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10.1 Curves defined by parametric equations

Suppose that both x and y are functions of a third parameter t :

x = f (t), y = g(t)

As t varies the point (x , y) = (f (t),g(t)) traces out a curve,
called parametric curve.

Example
What curve is represented by the following parametric
equations?

x = cos t y = sin t 0 ≤ t ≤ 2π

Obviously it is a circle x2 + y2 = 1.

What if the range of t would be 0 ≤ t ≤ 4π ?



10.2 Calculus with Parametric Curves
If y and x in a parametric curve equation are functions of t then

dy
dt

=
dy
dx
· dx

dt

Assuming dx/dt 6= 0 we get

dy
dx

=

dy
dt
dx
dt

if
dx
dt
6= 0

To compute d2y/dx2 replace y with dy/dx :

d2y
dx2 =

d
dx

(
dy
dx

)
=

d
dt

(
dy
dx

)
dx
dt



Example
Assume a curve C is defined by x = t2, y = t3 − 3t . Since
y = t(t2 − 3) the curve crosses itself at t = ±

√
3.

dy
dt

=
dy/dt
dx/dt

=
3t2 − 3

2t
=

3
2

(
t − 1

t

)
For t = ±

√
3 the slopes of the tangent lines dy/dx are

±6/(2
√

3) = ±
√

3, so the tangent lines are

y =
√

3(x − 3) and y = −
√

3(x − 3)

To determine concavity we calculate d2y/dx2:

d2y
dx2 =

d
dt

(
dy
dx

)
dx
dt

=

3
2

(
1 +

1
t2

)
2t

=
3(t2 + 1)

4t3

Thus, C is concave upward for t > 0 and downward for t < 0.



Areas
Since the area under a curve y = F (x) on [a,b] is

∫ b
a F (x) dx ,

for a curve defined by parametric equations x = f (t), y = g(t),
α ≤ t ≤ β we have

A =

∫ b

a
y dx =

∫ β

α
g(t)f ′(t) dt

Example
For the cycloid x = r(θ − sin θ), y = r(1− cos θ), 0 ≤ θ ≤ 2π:

A =

∫ 2πr

0
y dx =

∫ 2π

0
r(1− cos θ)r(1− cos θ) dθ

= r2
∫ 2π

0
(1− 2 cos θ + cos2 θ) dθ

= r2
∫ 2π

0
(1− 2 cos θ +

1
2

(1 + cos 2θ)) dθ

= 3πr2



Arc Length
For the length of a curve C y = F (x) on [a,b] we have

L =

∫ b

a

√
1 + (dy/dx)2 dx

If C is defined parametrically with x = f (t), y = g(t) on [α, β]
with f ′(x) > 0 we get

L =

∫ b

a

√
1 + (dy/dx)2 dx =

∫ β

α

√
1 +

(
dy/dt
dx/dt

)2 dx
dt

dt

=

∫ β

α

√(
dx
dt

)2

+

(
dy
dt

)2

dt

This formula is also valid if C cannot be expressed in the form
y = F (x). To show this we subdivide the interval [α, β] with
points t1, t2, . . . , tn on equal-size subintervals of length ∆t .



This way we get points P1,P2, . . . ,Pn on C so its length L is

L = lim
n→∞

n∑
i=1

|Pi−1Pi |

By the Mean Value Theorem applied to f (t) on [ti−1, ti ] we have

f (ti)− f (ti−1) = f ′(t∗i )(ti − ti−1) = f ′(t∗i )∆t

Similar equation is also valid for g(t) and some t∗∗i ∈ [ti−1, ti ], so

∆xi = f ′(t∗i )∆t ∆yi = g′(t∗∗i )∆t

Hence,

|Pi−1Pi | =
√

(∆xi)2 + (∆yi)2 =
√

[f ′(t∗i )]2 + [g′(t∗∗i )]2 ∆t

So, the length becomes

L = lim
n→∞

n∑
i=1

√
[f ′(t∗i )]2 + [g′(t∗∗i )]2 ∆t =

∫ β

α

√
[f ′(t)]2 + [g′(t)]2 dt



Example
Find the curve length given by equations x = cos t , y = sin t ,
0 ≤ t ≤ 2π. We have dx/dt = − sin t , dy/dt = cos t , so

L =

∫ 2π

0

√(
dx
dt

)2

+

(
dy
dt

)2

dt

=

∫ 2π

0

√
sin2 x + cos2 x dx

=

∫ 2π

0
dt = 2π



Example
Find the length of one arch of the cycloid x = r(θ − sin θ),
y = r(1− cos θ), 0 ≤ θ ≤ 2π. We have

