞

3n
4n − 1

=
3
4
6= 0

Hence, the previous theorem is not applicable. However, since
the following limit does not exist, the series is divergent:

lim
n→∞

an = lim
n→∞

(−1)n 3n
4n − 1



Estimating Sums

Theorem
If s =

∑
(−1)n−1bn is the sum of alternating series such that

I bn+1 ≤ bn

I limn→∞ bn = 0
then

|Rn| = |s − sn| ≤ bn+1

Indeed, since sn is larger than all even partial sums and smaller
than all odd ones,

|s − sn| ≤ |sn+1 − sn| = bn+1 �

Example
Compute

∑∞
n=0(−1)n/n! correct to 3 decimal places. The

conditions of the theorem are satisfied. Since b7 ≤ 0.0002,

|s − s6| ≤ b7 ≤ 0.0002

So, by summing up the first 6 terms we get s ≈ 0.368056.



11.6 Absolute Convergence. Ratio and Root Tests

Definition
A series

∑
an is called absolutely convergent if the series of

absolute values
∑
|an| is convergent.

If the series is convergent but not absolutely convergent, it is
called conditionally convergent.

Example
The series

∑∞
n=1

(−1)n−1

n2 is absolutely convergent, since the
power series

∑∞
n=1

1
n2 is convergent.

Example
We know that the series

∑∞
n=1

(−1)n−1

n is convergent. Since the
Harmonic series

∑∞
n=1

1
n is divergent, the series is conditionally

convergent.



Theorem
If a series

∑
an is absolutely convergent, then it is convergent.

Proof.
Note that 0 ≤ an + |an| ≤ 2|an|. The series

∑
2|an| is

convergent and so is
∑

(an + |an|) by the Comparison Test. So,

∞∑
n=1

an =
∞∑

n=1

(an + |an|)−
∞∑

n=1

|an|

Hence, the series
∑∞

n=1 an is convergent.

Example
Show that the series

∑∞
n=1 cos n/n2 is convergent.

The series has positive and negative terms but is not
alternating. We apply the above theorem:

∞∑
n=1

∣∣∣cos n
n2

∣∣∣ = ∞∑
n=1

| cos n|
n2 ≤

∞∑
n=1

1
n2



The Ratio Test
Theorem
I If lim

n→∞

∣∣∣an+1
an

∣∣∣ = L < 1, then the series
∑∞

n=1 an is absolutely
convergent (hence, simply convergent).

I If lim
n→∞

∣∣∣an+1
an

∣∣∣ = L > 1 or lim
n→∞

∣∣∣an+1
an

∣∣∣ =∞, then the series is
divergent.

Proof.
For the first statement, choose r such that L < r < 1. Then∣∣∣∣an+1

an

∣∣∣∣ < r ⇔ |an+1| < |an|r whenever n ≥ N

So, |aN+1| < |aN |r |aN+2| < |aN |r2, · · · , |aN+s| < |aN |r s.

Hence,
∞∑

n=1

|an| =
N∑

n=1

an +
∞∑

s=1

|aN+s| <
N∑

n=1

an + |aN |
∞∑

s=1

r s

The first sum is finite and the second one is convergent.



Example
The series

∑∞
n=1(−1)n n3

3n is convergent because

∣∣∣∣an+1

an

∣∣∣∣ =

(n+1)3

3n+1

n3

3n

=
(n + 1)3

3n+1 · 3n

n3

=
1
3

(
n + 1

n

)3

=
1
3

(
1 +

1
n

)3

→ 1
3
< 1

Example
The series

∑∞
n=1

nn

n! is divergent because∣∣∣∣an+1

an

∣∣∣∣ =
(n + 1)n+1

(n + 1)!
· n!

nn

=
(n + 1)(n + 1)n

(n + 1)n!
· n!

nn

=

(
n + 1

n

)n

=

(
1 +

1
n

)n

→ e > 1



The Root Test

Theorem

I If lim
n→∞

n
√
|an| = L < 1 then the series

∞∑
n=1

an is absolutely

convergent.

I If lim
n→∞

n
√
|an| = L > 1 then the series

∞∑
n=1

an is divergent.

