Outline

Section 10: Parametric Equations and Polar Coordinates 10.1 Curves defined by parametric equations 10.2 Calculus with Parametric Curves
 10.3 Polar Coordinates
 10.4 Areas and Lengths in Polar Coordinates
 10.5 Conic Sections
 10.6 Conic Sections in Polar Coordinates

10.1 Curves defined by parametric equations

Suppose that both x and y are functions of a third parameter t :

$$
x=f(t), \quad y=g(t)
$$

As t varies the point $(x, y)=(f(t), g(t))$ traces out a curve, called parametric curve.

Example

What curve is represented by the following parametric equations?

$$
x=\cos t \quad y=\sin t \quad 0 \leq t \leq 2 \pi
$$

Obviously it is a circle $x^{2}+y^{2}=1$.

What if the range of t would be $0 \leq t \leq 4 \pi$?

10.2 Calculus with Parametric Curves

If y and x in a parametric curve equation are functions of t then

$$
\frac{d y}{d t}=\frac{d y}{d x} \cdot \frac{d x}{d t}
$$

Assuming $d x / d t \neq 0$ we get

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}} \quad \text { if } \quad \frac{d x}{d t} \neq 0
$$

To compute $d^{2} y / d x^{2}$ replace y with $d y / d x$:

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}
$$

Example

Assume a curve C is defined by $x=t^{2}, y=t^{3}-3 t$. Since $y=t\left(t^{2}-3\right)$ the curve crosses itself at $t= \pm \sqrt{3}$.

$$
\frac{d y}{d t}=\frac{d y / d t}{d x / d t}=\frac{3 t^{2}-3}{2 t}=\frac{3}{2}\left(t-\frac{1}{t}\right)
$$

For $t= \pm \sqrt{3}$ the slopes of the tangent lines $d y / d x$ are $\pm 6 /(2 \sqrt{3})= \pm \sqrt{3}$, so the tangent lines are

$$
y=\sqrt{3}(x-3) \quad \text { and } \quad y=-\sqrt{3}(x-3)
$$

To determine concavity we calculate $d^{2} y / d x^{2}$:

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{\frac{3}{2}\left(1+\frac{1}{t^{2}}\right)}{2 t}=\frac{3\left(t^{2}+1\right)}{4 t^{3}}
$$

Thus, C is concave upward for $t>0$ and downward for $t<0$.

Areas

Since the area under a curve $y=F(x)$ on $[a, b]$ is $\int_{a}^{b} F(x) d x$, for a curve defined by parametric equations $x=f(t), y=g(t)$, $\alpha \leq t \leq \beta$ we have

$$
A=\int_{a}^{b} y d x=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) d t
$$

Example

For the cycloid $x=r(\theta-\sin \theta), y=r(1-\cos \theta), 0 \leq \theta \leq 2 \pi$:

$$
\begin{aligned}
A & =\int_{0}^{2 \pi r} y d x=\int_{0}^{2 \pi} r(1-\cos \theta) r(1-\cos \theta) d \theta \\
& =r^{2} \int_{0}^{2 \pi}\left(1-2 \cos \theta+\cos ^{2} \theta\right) d \theta \\
& =r^{2} \int_{0}^{2 \pi}\left(1-2 \cos \theta+\frac{1}{2}(1+\cos 2 \theta)\right) d \theta \\
& =3 \pi r^{2}
\end{aligned}
$$

Arc Length

For the length of a curve $C y=F(x)$ on $[a, b]$ we have

$$
L=\int_{a}^{b} \sqrt{1+(d y / d x)^{2}} d x
$$

If C is defined parametrically with $x=f(t), y=g(t)$ on $[\alpha, \beta]$ with $f^{\prime}(x)>0$ we get

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{1+(d y / d x)^{2}} d x=\int_{\alpha}^{\beta} \sqrt{1+\left(\frac{d y / d t}{d x / d t}\right)^{2}} \frac{d x}{d t} d t \\
& =\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
\end{aligned}
$$

This formula is also valid if C cannot be expressed in the form $y=F(x)$. To show this we subdivide the interval $[\alpha, \beta]$ with points $t_{1}, t_{2}, \ldots, t_{n}$ on equal-size subintervals of length Δt.