L =

∫ 2π

0

√(
dx
dt

)2

+

(
dy
dt

)2

dt

=

∫ 2π

0

√
r2(1− cos θ)2 + r2 sin2 θ dθ

= r
∫ 2π

0

√
1− 2 cos θ + cos2 θ + sin2 θ dθ

= r
∫ 2π

0

√
2(1− cos θ) dθ = r

∫ 2π

0

√
4 sin2(θ/2) dθ

= 2r
∫ 2π

0
sin(θ/2) dθ = 2r [−2 cos(θ/2)]2π0

= 2r [2 + 2] = 8r



Surface Area
For a curve x = f (t), y = g(t), α ≤ t ≤ β, with f ′,g′ continuous
and g(t) ≥ 0, rotated about the x-axis, the area of the resulting
surface is given by

S =

∫ β

α
2πy

√(
dx
dt

)2

+

(
dy
dt

)2

dt

Example
To compute the surface of sphere we rotate a semicircle
x = r cos t , y = r sin t , 0 ≤ t ≤ π:

S =

∫ π

0
2πr sin t

√
(−r sin t)2 + (r cos t)2 dt

= 2πr
∫ π

0
sin t

√
r2(sin2 t + cos2 t) dt

= 2πr2
∫ π

0
sin t dt = 4πr2



10.3 Polar Coordinates
Polar coordinates of a point P = (x , y) is the distance between
P and (0,0) and the angle θ between the ray OP and the
x-axis. That is, P = (r , θ). The angle θ is measured in radians.

We extend the coordinates to the case r < 0 as follows:

(−r , θ) = (r , θ + π)

The same point can be represented in multiple ways:

(r , θ + 2nπ) = (−r , θ + (2n + 1)π)

Conversion formulas:

Polar to Cartesian : x = r cos θ y = r sin θ
Cartesian to Polar : r2 = x2 + y2 tan θ = y

x



Example
Convert (2, π/3) from polar to Cartesian coordinates. One has:

x = r cos θ = 2 cos
π

3
= 2 · 1

2
= 1

y = r sin θ = 2 sin
π

3
= 2 ·

√
3

2
=
√

3

Example
Convert (1,−1) from Cartesian to polar coordinates. One has

r =
√

x2 + y2 =
√

12 + (−1)2 =
√

2

tan θ =
y
x

= −1

We get the following possible representations:

(
√

2,−π
4

) (
√

2,
7π
4

)



Polar Curves

The graph of polar equation r = f (θ) of F (r , θ) = 0 consists of
all points whose at least one polar expression (r , θ) satisfies the
equation.

Example
Find a Cartesian equation of the curve r = 2 cos θ.

Since x = r cos θ, cos θ = x/r . Using polar equation we get
cos θ = r/2, so r/2 = x/r , or 2x = r2 = x2 + y2. So, the curve
equation is x2 + y2 − 2x = 0, or

(x − 1)2 + y2 = 1



Symmetry

I If a polar equation is unchanged when θ is replaced with
−θ, the curve is symmetric about the x-axis.

I If a polar equation is unchanged when r is replaced with−r
or θ is replaced with θ + π, the curve is symmetric about
the pole.

I If a polar equation is unchanged when θ is replaced with
π − θ, the curve is symmetric about the y -axis.



Tangents to Polar Curves

Rewrite the parametric equation r = f (θ) as

x = r cos θ = f (θ) cos θ y = r sin θ = f (θ) sin θ

One has

dy
dx

=

dy
dθ
dx
dθ

=

dr
dθ

sin θ + r cos θ

dr
dθ

cos θ − r sin θ

For tangent line at the pole when r = 0 we get

dy
dx

= tan θ provided
dr
dθ
6= 0



Example
Find the points on the cardioid r = 1 + sin θ where the tangent
line is horizontal or vertical.

x = r cos θ = (1 + sin θ) cos θ = cos θ +
1
2

sin 2θ

y = r sin θ = (1 + sin θ) sin θ = sin θ + sin2 θ

and
dy
dx

=
dy/dθ
dx/dθ

=
cos θ + 2 sin θ cos θ
− sin θ + cos 2θ

So,
dy
dθ

= 0, θ =
π

2
,
3π
2
,
7π
6
,
11π

6
dx
dθ

= 0, θ =
3π
2
,
π

6
,
5π
6

The case θ = 3π
2 needs a special treatment.



10.4 Areas and Lengths in Polar Coordinates

Recall the area or a circle sector: A = 1
2 r2θ.