If lim
n→∞

∣∣∣an+1
an

∣∣∣ = 1 (resp. if lim
n→∞

n
√
|an| = 1), then the Ratio Test

(resp. the Root Test) is inconclusive.

Example
The series

∞∑
n=1

(
2n+3
3n+2

)n
is convergent because

n
√
|an| =

2n + 3
3n + 2

=
2 + 3

n

3 + 2
n

→ 2
3
< 1



11.7 Strategy for Testing Series

1. Apply the Test for Convergence: limn→∞ an = 0.
2. If a series is similar to power series

∑ 1
np or geometric

series
∑ 1

pn , try the Comparison Tests.
3. For alternating series try the Alternating Series Test.
4. For series involving factorials and other products try the

Ratio Test.
5. For series of the form (an)

n, try the Root Test.
6. If nothing works, try the Integral Test.
7. Try again harder :)



11.8 Power Series
Power series is a series of the form

∞∑
n=0

cnxn = c0 + c1x + c2x2 + c3x3 + · · ·+

The following series is called power series centered in x = a:

∞∑
n=0

cn(x − a)n = c0 + c1(x − a) + c2(x − a)2 + · · ·+

Example
For what values of x does the series

∑∞
n=1

(x−3)n

n converge?∣∣∣∣an+1

an

∣∣∣∣ = ∣∣∣∣(x − 3)n+1

n + 1
· n
(x − 3)n

∣∣∣∣ = 1
1 + 1/n

|x − 3| → |x − 3|

So, the series is convergent if |x − 3| < 1, i.e. for 2 ≤ x < 4.



Example
For what values of x does the series

∑∞
n=1 n!xn converge? We

use the ratio test for x 6= 0:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣(n + 1)!xn+1

n!xn

∣∣∣∣ = lim
n→∞

(n + 1)|x | =∞

Hence, the series is convergent for x = 0 only.

Example
For what values of x does the series

∑∞
n=0

(−1)nx2n

22n(n!)2 converge?
We also use the ratio test:∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣ (−1)n+1x2(n+1)

22(n+1)[(n + 1)!]2
· 22n(n!)2

(−1)nx2n

∣∣∣∣∣
=

x2

4(n + 1)2 → 0 < 1

Hence, the series is convergent for all x .



Theorem
For a given power series

∑∞
n=0 cn(x − a)n there are only 3

possibilities:
I The series converges only for x = a
I The series converges for all x
I There is a number R > 0 such that the series converges if
|x − a| < R and diverges if |x − a| > R

In the last case the number R is called radius of convergence.

The convergence at points x = a± R is not specified by the
theorem and must be investigated separately.

The range of x for which the series is convergent is called
interval of convergence.



Example
Find the radius of convergence and interval of convergence of
the series

∑∞
n=0

n (x+2)n

3n+1 . We have∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣(n + 1)(x + 2)n+1

3n+2 · 3n+1

n(x + 2)

∣∣∣∣
=

(
1 +

1
n

)
|x + 2|

3
→ |x + 2|

3

By the ratio test, the series converges if |x + 2|/3 < 1, that is
|x + 2| < 3, and diverges if |x + 2| > 3. Hence, the radius of
convergence R = 3.
The inequality |x + 2| < 3 is equivalent to −5 < x < 1. At the
endpoints x = −5 and x = 1 the series becomes

∞∑
n=0

n (−3)n

3n+1 =
1
3

∞∑
n=0

(−1)nn and
∞∑

n=0

n 3n

3n+1 =
1
3

∞∑
n=0

n

In either case the series is divergent at the endpoints.



11.9 Representation of Functions as Power Series

One of fundamental representations is already known to us:

1
1− x

= 1 + x + x2 + x3 + · · · =
∞∑

n=0

xn |x | < 1

We can use it in many other cases.

Example
Express 1/(1 + x2) as the sum of power series. One has

1
1 + x2 =

1
1− (−x2)

=
∞∑

n=0

(−x2)n

=
∞∑

n=1

(−1)nx2n = 1− x2 + x4 − x6 + · · ·

The interval of convergence is |x2| < 1, that is, |x | < 1.