This way we get points $P_{1}, P_{2}, \ldots, P_{n}$ on C so its length L is

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|
$$

By the Mean Value Theorem applied to $f(t)$ on $\left[t_{i-1}, t_{i}\right]$ we have

$$
f\left(t_{i}\right)-f\left(t_{i-1}\right)=f^{\prime}\left(t_{i}^{*}\right)\left(t_{i}-t_{i-1}\right)=f^{\prime}\left(t_{i}^{*}\right) \Delta t
$$

Similar equation is also valid for $g(t)$ and some $t_{i}^{* *} \in\left[t_{i-1}, t_{i}\right]$, so

$$
\Delta x_{i}=f^{\prime}\left(t_{i}^{*}\right) \Delta t \quad \Delta y_{i}=g^{\prime}\left(t_{i}^{* *}\right) \Delta t
$$

Hence,

$$
\left|P_{i-1} P_{i}\right|=\sqrt{\left(\Delta x_{i}\right)^{2}+\left(\Delta y_{i}\right)^{2}}=\sqrt{\left[f^{\prime}\left(t_{i}^{*}\right)\right]^{2}+\left[g^{\prime}\left(t_{i}^{* *}\right)\right]^{2}} \Delta t
$$

So, the length becomes
$L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{\left[f^{\prime}\left(t_{i}^{*}\right)\right]^{2}+\left[g^{\prime}\left(t_{i}^{* *}\right)\right]^{2}} \Delta t=\int_{\alpha}^{\beta} \sqrt{\left[f^{\prime}(t)\right]^{2}+\left[g^{\prime}(t)\right]^{2}} d t$

Example

Find the curve length given by equations $x=\cos t, y=\sin t$, $0 \leq t \leq 2 \pi$. We have $d x / d t=-\sin t, d y / d t=\cos t$, so

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{\sin ^{2} x+\cos ^{2} x} d x \\
& =\int_{0}^{2 \pi} d t=2 \pi
\end{aligned}
$$

Example

Find the length of one arch of the cycloid $x=r(\theta-\sin \theta)$, $y=r(1-\cos \theta), 0 \leq \theta \leq 2 \pi$. We have

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{2 \pi} \sqrt{r^{2}(1-\cos \theta)^{2}+r^{2} \sin ^{2} \theta} d \theta \\
& =r \int_{0}^{2 \pi} \sqrt{1-2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta} d \theta \\
& =r \int_{0}^{2 \pi} \sqrt{2(1-\cos \theta)} d \theta=r \int_{0}^{2 \pi} \sqrt{4 \sin ^{2}(\theta / 2)} d \theta \\
& =2 r \int_{0}^{2 \pi} \sin (\theta / 2) d \theta=2 r[-2 \cos (\theta / 2)]_{0}^{2 \pi} \\
& =2 r[2+2]=8 r
\end{aligned}
$$

Surface Area

For a curve $x=f(t), y=g(t), \alpha \leq t \leq \beta$, with f^{\prime}, g^{\prime} continuous and $g(t) \geq 0$, rotated about the x-axis, the area of the resulting surface is given by

$$
S=\int_{\alpha}^{\beta} 2 \pi y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

Example

To compute the surface of sphere we rotate a semicircle $x=r \cos t, y=r \sin t, 0 \leq t \leq \pi$:

$$
\begin{aligned}
S & =\int_{0}^{\pi} 2 \pi r \sin t \sqrt{(-r \sin t)^{2}+(r \cos t)^{2}} d t \\
& =2 \pi r \int_{0}^{\pi} \sin t \sqrt{r^{2}\left(\sin ^{2} t+\cos ^{2} t\right)} d t \\
& =2 \pi r^{2} \int_{0}^{\pi} \sin t d t=4 \pi r^{2}
\end{aligned}
$$

10.3 Polar Coordinates

Polar coordinates of a point $P=(x, y)$ is the distance between P and $(0,0)$ and the angle θ between the ray $O P$ and the x-axis. That is, $P=(r, \theta)$. The angle θ is measured in radians.