Let R be a polar region bounded by the polar curve r = f (θ)
and rays θ = a and θ = b with 0 ≤ b − a ≤ 2π. We divide it into
subintervals of equal width ∆θ with endpoints θ1, . . . , θn. For
the sector bounded with θi−1 and θi one has

∆Ai =
1
2

[f (θ∗i )]2∆θ θ∗i ∈ [θi−1, θi ]

So the area of R can be obtained as

A = lim
n→∞

n∑
i=1

1
2

[f (θ∗i )]2∆θ =

∫ b

a

1
2

[f (θ∗i )]2 dθ =
1
2

∫ b

a
r2 dθ



Example
Find the are of one loop of the 4-leaved rose r = cos 2θ.

A =
1
2

∫ π/4

−π/4
r2 dθ =

1
2

∫ π/4

−π/4
cos2 2θ dθ

=

∫ π/4

0
cos2 2θ dθ =

∫ π/4

0

1
2

(1 + cos 4θ) dθ

=
1
2

[
θ +

1
4

sin 4θ
]π/4

0
=
π

8

Area between two polar curves

If the curves are r = f (θ) and r = g(θ), a ≤ θ ≤ b, the following
formula is easy to derive:

A =
1
2

∫ b

a

(
[f (θ)]2 − [g(θ)]2

)
dθ



Example
Find the area which is inside the circle r = 3 sin θ and outside of
cardioid r = 1 + sin θ. The intersecting points are determined by

3 sin θ = 1 + sin θ ⇒ θ =
π

6
,

5π
6

Note that the area is symmetric about the vertical axis.

A =

∫ π/2

π/6
(3 sin θ)2 dθ −

∫ π/2

π/6
(1 + sin θ)2 dθ

=

∫ π/2

π/6
9 sin2 θ dθ −

∫ π/2

π/6
(1 + 2 sin θ + sin2 θ) dθ

=

∫ π/2

π/6
(8 sin2 θ − 1− 2 sin θ) dθ

=

∫ π/2

π/6
(3− 4 cos 2θ − 2 sin θ) dθ = 3θ − 2 sin 2θ + 2 cos θ]

π/2
π/6

= π



Arc Length

To find the arc length of the polar curve r = f (θ), a ≤ θ ≤ b, we
treat θ as a parameter in parametric curve equations:

x = r cos θ = f (θ) cos θ y = r sin θ = f (θ) sin θ

Differentiating them we get

dx
dθ

=
dr
dθ

cos θ − r sin θ
dy
dθ

=
dr
dθ

sin θ − r cos θ

Therefore,(
dx
dθ

)2

+

(
dy
dθ

)2

=

(
dr
dθ

)2

cos2 θ − 2r
dr
dθ

cos θ sin θ + r2 sin2 θ

+

(
dr
dθ

)2

sin2 θ + 2r
dr
dθ

sin θ cos θ + t2 cos2 θ

=

(
dr
dθ

)2

+ r2



Hence, the formula for the length becomes

L =

∫ b

a

√(
dx
dθ

)2

+

(
dy
dθ

)2

dθ =

∫ b

a

√
r2 +

(
dr
dθ

)2

dθ

Example
Find the length of the cardioid r = 1 + sin θ.

L =

∫ 2π

0

√
r2 +

(
dr
dθ

)2

dθ =

∫ 2π

0

√
(1 + sin θ)2 + cos2 θ dθ

=

∫ 2π

0

√
2 + 2 sin θ dθ =

∫ 2π

0

√
2 + 2 sin θ

√
2− 2 sin θ√

2− 2 sin θ
dθ

=

∫ 2π

0

2 cos θ dθ√
2− 2 sin θ

= −2
√

2
∫ π/2

−π/2

d(1− sin θ)√
1− sin θ

= −2
√

2
∫ 1

−1

d(1− z)√
1− z

= −2
√

2 · 2
√

1− z
]1

−1
= 8



10.5 Conic Sections
Parabolas
Parabola is a set of points in a plane which are equidistant from
a fixed point F (focus) and a fixed line (directrix).