Example
Express 1

2+x as the sum of power series. We have:

1
2 + x

=
1

2
(
1 + x

2

) =
1

2
[
1−

(
− x

2

)]
=

1
2

∞∑
n=0

(
−x

2

)n
=
∞∑

n=0

(−1)n

2n+1 xn

The interval of convergence is | − x/2| < 1, that is |x | < 2.

Example
Express x3

2+x as the sum of power series. One has:

x3

2 + x
= x3 · 1

x + 2
= x3 ·

∞∑
n=0

(−1)n

2n+1 xn =
∞∑

n=3

(−1)n−1

2n−2 xn

=
1
2

x3 − 1
4

x4 +
1
8

x5 − 1
16

x6 + · · ·



Differentiation and Integration of Power Series

Theorem
In the power series

∑
cn(x − a)n has radius of convergence

R > 0 then the function defined by

f (x) =
∞∑

n=0

cn(x − a)n

is differentiable (hence, continuous) on (a− R,a + R) and

I f ′(x) = c1+2c2(x−a)+3c3(x−a)2+· · · =
∞∑

n=1

ncn(x−a)n−1

I

∫
f (x) dx = C+c0(x−a)+c1

(x − a)2

2
+c2

(x − a)3

3
+ · · · =

C +
∞∑

n=0

cn
(x − a)n+1

n + 1

The radii of convergence of the powers series are both R.



In other terms, under the conditions of the Theorem,

d
dx

[ ∞∑
n=0

cn(x − a)n

]
=

∞∑
n=0

d
dx

[cn(x − a)n]

∫ [ ∞∑
n=0

cn(x − a)n

]
dx =

∞∑
n=0

∫
cn(x − a)n dx

Example
Express 1/(1− x)2 as the sum of power series. We have:

1
1− x

= 1 + x + x2 + x3 + · · · =
∞∑

n=1

xn

1
(1− x)2 =

(
1

1− x

)′
= 1 + 2x + 3x2 + · · · =

∞∑
n=1

nxn−1

The radius of convergence is R = 1.



Example
Find a power series representation for ln(1 + x). One has:

ln(1 + x) =

∫
dx

1 + x
=

∫
(1− x + x2 − x3 + · · · ) dx

= x − x2

2
+

x3

3
− x4

4
+ · · ·+ C

=
∞∑

n=1

(−1)n−1 xn

n
+ C

To find C we put x = 0 into the above equation:
ln(1 + 0) = C = 0. Hence,

ln(1 + x) =
∞∑

n=1

(−1)n−1 xn

n

The radius of convergence is R = 1.



Example
Find a power series representation for tan−1 x . One has:

tan−1 x =

∫
dx

1 + x2 =

∫
(1− x2 + x4 − x6 + · · · ) dx

= C + x − x3

3
+

x5

5
− x7

6
+ · · ·

To determine C we plug in x = 0: C = tan−1(0) = 0. Therefore,

tan−1 x =
∞∑

n=0

(−1)n x2n+1

2n + 1

The radius of convergence is R = 1.



Example
Evaluate

∫
[1/(1 + x7)] dx as the sum of power series.

Approximate
∫ 0.5

0 [1/(1 + x7)] dx correct to within 10−7.

1
1 + x7 =

1
1− (−x7)

=
∞∑

n=0

(−x7)n

=
∞∑

n=0

(−1)nx7n = 1− x7 + x14 + · · ·

∫
dx

1 + x7 =

∫ ∞∑
n=0

(−1)nx7n dx = C +
∞∑

n=0

(−1)n x7n+1

7n + 1

= C + x − x8

8
+

x15

15
+

x22

22
+ · · ·∫ 0.5

0

dx
1 + x7 =

[
x − x8

8
+

x15

15
+

x22

22
+ · · ·

]1/2

0



Therefore,∫ 0.5

0

dx
1 + x7 =

1
2
− 1

8 · 28 +
1

15 · 215 −
1

22 · 222 + · · ·

If we take the first n = 3 terms of this alternating sum, the
approximation error will be less than a4 = 1

29·229 ≈ 6.4 · 10−11.

Finally, we get∫ 0.5

0

dx
1 + x7 ≈

1
2
− 1

8 · 28 +
1

15 · 215 −
1

22 · 222 ≈ 0.49951374



11.10 Taylor and Maclaurin Series
Theorem
If a function f has a power series representation at a, i.e.

f (x) =
∞∑

n=0

cn(x − a)n |x − a| < R

then

cn =
f (n)(a)

n!