We extend the coordinates to the case $r<0$ as follows:

$$
(-r, \theta)=(r, \theta+\pi)
$$

The same point can be represented in multiple ways:

$$
(r, \theta+2 n \pi)=(-r, \theta+(2 n+1) \pi)
$$

Conversion formulas:

Polar to Cartesian :	$x=r \cos \theta$	$y=r \sin \theta$
Cartesian to Polar :	$r^{2}=x^{2}+y^{2}$	$\tan \theta=\frac{y}{x}$

Example

Convert ($2, \pi / 3$) from polar to Cartesian coordinates. One has:

$$
\begin{aligned}
& x=r \cos \theta=2 \cos \frac{\pi}{3}=2 \cdot \frac{1}{2}=1 \\
& y=r \sin \theta=2 \sin \frac{\pi}{3}=2 \cdot \frac{\sqrt{3}}{2}=\sqrt{3}
\end{aligned}
$$

Example

Convert $(1,-1)$ from Cartesian to polar coordinates. One has

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}}=\sqrt{1^{2}+(-1)^{2}}=\sqrt{2} \\
\tan \theta & =\frac{y}{x}=-1
\end{aligned}
$$

We get the following possible representations:

$$
\left(\sqrt{2},-\frac{\pi}{4}\right) \quad\left(\sqrt{2}, \frac{7 \pi}{4}\right)
$$

Polar Curves

The graph of polar equation $r=f(\theta)$ of $F(r, \theta)=0$ consists of all points whose at least one polar expression (r, θ) satisfies the equation.

Example

Find a Cartesian equation of the curve $r=2 \cos \theta$.
Since $x=r \cos \theta, \cos \theta=x / r$. Using polar equation we get $\cos \theta=r / 2$, so $r / 2=x / r$, or $2 x=r^{2}=x^{2}+y^{2}$. So, the curve equation is $x^{2}+y^{2}-2 x=0$, or

$$
(x-1)^{2}+y^{2}=1
$$

Symmetry

- If a polar equation is unchanged when θ is replaced with $-\theta$, the curve is symmetric about the x-axis.
- If a polar equation is unchanged when r is replaced with $-r$ or θ is replaced with $\theta+\pi$, the curve is symmetric about the pole.
- If a polar equation is unchanged when θ is replaced with $\pi-\theta$, the curve is symmetric about the y-axis.

Tangents to Polar Curves

Rewrite the parametric equation $r=f(\theta)$ as

$$
x=r \cos \theta=f(\theta) \cos \theta \quad y=r \sin \theta=f(\theta) \sin \theta
$$

One has

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

For tangent line at the pole when $r=0$ we get

$$
\frac{d y}{d x}=\tan \theta \quad \text { provided } \frac{d r}{d \theta} \neq 0
$$

Example

Find the points on the cardioid $r=1+\sin \theta$ where the tangent line is horizontal or vertical.

$$
\begin{aligned}
& x=r \cos \theta=(1+\sin \theta) \cos \theta=\cos \theta+\frac{1}{2} \sin 2 \theta \\
& y=r \sin \theta=(1+\sin \theta) \sin \theta=\sin \theta+\sin ^{2} \theta
\end{aligned}
$$

and

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\cos \theta+2 \sin \theta \cos \theta}{-\sin \theta+\cos 2 \theta}
$$

So,

$$
\begin{array}{ll}
\frac{d y}{d \theta}=0, & \theta=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6} \\
\frac{d x}{d \theta}=0, & \theta=\frac{3 \pi}{2}, \frac{\pi}{6}, \frac{5 \pi}{6}
\end{array}
$$

The case $\theta=\frac{3 \pi}{2}$ needs a special treatment.