If directrix is y = −p and focus is (0,p), the distance from a
point (x , y) on the parabola to F is

√
x2 + (y − p)2. The

distance from (x , y) to the directrix is |y + p|, so the parabola
equation becomes√

x2 + (y − p)2 = |y + p|

which simplifies to
x2 = 4py

Similarly, if directrix is x = −p and focus is (p,0) the parabola
equation is

y2 = 4px



Ellipses
An ellipse is the set of points in a plane, the sum of whose
distances from two fixed points F1,F2 (foci) is a constant. If
F1 = (−c,0), F2 = (c,0), and the constant is 2a the ellipse
equation becomes√

(x + c)2 + y2 +
√

(x − c)2 + y2 = 2a

which simplifies to

x2

a2 +
y2

b2 = 1, c2 = a2 − b2, a ≥ b > 0

If the foci are of the y -axis, i.e. F1 = (0,−c), F2 = (0, c), the
ellipse equation becomes

x2

b2 +
y2

a2 = 1, c2 = a2 − b2, a ≥ b > 0



Hyperbolas
A hyperbola is the set of points in a plane, the difference of
whose distances from two fixed points F1,F2 (foci) is a
constant. If F1 = (−c,0), F2 = (c,0), and the constant is 2a the
hyperbola equation is

x2

a2 −
y2

b2 = 1, c2 = a2 + b2

The x-intercepts (±a,0) are called the vertices of hyperbola,
and it has asymptotes y = ±(b/a)x .

If the foci are of the y -axis, i.e. F1 = (0,−c), F2 = (0, c), the
hyperbola equation becomes

y2

a2 −
x2

b2 = 1, c2 = a2 + b2

Its vertices are (0,±a) and asymptotes are y = ±(a/b)x .



Shifted conics
Shifted conic can be obtained by replacing x and y in its
equation with x − h and y − k , respectively.

Example
Identify the conic 9x2 − 4y2 − 72x + 8y + 176 = 0 and find its
foci. To accomplish it, we complete the squares:

4(y2 − 2y)− 9(x2 − 8x) = 176
4(y2 − 2y + 1)− 9(x2 − 8x + 16) = 176 + 4− 144 = 36

4(y − 1)2 − 9(x − 4)2 = 36
(y − 1)2

9
− (x − 4)2

4
= 1

Hence, it is a shifted hyperbola with a = 3, b = 2, c =
√

13
whose (original) foci (0,±

√
13) are also shifted accordingly and

become (4,1±
√

13).



10.6 Conic Sections in Polar Coordinates

Theorem
Let

I F be a fixed point (focus)
I ` be a fixed line (directrix) in a plane
I e > 0 be a fixed number (eccentricity).

The set of all points P in the plane such that

|PF |
|P`|

= e

is a conic section. The conic is
(i) an ellipse, if e < 1
(ii) a parabola, if e = 1
(iii) a hyperbola, if e > 1



Note that for e = 1 then we get the definition of parabola.
Let F = (0,0) and ` be the line x = d . For P = (r , θ) one has

|PF | = r |P`| = d − r cos θ

The condition |PF | = e|P`| becomes

r = e(d − r cos θ) or
√

x2 + y2 = e(d − x)

By squaring both parts after a little algebra we get

x2 + y2 = e2(d − x)2 = e2(d2 − 2dx + x2)

(1− e2)x2 + 2de2x + y2 = e2d2

After completing the square we obtain(
x +

e2d
1− e2

)2

+
y2

1− e2 =
e2d2

(1− e2)2



Proof.
For e < 1 we get the ellipse equation of the form

(x − h)2

a2 +
y2

b2 = 1

where h = − e2d
1−e2 , a = ed

1−e2 , b = ed√
1−e2

. The foci are at

distance c from the ellipse center, where
c =
√

a2 − b2 = e2d
1−e2 = −h and e = c

a .

For e > 1 we have 1− e2 < 0, so the equation represents a
hyperbola. We could write its equation in the form

(x − h)2

a2 − y2

b2 = 1

and derive e = c
a with c2 = a2 + b2.



Therefore, the curve equation in polar coordinates is

r =
ed

1 + e cos θ

For directrix of the form x = −d , y = −d , or y = d the equation
can be obtained by rotating the graph on angles π, −π/2, or
π/2, respectively. For example. for y = d we get the equation
r = ed

1+e cos(θ−π/2) = ed
1+e sin θ . Thus, we the theorem:

Theorem
A polar equation of the form

r =
ed

1± e cos θ
or r =

ed
1± e sin θ

represents a conic setion of eccentricity e. The conic is an
ellipse if e < 1, a parabola if e = 1, or a hyperbola if e > 1.



Example
The conic equation r = 10

3−2 cos θ can be rewritten as

r =
10
3

1− 2
3 cos θ

So, e = 2/3 and it is an ellipse. The directrix line is at distance

d =
10
3
e = 5 from the origin, so its equation is x = −5.

Example
If we replace the equation from the previous example with

r =
10

3− 2 cos(θ − π/4)

we get an ellipse rotated on angle π/4 about one of its foci. The
directrix line becomes y = 5

√
2− x .
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