In other terms, Taylor series of f at a is

f (x) =
∞∑

n=0

f (n)(a)
n!

(x − a)n

= f (a) +
f ′(a)

1!
(x − a) +

f ′′(a)
2!

(x − a)2 +
f ′′′(a)

3!
(x − a)3 + · · ·

If a = 0 then Taylor series becomes Maclaurin series.



Proof.
By setting x = a in the power series for f we get c0 = f (a).

f (x) = c0 + c1(x − a) + c2(x − a)2 + c3(x − a)3 + · · ·

Differentiating the last equation we derive

f ′(x) = c1 + 2c2(x − a) + 3c3(x − a)2 + 4c4(x − a)3 + · · ·

By setting x = a we obtain c1 = f ′(a) = f ′(a)/1!.

f ′′(x) = 2c2 + 3 · 2c3(x − a) + 4 · 3c4(x − a)2 + · · ·

Setting x = a we get f ′′(a) = 2c2, so c2 = f ′′(a)/2 = f ′′(a)/2!.
Similarly,

f (n)(x) = n(n−1)(n−2) · · · 2cn+(n+1)n(n−1) · · · 3cn+1(x−a)+· · ·

Setting x = a we get

f (n)(a) = n!cn



Example
Find Maclaurin series for ex and its radius of convergence. We
get f (n)(x) = ex , so f (n)(0) = 1. Hence,

ex =
∞∑

n=0

f (n)(0)
n!

xn =
∞∑

n=0

xn

n!

Since ∣∣∣∣an+1

an

∣∣∣∣ = ∣∣∣∣ xn+1

(n + 1)!
· n!

xn

∣∣∣∣ = |x |
n + 1

→ 0 < 1

the series converges for all x . But we are not done yet and
need to show that ex does admit the power series repres. For
that we examine the n-th degree Taylor polynomial

Tn(x) =
n∑

i=0

f (i)

i!
(x − a)i

and prove that for the remainder of the Taylor series
Rn(x) = f (x)− Tn(x) it holds: limn→∞Rn(x) = 0.



Theorem
If f (x) = Tn(x) + Rn(x) and limn→∞Rn(x) = 0 for |x − a| < R
then f is equal to the sum of its Taylor series on that interval.

Theorem
If |f (n+1)(x)| ≤ M for |x − a| ≤ d then

|Rn(x)| ≤
M

(n + 1)!
|x − a|n+1 for |X − a| ≤ d

For f (x) = ex one has |f (n+1)(x)| = ex ≤ ed for |x | ≤ d . So,

|Rn(x)| ≤
ed

(n + 1)!
|x |n+1 for |X | ≤ d

Since limn→∞ xn/n! = 0 (follows from convergency of the power
series for ex ), we get Rn(x)→ 0 as n→∞.



Example
Find the Maclaurin series for sin x and prove that it represents
sin x for all x . We get:

f (x) = sin x f (0) = 0
f ′(x) = cos x f ′(0) = 1
f ′′(x) = − sin x f ′′(0) = 0
f ′′′(x) = − cos x f ′′′(0) = −1

f (4)(x) = sin x f (4)(0) = 0

Therefore, the Maclaurin series becomes

f (0) +
f ′(0)

1!
x +

f ′′(0)
2!

x2 +
f ′′′(0)

3!
x3 + · · ·

= x − x3

3!
+

x5

5!
− x7

7!
+ · · · =

∞∑
n=0

(−1)n x2n+1

(2n + 1)!

Since f (n+1)(x) = ± sin x or ± cos x , |f (n+1)(x)| ≤ 1, so
Rn(x) ≤ |xn+1|/(n + 1)!→ 0 as n→∞.



Example
Find the Maclaurin series for cos x .

cos x =
d
dx

(sin x) =
d
dx

(
x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

)
= 1− 3x2

3!
+

5x4

5!
− 7x6

7!
+ · · ·

= 1− x2

2!
+

x4

4!
− x6

6!
+ · · · =

∞∑
n=0

(−1)n x2n

(2n)!