10.4 Areas and Lengths in Polar Coordinates

Recall the area or a circle sector: $A=\frac{1}{2} r^{2} \theta$.
Let \mathcal{R} be a polar region bounded by the polar curve $r=f(\theta)$ and rays $\theta=a$ and $\theta=b$ with $0 \leq b-a \leq 2 \pi$. We divide it into subintervals of equal width $\Delta \theta$ with endpoints $\theta_{1}, \ldots, \theta_{n}$. For the sector bounded with θ_{i-1} and θ_{i} one has

$$
\Delta A_{i}=\frac{1}{2}\left[f\left(\theta_{i}^{*}\right)\right]^{2} \Delta \theta \quad \theta_{i}^{*} \in\left[\theta_{i-1}, \theta_{i}\right]
$$

So the area of \mathcal{R} can be obtained as

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{2}\left[f\left(\theta_{i}^{*}\right)\right]^{2} \Delta \theta=\int_{a}^{b} \frac{1}{2}\left[f\left(\theta_{i}^{*}\right)\right]^{2} d \theta=\frac{1}{2} \int_{a}^{b} r^{2} d \theta
$$

Example

Find the are of one loop of the 4 -leaved rose $r=\cos 2 \theta$.

$$
\begin{aligned}
A & =\frac{1}{2} \int_{-\pi / 4}^{\pi / 4} r^{2} d \theta=\frac{1}{2} \int_{-\pi / 4}^{\pi / 4} \cos ^{2} 2 \theta d \theta \\
& =\int_{0}^{\pi / 4} \cos ^{2} 2 \theta d \theta=\int_{0}^{\pi / 4} \frac{1}{2}(1+\cos 4 \theta) d \theta \\
& =\frac{1}{2}\left[\theta+\frac{1}{4} \sin 4 \theta\right]_{0}^{\pi / 4}=\frac{\pi}{8}
\end{aligned}
$$

Area between two polar curves

If the curves are $r=f(\theta)$ and $r=g(\theta), a \leq \theta \leq b$, the following formula is easy to derive:

$$
A=\frac{1}{2} \int_{a}^{b}\left([f(\theta)]^{2}-[g(\theta)]^{2}\right) d \theta
$$

Example

Find the area which is inside the circle $r=3 \sin \theta$ and outside of cardioid $r=1+\sin \theta$. The intersecting points are determined by

$$
3 \sin \theta=1+\sin \theta \quad \Rightarrow \quad \theta=\frac{\pi}{6}, \frac{5 \pi}{6}
$$

Note that the area is symmetric about the vertical axis.

$$
\begin{aligned}
A & =\int_{\pi / 6}^{\pi / 2}(3 \sin \theta)^{2} d \theta-\int_{\pi / 6}^{\pi / 2}(1+\sin \theta)^{2} d \theta \\
& =\int_{\pi / 6}^{\pi / 2} 9 \sin ^{2} \theta d \theta-\int_{\pi / 6}^{\pi / 2}\left(1+2 \sin \theta+\sin ^{2} \theta\right) d \theta \\
& =\int_{\pi / 6}^{\pi / 2}\left(8 \sin ^{2} \theta-1-2 \sin \theta\right) d \theta \\
& \left.=\int_{\pi / 6}^{\pi / 2}(3-4 \cos 2 \theta-2 \sin \theta) d \theta=3 \theta-2 \sin 2 \theta+2 \cos \theta\right]_{\pi / 6}^{\pi / 2} \\
& =\pi
\end{aligned}
$$

Arc Length

To find the arc length of the polar curve $r=f(\theta)$, $a \leq \theta \leq b$, we treat θ as a parameter in parametric curve equations:

$$
x=r \cos \theta=f(\theta) \cos \theta \quad y=r \sin \theta=f(\theta) \sin \theta
$$

Differentiating them we get

$$
\frac{d x}{d \theta}=\frac{d r}{d \theta} \cos \theta-r \sin \theta \quad \frac{d y}{d \theta}=\frac{d r}{d \theta} \sin \theta-r \cos \theta
$$

Therefore,

$$
\begin{aligned}
\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2} & =\left(\frac{d r}{d \theta}\right)^{2} \cos ^{2} \theta-2 r \frac{d r}{d \theta} \cos \theta \sin \theta+r^{2} \sin ^{2} \theta \\
& +\left(\frac{d r}{d \theta}\right)^{2} \sin ^{2} \theta+2 r \frac{d r}{d \theta} \sin \theta \cos \theta+t^{2} \cos ^{2} \theta \\
& =\left(\frac{d r}{d \theta}\right)^{2}+r^{2}
\end{aligned}
$$

Hence, the formula for the length becomes

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta=\int_{a}^{b} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Example

Find the length of the cardioid $r=1+\sin \theta$.

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta=\int_{0}^{2 \pi} \sqrt{(1+\sin \theta)^{2}+\cos ^{2} \theta} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{2+2 \sin \theta} d \theta=\int_{0}^{2 \pi} \frac{\sqrt{2+2 \sin \theta} \sqrt{2-2 \sin \theta}}{\sqrt{2-2 \sin \theta}} d \theta \\
& =\int_{0}^{2 \pi} \frac{2 \cos \theta d \theta}{\sqrt{2-2 \sin \theta}}=-2 \sqrt{2} \int_{-\pi / 2}^{\pi / 2} \frac{d(1-\sin \theta)}{\sqrt{1-\sin \theta}} \\
& \left.=-2 \sqrt{2} \int_{-1}^{1} \frac{d(1-z)}{\sqrt{1-z}}=-2 \sqrt{2} \cdot 2 \sqrt{1-z}\right]_{-1}^{1}=8
\end{aligned}
$$

10.5 Conic Sections

Parabolas

Parabola is a set of points in a plane which are equidistant from a fixed point F (focus) and a fixed line (directrix).

If directrix is $y=-p$ and focus is $(0, p)$, the distance from a point (x, y) on the parabola to F is $\sqrt{x^{2}+(y-p)^{2}}$. The distance from (x, y) to the directrix is $|y+p|$, so the parabola equation becomes

$$
\sqrt{x^{2}+(y-p)^{2}}=|y+p|
$$

which simplifies to

$$
x^{2}=4 p y
$$

Similarly, if directrix is $x=-p$ and focus is $(p, 0)$ the parabola equation is

$$
y^{2}=4 p x
$$

Ellipses

An ellipse is the set of points in a plane, the sum of whose distances from two fixed points F_{1}, F_{2} (foci) is a constant. If $F_{1}=(-c, 0), F_{2}=(c, 0)$, and the constant is $2 a$ the ellipse equation becomes

$$
\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a
$$

which simplifies to

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \quad c^{2}=a^{2}-b^{2}, \quad a \geq b>0
$$

If the foci are of the y-axis, i.e. $F_{1}=(0,-c), F_{2}=(0, c)$, the ellipse equation becomes

$$
\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1, \quad c^{2}=a^{2}-b^{2}, \quad a \geq b>0
$$

Hyperbolas

A hyperbola is the set of points in a plane, the difference of whose distances from two fixed points F_{1}, F_{2} (foci) is a constant. If $F_{1}=(-c, 0), F_{2}=(c, 0)$, and the constant is $2 a$ the hyperbola equation is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1, \quad c^{2}=a^{2}+b^{2}
$$

The x-intercepts $(\pm a, 0)$ are called the vertices of hyperbola, and it has asymptotes $y= \pm(b / a) x$.

If the foci are of the y-axis, i.e. $F_{1}=(0,-c), F_{2}=(0, c)$, the hyperbola equation becomes

$$
\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1, \quad c^{2}=a^{2}+b^{2}
$$

Its vertices are $(0, \pm a)$ and asymptotes are $y= \pm(a / b) x$.

Shifted conics

Shifted conic can be obtained by replacing x and y in its equation with $x-h$ and $y-k$, respectively.

Example

Identify the conic $9 x^{2}-4 y^{2}-72 x+8 y+176=0$ and find its foci. To accomplish it, we complete the squares:

$$
\begin{aligned}
4\left(y^{2}-2 y\right)-9\left(x^{2}-8 x\right) & =176 \\
4\left(y^{2}-2 y+1\right)-9\left(x^{2}-8 x+16\right) & =176+4-144=36 \\
4(y-1)^{2}-9(x-4)^{2} & =36 \\
\frac{(y-1)^{2}}{9}-\frac{(x-4)^{2}}{4} & =1
\end{aligned}
$$

Hence, it is a shifted hyperbola with $a=3, b=2, c=\sqrt{13}$ whose (original) foci $(0, \pm \sqrt{13})$ are also shifted accordingly and become $(4,1 \pm \sqrt{13})$.