Example
Find the Maclaurin series for f (x) = x cos x . One has

x cos x = x
∞∑

n=0

(−1)n x2n

(2n)!
=
∞∑

n=0

(−1)n x2n+1

(2n)!



Example
Find the Taylor series for ex at a = 2. Since f (n)(2) = e2 we get

ex =
∞∑

n=1

f (n)

n!
(x − 2)n =

∞∑
n=1

e2

n!
(x − 2)n

Example
Find the Maclaurin series for f (x) = (1 + x)k , where k is real.

f (x) = (1 + k)k f (0) = 1
f ′(x) = k(1 + x)k−1 f ′(0) = k
f ′′(x) = k(k − 1)(1 + x)k−2 f ′′(0) = k(k − 1)
f ′′′(x) = k(k − 1)(k − 2)(1 + x)k−3 f ′′′(0) = k(k − 1)(k − 2)

In general,

f (n)(x) = k(k − 1) · · · (k − n + 1)(1 + x)k−n

f (n)(0) = k(k − 1) · · · (k − n + 1)



This way we obtain

(1 + x)k =
∞∑

n=0

k(k − 1) · · · (k − n + 1)
n!

xn

This series is called binomial series. If k is integer, then the
sum is finite. For the convergency one has∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣k(k − 1) · · · (k − n + 1)(k − n)xn+1

(n + 1)!
·

n!
k(k − 1) · · · (k − n + 1)xn

∣∣∣∣
=
|k − n|
n + 1

|x | =
∣∣1− k

n

∣∣
1 + k

n

|x | → |x | as n→∞

Hence, the binomial series converges for |x | < 1 and diverges
for |x | > 1



Traditional notation for binomial coefficients is(
k
n

)
=

k(k − 1)(k − 2) · · · (k − n + 1)
n!

This way we established the Binomial Series Theorem:

Theorem
If k is any real number and |x | < 1, then

(1 + x)k =
∞∑

n=0

(
k
n

)
xn

The binomial series converges at x = 1 if −1 < k ≤ 0 and at
x = ±1 if k ≥ 0. If k is a positive integer, then the sum is finite,
hence always convergent.



Example
Find the Maclaurin series for the function f (x) = 1√

4−x
. We

rewrite the function as follows:

1√
4− x

=
1√

4
(
1− x

4

) =
1

2
√

1− x
4

=
1
2

(
1− x

4

)−1/2

One has:

1√
4− x

=
1
2

(
1− x

4

)−1/2
=

1
2

∞∑
n=0

(
−1

2
n

)(
−x

4

)n

=
1
2

[
1 +

(
−1

2

)(
−x

4

)
+

(
−1

2

) (
−3

2

)
2!

(
−x

4

)2
+ · · ·

+

(
−1

2

) (
−3

2

) (
−5

2

)
· · ·
(
−1

2 − n + 1
)

n!

(
−x

4

)n
]

For the convergence it must hold | − x/4| < 1, so R = 4.



Example
Evaluate

∫
e−x2

dx as infinite series. One has:

e−x2
=
∞∑

n=0

(−x2)n

n!
=
∞∑

n=0

(−1)n x2n

n!

Integrating term by term we obtain:∫
e−x2

dx =

∫ (
1− x2

1!
+

x4

2!
− x6

3!
+ · · ·+ (−1)n x2n

n!
+ · · ·

)
dx

= C + x − x3

3 · 1!
+

x5

5 · 2!
+ · · ·+ (−1)n x2n+1

(2n + 1)n!
+ · · ·

The series allows to evaluate
∫ 1

0
e−x2

dx correct to 0.001 by

taking just its 5 first terms, since for the error term one has:
R5 = 1/(11 · 5!) < 0.001.



Example

Evaluate lim
x→0

ex − 1− x
x2 . One could apply l’Hospital’s rule, but

we can also use series instead:

lim
x→0

ex − 1− x
x2 = lim

x→0

(
1 + x

1! +
x2

2! +
x3

3! · · ·
)
− 1− x

x2

= lim
x→0

x2

2! +
x3

3! +
x4

4! + · · ·
x2

= lim
x→0

(
1
2
+

x
3!