10.6 Conic Sections in Polar Coordinates

Theorem
Let

- F be a fixed point (focus)
- ℓ be a fixed line (directrix) in a plane
- $e>0$ be a fixed number (eccentricity).

The set of all points P in the plane such that

$$
\frac{|P F|}{|P \ell|}=e
$$

is a conic section. The conic is
(i) an ellipse, if $e<1$
(ii) a parabola, if $e=1$
(iii) a hyperbola, if e>1

Note that for $e=1$ then we get the definition of parabola. Let $F=(0,0)$ and ℓ be the line $x=d$. For $P=(r, \theta)$ one has

$$
|P F|=r \quad|P \ell|=d-r \cos \theta
$$

The condition $|P F|=e|P \ell|$ becomes

$$
r=e(d-r \cos \theta) \quad \text { or } \quad \sqrt{x^{2}+y^{2}}=e(d-x)
$$

By squaring both parts after a little algebra we get

$$
\begin{aligned}
x^{2}+y^{2}=e^{2}(d-x)^{2} & =e^{2}\left(d^{2}-2 d x+x^{2}\right) \\
\left(1-e^{2}\right) x^{2}+2 d e^{2} x+y^{2} & =e^{2} d^{2}
\end{aligned}
$$

After completing the square we obtain

$$
\left(x+\frac{e^{2} d}{1-e^{2}}\right)^{2}+\frac{y^{2}}{1-e^{2}}=\frac{e^{2} d^{2}}{\left(1-e^{2}\right)^{2}}
$$

Proof.

For $e<1$ we get the ellipse equation of the form

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

where $h=-\frac{e^{2} d}{1-e^{2}}, a=\frac{e d}{1-e^{2}}, b=\frac{e d}{\sqrt{1-e^{2}}}$. The foci are at distance c from the ellipse center, where
$c=\sqrt{a^{2}-b^{2}}=\frac{e^{2} d}{1-e^{2}}=-h$ and $e=\frac{c}{a}$.
For $e>1$ we have $1-e^{2}<0$, so the equation represents a hyperbola. We could write its equation in the form

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

and derive $e=\frac{c}{a}$ with $c^{2}=a^{2}+b^{2}$.

Therefore, the curve equation in polar coordinates is

$$
r=\frac{e d}{1+e \cos \theta}
$$

For directrix of the form $x=-d, y=-d$, or $y=d$ the equation can be obtained by rotating the graph on angles $\pi,-\pi / 2$, or $\pi / 2$, respectively. For example. for $y=d$ we get the equation $r=\frac{e d}{1+e \cos (\theta-\pi / 2)}=\frac{e d}{1+e \sin \theta}$. Thus, we the theorem:

Theorem
A polar equation of the form

$$
r=\frac{e d}{1 \pm e \cos \theta} \quad \text { or } \quad r=\frac{e d}{1 \pm e \sin \theta}
$$

represents a conic setion of eccentricity e. The conic is an ellipse if $e<1$, a parabola if $e=1$, or a hyperbola if $e>1$.

Example

The conic equation $r=\frac{10}{3-2 \cos \theta}$ can be rewritten as

$$
r=\frac{\frac{10}{3}}{1-\frac{2}{3} \cos \theta}
$$

So, $e=2 / 3$ and it is an ellipse. The directrix line is at distance $d=\frac{\frac{10}{3}}{e}=5$ from the origin, so its equation is $x=-5$.

Example

If we replace the equation from the previous example with

$$
r=\frac{10}{3-2 \cos (\theta-\pi / 4)}
$$

we get an ellipse rotated on angle $\pi / 4$ about one of its foci. The directrix line becomes $y=5 \sqrt{2}-x$.