+
x2

4!
+

x3

5!
+ · · ·

)
=

1
2



Multiplication and Division of Power Series
If power series are added, subtracted, multiplied or divided,
they behave as polynomials.

Example
Find the first three terms in the Maclaurin series for ex sin x :

ex sin x =

(
1 +

x
1!

+
x2

2!
+

x3

3!
+ · · ·

)(
x − x3

3!
+ · · ·

)
= x + x2 +

1
3

x3 + · · ·

Example
Same question as above for tan x :

tan x =
sin x
cos x

=
x − x3

3! +
x5

5! − · · ·
1− x2

2! +
x4

4! − · · ·

= x +
1
3

x3 +
2

15
x5 + · · ·



11.11 Applications of Taylor Polynomials
The idea is to replace a function with its Taylor polynomial of
n-th degree. The main question is how to choose n to achieve
the desired accuracy. The answer to this question is based on
estimating the remainder

|Rn(x)| = |f (x)− Tn(x)|

The general methods are as follows:

I For alternating series
∞∑

n=0

(−1)n−1bnxn use Alternating

Series Estimation Theorem: if {|bn|} → 0 monotonically as
n→∞ then

|Rn(x)| ≤ bn+1|x − a|n+1

I In all cases use Taylor’s inequality: if |f (n+1)(x)| ≤ M then

|Rn(x)| ≤
M

(n + 1)!
|x − a|n+1



Example
What is the maximum error by using the approximation

sin x ≈ x − x3

3!
+

x5

5!

for |x | ≤ 0.3?
Since the Maclaurin series for sin x

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

is alternating, we can use the Alternating Series Estimation
Theorem. For the approximation error we have

|Rn(x)| ≤
|x7|
7!

=
|x7|

5040

For |x | ≤ 0.3 the approximation error does not exceed
4.3× 10−8. In this case the same estimate can be done by
using the Taylor’s inequality.



Example
What is the accuracy of approximation of f (x) = 3

√
x by its

Taylor polynomial of degree 2 at a = 8 for 7 ≤ x ≤ 8 ? One has

f (x) = x1/3 f (8) = 2
f ′(x) = 1

3x−2/3 f ′(8) = 1
12

f ′′(x) = −2
9x−5/3 f ′′(8) = − 1

144
f ′′′(x) = 10

27x−8/3

So, the second degree Taylor polynomial for f (x) is

T2(x) = 2 +
1
12

(x − 8)− 1
288

(x − 8)2

The Taylor series for 3
√

x is not alternating for x < 8. But since
f ′′′(x) ≤ M = 10

27 ·
1

78/3 < 0.0021 for x > 7 we get

|R3(x)| ≤
M
3!
|x − 8|3 ≤ 0.0021

3!
· |7− 8|3 < 0.0004



Example
In Einstein’s theory of special relativity the mass of an object
moving with velocity v is

m =
m0√

1− v2/c2

where m0 is the mass of the object at rest and c is the speed of
light. The kinetic energy is defined by K = mc2 −m0c2. Show
that for v � c this expression agrees with the classical
Newtonian physics: K = m0v2/2.

We rewrite the formula for energy as follows:

K =
m0√

1− v2/c2
−m0c2 = m0c2

[(
1− v2

c2

)−1/2

− 1

]

Denote x = −v2/c2 and notice that |x | < 1.



(1 + x)−1/2 = 1− 1
2

x +

(
−1

2

) (
−3

2

)
2!

x2 +

(
−1

2

) (
−3

2

) (
−5

2

)
3!

x3 + · · ·

= 1− 1
2

x +
3
8

x2 − 5
16

x3 + · · ·

The formula for kinetic energy becomes

K = m0c2
[(

1 +
1
2

v2

c2 +
3
8

v4

c4 +
5
16

v6

c6 + · · ·
)
− 1
]

= m0c2
(

1
2

v2

c2 +
3
8

v4

c4 +
5

16
v6

c6 + · · ·
)

≈ m0c2
(

1
2

v2

c2

)
=

1
2

m0v2

Since K ′′(x) = 3
4m0c2(1+ x)−5/2, for velocities v ≤ 100m/s and

c = 3× 108m/s the approximation error does not exceed
|R1(x)| ≤ M

2 x < 4.17× 10−10m0.
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